2023 Drinking Water Consumer Confidence Report (Supplemental Data)

CITY OF ROCHESTER, NEW YORK

Introduction

The Rochester Water Bureau has prepared the following report to provide information to you, the consumer, on the quality of our drinking water. Included within this report is general health information, water quality test results, and water system contacts.

This year, as in years past, your tap water met all USEPA and state drinking water health standards. Our system vigilantly safeguards its surface water supply, and we are able to report that the department had no violation of a contaminant level or of any other water quality standard in the previous year. This report summarizes the quality of water that we provided last year, including details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. We are committed to providing you with this information because informed customers are our best allies.

Source Water Information.

The City of Rochester Distribution System receives its drinking water from the Hemlock and Shoremont Water Filtration Plants located in Livingston and Monroe Counties.

What are sources of contamination to drinking water?

The sources of drinking water for Rochester are Hemlock Lake, Canadice Lake and Lake Ontario. The City also maintains three storage reservoirs. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations
- (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- (D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban Storm water runoff, and septic systems
- (E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities

In order to ensure that tap water is safe to drink, USEPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. The presence of some contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

About your drinking water and the data in this report.

The EPA requires regular sampling to ensure drinking water safety. The City of Rochester Water Bureau conducts sampling for bacteriological; inorganic; radiological; synthetic organic and volatile organic contaminants. Samples were collected in 2023 for over 200 different contaminants most of which were not detected in the City of Rochester water supply. The EPA requires us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though accurate, is more than one year old.

2023 Lead and Copper Survey.

The lead and copper rule is one of the many federal and state regulations that exist to ensure the quality and safety of everyone's drinking water. The City of Rochester Public Water Supply is in compliance with these regulations. In 2023 samples were collected from 103 locations in the distribution system where the highest levels of these contaminants were likely to be found. The 90th percentile for lead was 11 ug/L with a range from <1 ug/L to a maximum of 52.2 ug/L. The 90th percentile for copper was 260 ug/L with a range from 20 to a maximum of 430 ug/L. Both 90th percentiles are below the 15 ug/L action level for lead and 1300 ug/L action level for copper (90th percentile: 90% of samples were at, or below, the value reported).

Unregulated Contaminant Monitoring Rule 5 (UCMR5).

The 1996 Safe Drinking Water Act (SDWA) amendments require that once every five years EPA issue a new list of no more than 30 unregulated contaminants to be monitored by public water systems. UCMR5 was published on December 27,2021 and requires public water systems to participate in monitoring between 2023 and 2025. The monitoring results provided the basis for future regulatory actions to protect public health. The City of Rochester participated in UCMR5 in 2023.

Quality Assurance - Reliability and Accuracy of Reported Data

A quality assurance program is necessary for all drinking water laboratories to document analytical uncertainty and to promote confidence in analytical results. Our Quality Assurance Program consists of two parts: Quality Control and Quality Assessment. Our Quality Control program consists of laboratory practices that are undertaken to insure accuracy and reliability in analytical results. Our Quality Assessment program consists of activities to monitor and document the effectiveness of our Quality Control Program. Assessment activities include quarterly data integrity audits, annual quality system audits, participation in proficiency test programs twice per year and biannual audits conducted by a New York State DOH ELAP auditor.

The City of Rochester Water Quality Laboratory (New York State Department of Health Lab ID#10239) is approved as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (NELAC; 2003) for the Category ENVIRONMENTAL ANALYSIS POTABLE AND NON-POTABLE WATER. All tests results

generated for this report were performed in accordance with approved methods by the City of Rochester Water Quality Laboratory or by a NELAC contract laboratories certified for the analysis of potable and non-potable water. Monroe County Water Authority data is provided courtesy of the MCWA Water Quality Laboratory.

Samples analyzed for this report were collected at the Entry Point (Water leaving the filtration plant), from the source (Hemlock Lake), or within the Distribution System (Network of pipes and storage facilities downstream of the filtration plant that are used to deliver potable water to the consumer).

For more information on your drinking water contact:

Hemlock Filtration Plant Water Quality Laboratory at 585-428-6680 ext 1
Laboratory Director/Water Quality Chemist at 585-428-6011
New York State Department of Health at 1-800-458-1158 (within New York State)
EPA Safe Drinking Water Hotline at 1-800-426-4791
Monroe County Water Authority at 585-442-2000

Definitions of some terms contained within this report.

Maximum Contaminant Level Goal (MCLG):	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MCLG's are not enforceable.
Maximum Contaminant level (MCL):	The highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCLs are enforceable.
Secondary MCL:	A secondary standard is a non-enforceable guidline that may cause aesthetic effects such as changes to the taste, odor or color of drinking water.
Action Level (AL):	The concentrations of a contaminant, which, when exceeded triggers additional treatment, or other requirements, that a water system must follow.
LRAA:	Locational Running Annual Average; The annual average contaminant concentration at a monitoring site.
Maximum Residual Disinfectant Level (MRDL):	The highest level of disinfectant that is allowed in drinking water.
MFL:	Millions of fibers per liter. A units of measure for absestos fibers longer than 10 micrometers.
Milligrams per Liter (mg/L):	A unit of measure for concentration of a contaminant that is also refered to as parts per million. Anology: A part per million corresponds to one second in a little over 11.5 days.
Micrograms per Liter (μg/L):	A unit of measure for concentration of a contaminant that is also refered to as parts per billion. Anology: A part per billion corresponds to one second in 31.7 years.
Nanograms per Liter (ng/L):	A unit of measure for concentration of a contaminant that is also refered to as parts per trillion. Anology: A part per trillion corresponds to one second in 32,000 years.
NTU:	Nephelometric turbidity units. A measure of water clarity. Turbidity in excess of 5 NTU is just noticeable to the average person.
Treatment Technique (TT):	A required process intended to reduce the level of a contaminant in drinking water.
The "<"symbol:	A symbol which means less than. A result of < 5, for example, means that the result is below the lowest concentration that can be detected by the analytical method for a given contaminant. Essentially means the same thing as not detected "ND".
NA or N/A	not applicable
ND	not detected.

Page 3

Monitoring Results

The City of Rochester had no reporting violations in 2023

This summary contains results for both detected and non-detected contaminants. Information on health effects is provided for detected contaminants only.

			Hemlock Wa	ter Filtration Pla	nt				Мо	nroe County	Water Author	ority
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Avg	Maximum
Alpha emitters (pCi/L)	2018	0		ND		0	15		1 (2021)		ND	
Jranium, Total (pCi/L)	2018	0		ND		0	30		1 (2021)		ND	
Combined Radium 226+228 (pCi/L)	2019	0		1.11 <u>+</u> 0.54		0	5		1 (2021)		ND	

			Hemlock Wat	ter Filtration Pla	ant				Мо	nroe County	Water Author	ority
Contaminant (units)	Sample Year	No. Tests		Total No. Positive	% Positive	MCLG	MCL	Violation	No. Tests		Total No. Positive	% Positive
Finished Water Coliform, Total (P/A)	2023	363		0	0.0	N/A	TT	N		http://www.	mcwa.com/	-
E.Coli (P/A)	2023	363		0	0.0		0	N		http://www.	mcwa.com/	
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Avg	Maximum
Raw Water Cryptosporidium (Oocysts/L)	2023	1	0.00	0.00	0.00	0	ТТ	N	4		ND	
												4
Raw Water Giardia (Oocysts/L)	2023	1	0.00	0.00	0.00	0	π	N	4		ND	

Health Effect: Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches.

for 95% of samples)

Microbiological Contaminants (Distribution	n System)							
Contaminant (units)	Sample Year	No. Tests	Total No. Positive	Highest Month % Positive	% Positive Annual Avg	MCLG	MCL	Violation
Coliform, Total (P/A)	2023	1,845	13	3.0 (7/2023)	0.7	N/A	TT	N
	Coliforms are bacte bacteria may be pr		, ,				cator that other, potentially	y-harmful,
E. Coli (P/A)	2023	1,845	0	NA	0.0			N

Cyptosporidium and Giardia samples collected from reservoir effluent PRIOR to chlorination

Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
Highland Reservoir Cryptosporidium (Oocysts/L)	2023	23	0.00	0.00	0.00	0	ΤΤ	N
Highland Reservoir Giardia (Oocysts/L)	2023	23	0.00	0.00	0.00	0	ТТ	N
Cobbs Hill Reservoir Cryptosporidium (Oocysts/L)	2023	18	0.00	0.00	0.00	0	ТТ	N
Cobbs Hill Reservoir Giardia (Oocysts/L)	2023	18	0.00	0.00	0.00	0	TT	N
Turbidity (NTU)	2023	1,783	0.03	0.11	7.00		TT (mo. avg <5NTU)	N

Inorganic Contaminants (Entry Point)												
				Hen	nlock Water Fil	tration Plant			Мо	onroe County	Water Auth	ority
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Avg	Maximum
Alkalinity (mg/L)	2023	1	72	72	72		15	N	4	89	91	92
Health Effec	t: Alkalinity has no he	ealth effect. It	t is a measure	of a waters abil	ity to neutralize	acid.	!	•	•			4
Calcium (mg/L)	2023	1	26.0	26.0	26.0		15	N	4	32	34	35
Health Effec	t: Calcium is a benef CaCO3). Calcium						on by 2.5 converts the res	sult to a value	e expressed a	s mg/L of calc	ium hardnes	s (as
Chloride (mg/L)	2023	1	37	37	37		15	N	4	23	25	26
Health Effec	t: Low to moderate of At this concentration			dd palatability to	water. The EPA	A Secondary I	Drinking Water Regulatio	ns recommer	nd a maximun	n concentration		L for chloride.
Sulfate (mg/L)	2023	1	22	22	22		15	N	4	24	26	27
Health Effec	t: Low to moderate of At this concentration			d palatability to w	vater. The EPA	Secondary D	rinking Water Regulation	s recommend	d a maximum	concentration	of 250 mg/L	for sulfate.
Color (True) (Color Unit)	2023	1	<3	<3	<3		15	N	0		NA	
Color (Apparent) (Color Unit)	2023	1	<3	<3	<3	1	15	N	4		ND	$\overline{}$
Fluoride (mg/L)	2023	1,081	0.08	0.68	0.77	2.2	2.2	N	2,084	0.20	0.72	0.98
Health Effec		l. The averag	ge fluoride cor	centration within	our water supp	ly is 3 times I	on system. Fluoride occu lower than the NYS MCL.					
ortho-Phosphate (mg/L)	2023	1		<0.03							NA	
Nitrate (mg/L)	2023	12	0.01	0.08	0.14	10	10	N	4	ND	0.26	0.5
Health Effec	t: Infants below the a breath and blue ba	-		water containing	g nitrate in exce	ss of the MCI	L could become seriously	ill and, if unti	reated, may d	ie. Symptoms	include sho	rtness of
Nitrite (mg/L)	2023	3	<0.01	<0.01	<0.01			N	4		ND	
pH (SU)	2023	364	7.30	7.80	8.16		6.5-8.5 SU	N	365	7.2	7.5	8.2
Health Effec							end a range of 6.5-8.5 SU	for pH. Low	pH can result	ts in a bitter m	etallic taste a	and increased
Total Handrage (1994)	corrosivity; High pl	H can results	in a soda tast		to scale formati	on.	I NA	T N	Τ 4	400	400	100
Total Hardness (mg/L)	2023	1		92			NA	N	4	120	123	130
Health Effec	expressed in grain	s per gallon (gpg). The gra	ins of hardness i	in City water is 5		m and magnesium hardn					
Finished Water Specific Conductivity (umhos/cm)	2023	362	267	297	346		NA	N	48	290	303	320
Health Effec	source water quali	ty and is used	by the water	quality laborator	y to differentiate	between drir	ed with the amount of totanking water sourced from nigher than potable wat	Hemlock Lak	ke and Lake C			
Total Dissolved solids (mg/L)	2023	1		160			500	N	4	160	173	180
Health Effec	t: Contributes to the	hardness, col	or and taste o	f the water. The	EPA has estab	lished a seco	ndary maximum contami	nant level co	ncentration of	500 mg/L for	TDS.	
Iron (mg/L)	2023	1		<0.100	T			N	4		ND	Τ
Magnesium (mg/L)	2023	1		6.6			NA	N	1		8.6	1
Health Effec	t: Magnesium is a be (as MgCO3). Mag					-	centration by 2.5 converts	s the result to	a value expre	essed as mg/L	of magnesi	um hardness
Potassium (mg/L)	2023	1		1.6	1			N	1		1.7	
Health Effec	t: Potassium is an es	ssential nutrie	nt and is pres	ent in very low le	evels in drinking	water.		_				
Sodium (mg/L)	2023	1		20			50	N	4	14	15	16
Health Effec							should avoid drinking wa	ter containing	g more than 2	0 mg/L sodiun	n. Water con	taining more
Aluminum (up.ll.)	than 270 mg/L of s	odium should	not be used t		eople on modera	ately restricted		L	T 4	0.4	47	^7
Aluminum (ug/L)	2023	1	d to polariari	7.6	Secondor: Drivi	ing Metar Dr	200	N maximum aar	4	24	47	67
Health Effec		iirium can iea	u to colored w		secondary Drink		gulations recommend a r			∪.∠ mg/L (=20		urninum.
Antimony (ug/L)	2023	1		<1.0		6	6	N	4		ND	

				Hen	nlock Water Filt	ration Plant			Mo	nroe County	Water Auth	ority
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Avg	Maximun
Arsenic (ug/L)	2023	1		<1.0		0	10	N	4		ND	
Barium (mg/L)	2023	1		0.017		2	2	N	4	0.018	0.020	0.021
Health Eft	ect: Some people who	drink water co	ontaining bariu	m in excess of t	he MCL over ma	any years could	experience an increas	e in their bloo	od pressure.			
Beryllium (ug/L)	2023	1		<0.3		4	4	N	4		ND	
Cadmium (ug/L)	2023	1		<0.5		5	5	N	4		ND	
Chromium, Total (ug/L)	2023	1		< 0.9		100	100	N	4		ND	
		_										
Copper (ug/L) Health Eff	2023 ect: Copper is an esse	1 ntial nutrient, l	out some peor	15 ble who drink wa	ter containing co	1300 opper in excess	1300 of the action level ove	N r a relatively	4 short amount	of time could	ND experience o	astrointestin
Copper (ug/L) Health Ef	ect: Copper is an esse	ople who drink		ole who drink wa		opper in excess	of the action level ove any years could suffer	a relatively	short amount		experience (
Health Eff	Copper is an esse distress. Some per	ople who drink		ole who drink wa		opper in excess	of the action level ove	a relatively	short amount		experience (
	cct: Copper is an esse distress. Some per consult their personal con	ople who drink		ole who drink wa		opper in excess on level over m	of the action level ove any years could suffer	a relatively iver or kidne	short amount		experience ç sons Diseas	
Health Eff Cyanide (mg/L) Lead (ug/L)	Copper is an esse distress. Some per consult their person 2023	ople who drink		ole who drink wa ning copper in ex		opper in excess on level over m	of the action level ove any years could suffer 0.2	a relatively iver or kidne	short amount damage. Pe		experience (sons Diseas ND	
Health Eff Cyanide (mg/L)	cct: Copper is an esse distress. Some per consult their personal to 2023	ople who drink		ole who drink wa ning copper in ex <0.005		opper in excess on level over m	of the action level ove any years could suffer 0.2 15	r a relatively iver or kidne	short amount damage. Pe		experience g sons Diseas ND ND	
Health Eff Cyanide (mg/L) Lead (ug/L) Manganese (ug/L) Nickel (ug/L)	cct: Copper is an esse distress. Some per consult their personal to their personal to the consult the	ople who drink		ole who drink wa ning copper in ex <0.005 <1 <2.0		opper in excess on level over m	of the action level ove any years could suffer 0.2 15 50	r a relatively iver or kidner N N N	short amount damage. Pe		experience g sons Diseas ND ND ND	
Health Eff Cyanide (mg/L) Lead (ug/L) Manganese (ug/L)	cct: Copper is an esse distress. Some per consult their personal 2023 2023 2023 2023	ople who drink		ole who drink washing copper in execution of the copper in execution of		opper in excess on level over m 0.2 0	of the action level ove any years could suffer 0.2 15 50 100	n a relatively iver or kidner N N N N N	short amount damage. Pe		experience g son's Diseas ND ND ND	

<5.0

<0.1

5000

2

N

N

ND

ND

Inorganic Contaminants and/or Analytes (Distribution Sy	/stem)						
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
Distribution System Fluoride (mg/L)	2023	305	0.50	0.68	0.76			N
1776 Dewey Ave Asbestos (MFL)	2023	1		ND		7	7	N

2023

2023

Zinc (ug/L)

Mercury (ug/L)

	Lead and C	Copper Su	rvey (Distr	ibution Syste	em)			
Contaminant (units)	Sample Year	No. Samples	Minimum	90th %	Maximum	MCLG	AL	Violation
Copper (ug/L)	2023	103	20	260	430	1300	1300 (0 locations >AL)	N
		•	•				ter containing copper in exease should consult their p	
Lead (ug/L)	2023	103	<1	10	52.2	0	15 (5 locations >AL)	N
Health E	iffect: Infants and children could show slight d kidney problems or	leficits in atter	ntion span and	•	•		al or mental development. over many years could de	

Disinfectants and Disinfection By-Produc	ts (Entry Point))						
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
							(MRDL for Chlorine)	
Total Organic Carbon (TOC) (mg/L)	2023	1		2.47		N/A	TT	N
	disinfection byprod	ucts. These b products in e	yproducts inc xcess of the N	lude trihalometha MCL may lead to a	nes (THMs) an adverse health	d haloacetic a	medium for the formation acids (HAAs). Drinking was or kidney problems, or ne	ter
UV254 (abs/cm)	2023	1		0.033			NA	N
	There is no health looncentrations and				•	254 absorban	nce and total organic carbo	on
Free Chlorine Residual (mg/L)	2023	2,168	0.71	0.90	1.37	4	4	N
			•				ce irritating effects to their experience stomach disco	•

Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
							(MRDL for Chlorine)	
Bromodichloromethane (ug/L)	2023	1		4.7			NA	N
Bromoform (ug/L)	2023	1		<0.5			NA	N
Chloroform (ug/L)	2023	1		13.0			NA	N
Dibromochloromethane (ug/L)	2023	1		1.0			NA	N
Total Trihalomethanes (ug/L)	2023	1		19			80	N
Health Effe	ct: Increased risk of c	ancer associa	ted with long-	term exposure ab	ove the MCL.			
Dibromoacetic Acid (ug/L)	2023	1		<1.0			NA	N
Dichloroacetic Acid (ug/L)	2023	1		6.3			NA	N
Monobromoacetic Acid (ug/L)	2023	1		<1.0			NA	N
Monochloroacetic Acid (ug/L)	2023	1		<2.0			NA	N
Trichloroacetic Acid (ug/L)	2023	1		4.7			NA	N
Haloacetic Acids (5) (ug/L)	2023	1		11			60	N
Health Effe	ct: Increased risk of c	ancer associa	ted with long-	term exposure ab	ove the MCL			

Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL (MRDL for Chlorine)	Violation	Maximum LRAA
Free Chlorine Residual (mg/L)	2023	2,806	0.25	0.91	1.94	4	4	N	
Health Effect:	Some people who people who drink w		•				nce irritating effects to thei omach discomfort.	r eyes and no	ose. Some
Bromodichloromethane (ug/L)	2023	32	6	10	13		NA	N	
Bromoform (ug/L)	2023	32	0	0	0		NA	N	
Chloroform (ug/L)	2023	32	7	35	60		NA	N	
Dibromochloromethane (ug/L)	2023	32	2	2	4		NA	N	
Total Trihalomethanes (ug/L)	2023	32	15	47	76		80	N	50
Health Effect:	Increased risk of ca	ancer associa	ted with long-t	erm exposure a	bove the MCL.				
Dibromoacetic Acid (ug/L)	2023	32	0	0	0		NA	N	
Dichloroacetic Acid (ug/L)	2023	32	4	14	34		NA	N	
Monobromoacetic Acid (ug/L)	2023	32	0	0	0		NA	N	
Monochloroacetic Acid (ug/L)	2023	32	0	1	4		NA	N	
Trichloroacetic Acid (ug/L)	2023	32	4	14	26		NA	N	
Haloacetic Acids (5) (ug/L)	2023	32	7	29	64		60	N	34
Health Effect:	Increased risk of ca	ancer associa	ted with long-t	erm exposure a	bove the MCL				

Semi-Volatile Organic Contaminants (Entr	ry Point)											*
				Her	nlock Water Filt	ration Plant			Мо	nroe County	Water Auth	ority
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL***	Violation	No. Tests	Minimum	Avg	Maximum
1,2-Dibromo-3-Chloropropane (DBCP) (ug/L)	2023	1		<0.01		0	0.2	N	1		ND	1
1,2-Dibromoethane (EDB) (ug/L)	2023	1		<0.01		0	0.05	N	1		ND	1
1,4-Dioxane (ug/L)	2023	4	< 0.07	< 0.07	< 0.07		1	N	4		ND	Τ
Perfluorooctane sulfonate (PFOS) (ng/L)	2023	1		<1.90			10	N	4	ND	0.6	2.4
	human developme	nt (e.g., decre	eased birth wei	ght), and cance	r. The most sen	sitive non-can	pes of health effects includer effect from the best cody concentrations) in c	available scie				
Perfluorooctanoic acid (PFOA) (ng/L)	2023	1		<1.90			10	N	1		ND	Ί
Perfluorobutanoic acid (PFBA) (ng/L)	2023	4		< 0.005			NA	N	4	ND	1.7	2.5
Health Effect:	Perfluorobutanoic	acid (PFBA) is	s a unregulated	d member of a o	roup of perfluori	nated chemic	als and can cause healtl	n effects simil	ar to PFOS.	_		•
Aroclor 1016 (PCB's) (ug/L)	2023	1		<0.08			NA	N	0		ND	
Aroclor 1221 (PCB's) (ug/L)	2023	1		<0.10			NA	N	0		ND	
Aroclor 1232 (PCB's) (ug/L)	2023	1		<0.10			NA	N	0		ND	
Aroclor 1242 (PCB's) (ug/L)	2023	1		<0.10			NA	N	0		ND	
Aroclor 1248 (PCB's) (ug/L)	2023	1		<0.1			NA	N	0		ND	
Aroclor 1254 (PCB's) (ug/L)	2023	1		<0.1			NA	N	0		ND	
Aroclor 1260 (PCB's) (ug/L)	2023	1		<0.1			NA	N	0		ND	

Semi-Volatile Organic Contaminants	(Entry Point)	ī		11	ula ala Watan Fili	antina Dinat					ounty Water Authority		
Contaminant (units)	Sample Year	No. Tests	Minimum		mlock Water File Maximum	MCLG	MCL***	Violation	No. Tests	Minimum	Avg	Maximum	
Total PCB's (ug/L)	2023	No. Tests	Wiinimum	Avg ND	Waximum	0	0.5	N	No. Tests	winimum	ND ND	waximum	
Chlordane (ug/L)	2023	1		<0.1		0	2	N N	4				
		1				0	3	N N	4		ND		
Toxaphene (ug/L)	2023	1		<0.5		U					ND		
2,4-D (ug/L)	2023		 	<0.1		200	50	N	1		ND		
Dalapon (ug/L)	2023	1		<1.0		200	200	N	4		ND		
Dacthal, mono & di acid, DCPA (ug/L)	2023	1	 	<0.5			50	N	4		ND		
Dicamba (ug/L)	2023	1	$\vdash \vdash \vdash$	<0.1			50	N	1		ND	ļ	
Dinoseb (ug/L)	2023	1	\vdash	<0.1		7	7	N	1		ND		
Pentachlorophenol (ug/L)	2023	1		<0.04		0	11	N	4		ND	-	
Picloram (ug/L)	2023	1		<0.1		500	500	N	1		ND		
2,4,5-TP (Silvex) (ug/L)	2023	1		<0.1		50	50	N	1		ND		
Alachlor (ug/L)	2023	1		<0.1		0	2	N	4		ND		
Aldrin (ug/L)	2023	1	igsquare	<0.1			50	N	4		ND	<u> </u>	
Atrazine (ug/L)	2023	1		<0.1		3	3	N	4		ND	<u> </u>	
Benzo(a)pyrene (ug/L)	2023	1		<0.02		0	0.2	N	4		ND		
gama-BHC (Lindane) (ug/L)	2023	1		<0.02		0.2	0.2	N	4		ND		
Butachlor (ug/L)	2023	1		<0.1			50	N	4		ND		
Dieldrin (ug/L)	2023	1		<0.1			50	N	4		ND		
Di(2-ethylhexyl) adipate (ug/L)	2023	1		<0.6		400	400	N	4		ND		
Di(2-ethylhexyl) phthalate (ug/L)	2023	1		<0.6		0	6	N	4		ND		
Endrin (ug/L)	2023	1		<0.01		2	2	N	4		ND		
Heptachlor (ug/L)	2023	1		<0.01		0	0.4	N	4		ND		
Heptachlor epoxide (ug/L)	2023	1		<0.01		0	0.2	N	4		ND		
Hexachlorobenzene (ug/L)	2023	1		<0.1		0	1	N	4		ND		
Hexachlorocyclopentadiene (ug/L)	2023	1		<0.1		50	50	N	4		ND		
Methoxychlor (ug/L)	2023	1		<0.1		40	40	N	4		ND		
Metolachlor (ug/L)	2023	1		<0.1			50	N	4		ND		
Metribuzin (ug/L)	2023	1		<0.1			50	N	4		ND		
Propachlor (ug/L)	2023	1		<0.1	1		50	N	4	1	ND		
Simazine (ug/L)	2023	1		< 0.07		4	4	N	4	Î	ND		
Aldicarb (ug/L)	2023	1		<0.5	1		50	N	1	1	ND		
Aldicarb sulfone (ug/L)	2023	1	1	<0.7	1		50	N	1	i e	ND	1	
Aldicarb sulfoxide (ug/L)	2023	1	i i	<0.5			50	N	1		ND		
Carbaryl (ug/L)	2023	1		<0.5			50	N	4		ND		
Carbofuran (ug/L)	2023	1	 	<0.9		40	40	N	4		ND		
3-Hydroxycarbofuran (ug/L)	2023	1		<0.5			50	N	1		ND		
Methomyl (ug/L)	2023	1	 	<0.5			50	N	1		ND		
1-Naphthol (ug/L)	2023	1	 	<1.0	1	 	50	N	4		ND	1	
Oxamyl (ug/L)	2023	1	 	<1.0	1	200	200	N	1		ND	1 	
Glyphosate (ug/L)	2023	1	 	<6.0	1	700	700	N	1		ND	1 	
Endothall (ug/L)	2023	1	 	<5.0		100	100	N	1	1	ND	1	
Diquat (ug/L)	2023	1	 	<0.4		20	20	N	1		ND		
2,3,7,8-TCDD (Dioxin) (pg/L)	2023	1	 	<4.80	+	0	30	N	1		ND	+	

Volatile Organic Contaminants (Entry Point)													
Contaminant (units)	Sample Year			Hem	lock Water Filt	ration Plant			Monroe County Water Authority				
		No. Tests	Minimum	Avg	Maximum	MCLG	MCL***	Violation	No. Tests	Minimum	Avg	Maximum	
Benzene (ug/L)	2023	1		<0.5		0	5	N	4		ND		
Bromobenzene (ug/L)	2023	1		<0.5			5	N	4		ND		
Bromochloromethane (ug/L)	2023	1		<0.5			5	N	4		ND		
Bromomethane (ug/L)	2023	1		<0.5			5	N	4		ND		
n-Butylbenzene (ug/L)	2023	1		<0.5			5	N	4		ND		
sec-Butylbenzene (ug/L)	2023	1		<0.5			5	N	4		ND		
tert-Butylbenzene (ug/L)	2023	1		<0.5			5	N	4		ND		
Carbon tetrachloride (ug/L)	2023	1		<0.5		0	5	N	4		ND		
Chlorobenzene (ug/L)	2023	1		<0.5			5	N	4		ND		

Volatile Organic Contaminants (Entry Po	T	1		Ца	mlock Water File	tration Plant			Monroe County Water Authority				
-	+	No. Tests	Minimum		Maximum	MCLG	MCL***	Violation	No. Tests	Minimum		Maximum	
Chloroethane (ug/L)	2023	No. resis	Willimum	Avg <0.5	Maxilliulli	IVICEG	5	N	4	Willimum	Avg ND	Waxiiiiuiii	
Chloromethane (ug/L)	2023	1	 	<0.5	+		5	N	4		ND	╀	
2-Chlorotoluene (ug/L)	2023	1	 	<0.5	+		5	N	4		ND		
4-Chlorotoluene (ug/L)	2023	1	-	<0.5	+		5	N	4		ND ND	+	
Dibromomethane (ug/L)	2023	1	-	<0.5	+		5	N	4		ND	+	
1,2-Dichlorobenzene (ug/L)	2023	1 1	 	<0.5	+		5	N	4		ND	+	
1,3-Dichlorobenzene (ug/L)	2023	1	-	<0.5	+		5	N	4		ND ND	+	
1,4-Dichlorobenzene (ug/L)	2023	1	-	<0.5	+		5	N	4		ND ND	+	
Dichlorodifluoromethane (ug/L)	2023	1	-	<0.5	+		5	N	4		ND	+	
1,1-Dichloroethane (ug/L)	2023	1	 	<0.5	+	0	5	N	4		ND ND	 	
1,2-Dichloroethane (ug/L)	2023	1 1	 	<0.5	+	0	5	N	4		ND ND	+	
1,1-Dichloroethylene (ug/L)	2023	1	 	<0.5		5	5	N	4		ND	 	
cis-1,2-Dichloroethylene (ug/L)	2023	1 1	 	<0.5	+	5	5	N	4		ND ND	+	
trans-1,2-Dichloroethylene (ug/L)	2023	1 1	 	<0.5	+	5	5	N	4		ND	+	
Dichloromethane (ug/L)	2023	1 1	 	<0.5	+	0	5	N	4		ND	+	
1,2-Dichloropropane (ug/L)	2023	1	 	<0.5	+	0	5	N	4		ND ND	+	
1,3-Dichloropropane (ug/L)	2023	1	 	<0.5	+		5	N	4		ND ND	+	
2,2-Dichloropropane (ug/L)	2023	1	-	<0.5	+		5	N	4		ND	+	
1,1-Dichloropropylene (ug/L)	2023	1 1	 	<0.5	+		5	N	4		ND	+	
cis-1,3-Dichloropropylene (ug/L)	2023	1	 	<0.5	+		5	N	4		ND ND	+	
trans-1,3-Dichloropropylene (ug/L)	2023	1 1	_	<0.5	+		5	N	4		ND ND	+	
1,3-Dichloropropylene, cis & trans (ug/L)	2023	1	-	<0.5			5	N	4		ND	+	
Ethyl benzene (ug/L)	2023	1	 	<0.5	+	5	5	N	4		ND ND		
Hexachlorobutadiene (ug/L)	2023	1	-	<0.3	+	5	5	N N	4		ND ND	+	
Isopropylbenzene (ug/L)	2023	1	 	<0.3	+		5	N	4		ND ND	+	
4-Isopropyltoluene (ug/L)	2023	1		<0.5			5	N	4			-	
Methyl-t-butyl ether (MTBE) (ug/L)	2023	1		<0.5			10	N N	4		ND ND	+	
Naphthalene (ug/L)	2023	1	-	<0.5	+		5	N N	4		ND ND	+	
n-Propylbenzene (ug/L)	2023	1	-	<0.5	+		5	N	4		ND ND	+	
Styrene (ug/L)	2023	1	_	<0.5	+		5	N	4			╀	
											ND	++	
1,1,1,2-Tetrachloroethane (ug/L)	2023	1		<0.5			5	N	4		ND	├	
1,1,2,2-Tetrachloroethane (ug/L)	2023	1		<0.5			5	N	4		ND	_	
Tetrachloroethylene (ug/L)	2023	1		<0.5		0	5	N	4		ND		
Toluene (ug/L)	2023	1		<0.5			5	N	4		ND		
1,2,3-Trichlorobenzene (ug/L)	2023	1		<0.5			5	N	4		ND		
1,2,4-Trichlorobenzene (ug/L)	2023	1		<0.5		5	5	N	4		ND		
1,1,1-Trichloroethane (ug/L)	2023	1		<0.5		5	5	N	4		ND		
1,1,2-Trichloroethane (ug/L)	2023	1		<0.5		3	3	N	4		ND		
Trichloroethylene (ug/L)	2023	1		<0.5		0	5	N	4		ND		
Trichlorofluoromethane (ug/L)	2023	1		<0.5			5	N	4		ND		
1,2,3-Trichloropropane (ug/L)	2023	1		<0.5			5	N	4		ND		
1,2,4-Trimethylbenzene (ug/L)	2023	1		<0.5			5	N	4		ND		
1,3,5-Trimethylbenzene (ug/L)	2023	1		<0.5			5	N	4		ND	<u> </u>	
Vinyl chloride (ug/L)	2023	1		<0.2		0	2	N	4		ND		
1,2-Xylene (ug/L)	2023	1		<0.5			5	N	0		ND	 _	
1,3 + 1,4-Xylene (ug/L)	2023	1		<0.5			5	N	0		ND		
Xylenes, Total (ug/L)	2023	1		<0.5			15	N	4		ND		

Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
• •								
Geosmin (ng/L)	2023	1		2.0			NA	N
Health	Effect: There are no report	rts of adverse	health effects	associated with	this compound.			
IBMP (ng/L)	2023	1		<2.0				N
IPMP (ng/L)	2023	1		<2.0				N
MIB (ng/L)	2023	1		<2.0			NA	N
2,4,6-Trichloroanisole (TCA) (ng/L)	2023	1		<2.0				N

Surfactants (Entry Point)								
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
Foaming Agents (MBAS) (mg/L)	2023	1		<0.10				N

Unregulated Contaminant (Entry Point)										
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCL	Violation			
Chromium, Hexavalent (ug/L)	2023	1		0.027		None	N			
	There is currently no regulatory limit established for this contaminant. Chromium-6 is covered under the total									
	chromium drinking									
	carcinogen. The only State which has established a limit on Hexavalent chomium is California. The CA MCL is 10									
	ug/L.									

Algal Toxins - Total Microcystins					
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum
Entry Point	2023	2		ND	

	EPA's Fifth Unregulated Contaminant Monitoring Rule (UMCR5)												
No Per/Polyfluorinated Alkyl Substances Were I Sample Event	Detected in Any			2023 Sam	ple Events - l	Jnit - ug/L (parts per billion)						
		SE1 (2/23)	SE2 (5	/23)		SE3 (8/23)	SE4 (11/23)				
Contaminant	Acronym	RWW	MCWA	RWW	MCWA	RWW	MCWA	RWW	MCWA				
Perfluorobutanoic acid	PFBA	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005				
Perfluoropenatnoic acid	PFPeA	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	<0.003				
Perfluorohexanoic acid	PFHxA	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	<0.003				
Perfluoroheptanoic acid	PFHpA	< 0.003	<0.003	< 0.003	<0.003	< 0.003	<0.003	<0.003	<0.003				
Perfluorooctanoic acid (Regulated)	PFOA	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004				
Perfluorononanoic acid	PFNA	<0.004	<0.004	<0.004	<0.004	< 0.004	<0.004	< 0.004	<0.00				
Perfluorodecanoic acid	PFDA	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.003	< 0.003	< 0.00				
Perfluoroundecanoic acid	PFUnA	< 0.002	<0.002	< 0.002	<0.002	< 0.002	<0.002	< 0.002	<0.002				
Perfluorododecanoic acid	PFDoA	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.00				
4,8 Dioxa-3H-Perfluorononanoic acid	ADONA	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.00				
Perfluorobutanesulfonic acid	PFBS	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	<0.00				
Perfluorohexanesulfonic acid	PFHxS	<0.003	<0.003	< 0.003	< 0.003	<0.003	< 0.003	<0.003	<0.00				
Perfluoroheptanesulfonic acid	PFHpS	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	<0.00				
Perfluorooctanesulfonic acid (Regulated)	PFOS	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004				
Perfluoropentanesulfonic acid	PFPeS	<0.004	< 0.004	<0.004	<0.004	< 0.004	<0.004	<0.004	<0.00				
Hexafluoropropylene Oxide Dimer acid	HFPO-DA	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00				
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	9CI-PF3ONS	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.00				
11-Chloroeicosafluoro-3-oxaundecane-1-1sulfonic acid	11Cl-PF3OUdS	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00				
1H,1H,2H,2H-Perfluorohexane sulfonic acid	4:2 FTS	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.00				
1H,1H,2H,2H-Perfluorooctane sulfonic acid	6:2 FTS	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00				

Sample Event	_	2023 Sample Events - Unit - ug/L (parts per billion)											
		SE1 (2/23)	SE2 (5/23)		SE3 (8/23)		SE4 (11/23)					
Contaminant	Acronym	RWW	MCWA	RWW	MCWA	RWW	MCWA	RWW	MCWA				
1H,1H,2H,2H-Perfluorodecane sulfonic acid	8:2 FTS	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005				
Nonafluoro-3,6-dioxaheptanoic acid	NFDHA	< 0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002				
Perfluoro-3-methoxypropanoic acid	PFMPA	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004				
Perfluoro-4-methoxybutanoic acid	PFMBA	<0.003	<0.003	< 0.003	<0.003	<0.003	< 0.003	<0.003	<0.003				
Perfluoro (2-ethoxyethane) sulfonic acid acid	PFEESA	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003				
N-ethylperfluorooctanesulfonamidoacetic acid	NEtFOSAA	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005				
N-methylyperfluorooctanesulfonamidacetic acid	NMeFOSAA	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006				
Perfluorotetradecanoic acid	PFTA	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008				
Perfluorotridecanoic acid	PFTrDA	< 0.007	<0.007	< 0.007	< 0.007	<0.007	< 0.007	<0.007	<0.007				
Lithium	Li	<9.00	<9.00	<9.00	<9.00	<9.00	<9.00	<9.00	<9.00				

Entry Point Water Quality Parameter (WQP) s	Entry Point Water Quality Parameter (WQP) samples collected in 2023 to comply with the lead and copper rule.											
Substance	units	MCLG	MCL	Average (Annual Range)	Meets EPA Standards							
рН	SU	NA	NA	7.82 (7.73-8.03)	Yes							
Free Chlorine	mg/L	4	4	0.98 (0.91-1.30)	Yes							
Turbidity –Entry Point	NTU	NA	0.3 NTU	0.05 (0.04-0.07)	Yes							
Alkalinity	mg/L	NA	NA	72 (59-76)	NA							
Specific Conductivity	Umhos/cm	NA	NA	298 (286-308)	Yes							
Temperature	Deg C	NA	NA	18 (7-25)	NA							

Distribution System Water Quality Parameters: Water Quality Parameter (WQP) samples collected quarterly from 21 representative locations to comply with the lead and copper rule in 2023.											
Substance	units	MCLG	MCL	Average (Annual Range)	Meets EPA Standards						
рН	SU	NA	NA	7.87 (7.55-8.24)	Yes						
Free Chlorine	mg/L	4	4	0.93 (0.10-1.59)	Yes						
Turbidity -Distribution	NTU	NA	5 NTU	0.08 (0.05-0.34)	Yes						
Alkalinity	mg/L	NA	NA	72 (47-92)	NA						
Specific Conductivity	Umhos/cm	NA	NA	302 (293-319)	Yes						
Temperature	Deg C	NA	NA	18 (10-24)	NA						