Paetec Park Soil and Water Management Plan

Location:

Lots #2 and #3 of the Erie Canal Industrial Park
Oak Street
Rochester, New York

Prepared for:

Rochester Rhinos Stadium, LLC 116 Business Park Drive Utica, New York 13502

> February 2004 Revised: August 2004

LaBella Project No's. 203174.02 & 203174.06

LaBella Associates, P.C. 300 State Street Rochester, New York 14614-1098

Table of Contents

		Page
1.0	Introduction	1
2.0	Objective	2
3.0	Supporting Analytical Data	2
4.0	Approach	4
5.0	Excavation Derived Water Management Plan	. 10
6.0	SWMP Implementation and Environmental Monitoring	. 12
7.0	Decontamination of Equipment	12
8.0	Health and Safety Plan	12
9.0	Community Air Monitoring Plan	13
10.0	Environmental Considerations and Site Design Requirements	13
Figur Figur Figur Figur Figur Appe	re 1 - Map 1 Site Location re 2 - Stadium Site Plan re 3 - Existing Sample Locations & Analytical Data re 4 - GeoTechnical Test Pits and Soil Boring Locations re 5 - General Fill Placement Plan re 6 - Bio-Pile Landscape Berm Cross Sectional Diagram rendix 1 - Soil Analytical Data From Test Pits rendix 2 - Groundwater Analytical Data rendix 3 - Health and Safety Plan rendix 4 - Community Air Monitoring Plan	

Paetec Park Soil and Water Management Plan Lots #2 and #3 of the Erie Canal Industrial Park Rochester, New York LaBella Associates Project No. 203174.06

1.0 Introduction

The location for the Rochester Rhinos' stadium has been designed to occupy Blocks 2 and 3 of the Erie Canal Industrial Park (ECIP) (approximately 16 acres) owned by the City of Rochester, located in the northwest quadrant of the City. Block 2 is bounded by Oak Street on the east, Broad Street on the west, Smith Street to the south, and an abandoned railroad right-of-way to the north. Block 3 is bounded by Oak Street to the west, Smith Street to the south, Lind Street to the north, and the rear property lines of residential properties to the east.

Blocks 2 and 3 of the ECIP have a long history of commercial and industrial use dating from the late 1800s until the mid 1980s when the property was foreclosed on by the City of Rochester. Since the mid 1980s the remaining existing buildings were demolished and the Site has remained vacant to date.

The City of Rochester began conducting environmental investigations on the property in the late 1980s. Approximately 15 various environmental and geotechnical investigations have been completed at the property since that time. The various environmental studies performed at the Site culminated in the performance of a New York State Department of Environmental Conservation (NYSDEC) Voluntary Clean up of the Site in 1998. Impacted soil excavation and off site disposal conducted as part of the voluntary clean up from the Site is as follows:

- PCB Impacted Soil Removal From Block 2 (7.76 tons)
- Lead Impacted Soil Removal From Block 2 (1,121 tons)
- Petroleum Impacted Soil Removal From Block 3 (5,096 tons)

An additional 1,200 tons of soil were removed from Block 3 and transported to the northern portion of Block 2. The soil was then placed in a controlled 1.5-foot lift, as a means of bio-remediating the soil.

The Rochester Rhinos intend to develop the Erie Canal Industrial Park into a soccer stadium complex. The design of the stadium envisions an at grade playing field and seating arrangement. To construct this facility excavation of the playing field will be required to a depth of approximately 1-2 feet below grade. Excavations will also be required for building foundations, and possibly for caissons.

In addition, excavation will be required across the concourse areas of the stadium to depths of 18"-2'.

If undesirable fill materials are identified at these depths, additional fill and solid waste may need to be removed to facilitate sound buildable surfaces.

Figure 1 details the location of the Site. Figure #2 depicts the general configuration of the proposed stadium Complex.

Page 1

2.0 Objective

This Soil and Water Management Plan (SWMP) is intended to provide guidance in the management of soil, fill materials, and water that will be disturbed during the development of the ECIP as a soccer stadium complex. This SWMP is also intended to satisfy the Operation and Maintenance requirements established by the City of Rochester during the Voluntary Cleanup of the site.

The Rochester Rhinos intend to manage the excavated non-hazardous soil and fill material on Site. This plan follows the intent 6 NYCRR Part 360-1.7(b) (9) that allows for fill materials to be placed into other similarly filled areas within a contiguous property.

This SWMP and the environmentally related construction methods associated with this plan will be detailed to the construction manager and contractors working on the stadium project at a pre-construction meeting. LaBella Associates environmental staff will be responsible to direct the implementation of the SWMP during all phases of earthwork construction and site grading activities.

3.0 Supporting Analytical Data

This SWMP utilizes the vast amounts of previously gathered subsurface analytical data that exists for the Site, as well as recently gathered subsurface analytical data, in order to develop a management plan for the large amounts of fill and soil and to a lesser degree water that will be generated during mass excavation for the playing field and during general excavation associated with site work. The utilization of this data is discussed herein.

3.1 Existing Analytical Data-Soil:

Figure 3 details Subsurface Analytical Data that was compiled at the Site during investigations spanning from 1986 – 1998. Figure 3 also details locations of remedial excavations and limited use areas implemented by Haley and Aldrich of New York as a part of the voluntary clean up of the Site performed by the City of Rochester. This data indicates that site Chemicals of Concern (COCs) are generally limited to low levels of petroleum related Volatile Organic Compounds (VOCs), Semi Volatile Organic Compounds (SVOCs), and Metals across much of the Site. These levels of VOCs, SVOCs, and Metals generally fall within NYSDEC TAGM #4046 Soil Clean Up Objectives.

3.2 Current Analytical Data-Soil:

Ten soil borings and thirteen test pits were advanced across the foot print of the planned mass excavation area for the subgrade playing field during Phase I of the Geotechnical Study performed as a part of the stadium complex design process. Both test pits and soil borings were observed for evidence of impairment. The locations of these test pits and soil borings are detailed on Figure 4.

Areas of fill materials (e.g. brick, concrete, lumber, ash, cinders) were consistently observed across the mass excavation area to depths of 8 feet below existing grade.

Page 2 LABELIA

Several of the test pits exhibited slight staining, low-level Photo Ionization Detector (PID) readings, and odor typically associated with aged low levels of petroleum products. One of the test pits exhibited moderate petroleum odors, more elevated PID readings, and dark stained soils. Soil samples were selected from the test pits based on evidence of impairment and were analyzed for site COCs. This analysis was conducted to establish a site-specific rationale to compare PID readings with detected COC levels, to allow for development of a solid waste stream classification system, and to promote efficient screening of soils and solid wastes during the upcoming earthwork. Analytical methods were chosen based on the COCs identified during previous studies.

Table 1 summarizes the observations and sampling from test pits that exhibited evidence of impairment:

Table 1: Evidence of Soil Impairment

Test Pit Number	Location	Observation/Evidence of Impairment/Depth of Highest PID Reading	Sample and Analytical Method
ΓP-03-1	SW corner of playing field mass excavation area within canal bed	Slight petroleum odor in shot rock to 17' BGS	VOCs by USEPA 8260TCL+STARS
	alea within canal occ	PID=Background	SVOCs by USEPA 8270 STARS
ГР-03-4	Western center of playing field mass excavation area	Aged petroleum odor in fill to 8'- 9' BGS	Not Sampled/Analyzed
		PID=Background Moderate petroleum odor in fill at	VOCs by USEPA
TP-03-4A	Western center of playing field mass excavation	2'-3' BGS	8260TCL+STARS
	area	PID=85 ppm	SVOCs by USEPAD 8270 STARS
			TPH by NYSDOH 310.13
TP-03-4C	Western center of playing field mass excavation	Aged Petroleum odor in fill at 2'-3' BGS	VOCs by USEPA 8260TCL+STARS
	area	PID=Background	SVOCs by USEPA 8270 STARS
			8 RCRA by USEPA 6010
mp 02 (NW area of playing field	Slight aged petroleum odor in fill	VOCs by USEPA
TP-03-6	mass excavation area	at 2' BGS	8260TCL+STARS
		PID=20-25 ppm	SVOCs by USEPA 8270 STARS
			8 RCRA by USEPA 6010
			TPH by NYSDOH 310.13
TP-03-7	Northern center of playing field mass excavation area	Very low petroleum odor in fill at 2'-4' BGS	Not Sampled/Analyzed
	CACGVACION AIOU	PID=Background	
TP-03-9	NW corner of playing field mass excavation	Slight petroleum odor in fill at 2'-3' BGS	Not Sampled/Analyzed
	area	PID=Background	<u> </u>

Test pit locations are detailed on Figure 2.

The Results of analysis for the selected soil samples detailed above, is summarized in Table 2 below. The results of analysis are presented in full in Appendix 1.

Table 2: Analytical Data Summary

Soil Sample Number	Description of soil or solid waste	Evidence of Impairment/High PID Reading	Analytical Summary Comparison to TAGM #4046	Analytical Summary Comparison to NYSDEC PSSI
TP-03-1 @ 17' BGS	Shot Rock Fill	Slight Petroleum odor PID≔Background	VOCs <tagm #4046="" rec.="" soil<br="">Cleanup Objectives;</tagm>	VOCs <pssi,< td=""></pssi,<>
			SVOCS>TAGM #4046 Rec. Soil Clean up Objectives.	SVOCs < PSSI
TP-03-4A @ 2'-3' BGS	Fill	Moderate Petroleum Odor PID=85 PPM	VOCs >TAGM #4046 Rec. Soil Clean up Objectives;	VOCs <pssi,< td=""></pssi,<>
			SVOCs> TAGM #4046 Rec. Soil Clean up Objectives.	SVOCs < PSSI
TP-03-4C @ 2'-3' BGS	Fill, brick, grey silt /clay, cinders	Aged petroleum odor PID=Background	VOCs <tagm #4046="" rec.<br="">Soil Clean up Objectives;</tagm>	VOCs <pssi,< td=""></pssi,<>
			SVOCs< TAGM #4046 Rec. Soil Clean up Objectives;	SVOCs < PSSI
			8 RCRA< TAGM #4046 Rec. Soil Clean up Objectives,	
TP-03-6 @ 2' BGS	Fill, brick, glass, metal, ash	Slight aged petroleum odor PID= Background	VOCs <tagm #4046="" rec.<br="">Soil Clean up Objectives;</tagm>	VOCs <pssi,< td=""></pssi,<>
			SVOCs> TAGM #4046 Rec. Soil Clean up Objectives;	SVOCs < PSSI
			8 RCRA< TAGM #4046 Rec. Soil Clean up Objectives.	
TP-03-6 @ 7'-8' BGS	Black silt lense	Moderate petroleum odor PID=20-25 ppm	VOCs <tagm #4046="" rec.<br="">Soil Clean up Objectives;</tagm>	VOCs <pssi,< td=""></pssi,<>
			SVOCs< TAGM #4046 Rec. Soil Clean up Objectives.	SVOCs < PSSI

4.0 Approach

This section of the SWMP details the approach and the classification system that will be used to field screen and segregate excavated soil and solid waste during construction. The method to screen and segregate soil and solid waste will rely on PID readings, visual evidence of impairment, and olfactory evidence of impairment that have been correlated to recent analytical data presented in Section 3.0 and Appendix 2.

4.1 Development of Screening Procedures for Excavated Soil and Fill

Six classes of soil and solid waste are expected at the site. Each of these six classes of material will be managed and handled in a manner dictated by evidence of environmental impairment. These six classes of material are described in Table 3 below.

Table 3: Material Classifications

Class of Material	Physical Description	Screening Parameter	Management/ Re-use of Material
Class 1 Material	Soil, fill materials, and visually identifiable non-contaminated solid waste (e.g. Brick, concrete, rock).	No Discernable Odor; No Elevated PID Readings; No Staining.	Unrestricted use anywhere on the Site; Unrestricted off Site disposal if required; Use on Site to cover Class 2 and Class 3 Materials.
Class 2 Material	Soil and fill materials with low-level petroleum impacts.	Light to Moderate Petroleum odor; Light to moderate Staining; PID Readings less than 50 PPM.	Use on Site as buried under 2' of Class I Materials; Use on Site under parking lots and under paved areas.
Class 3 Material	Soil and Fills with moderate petroleum impacts that may exceed TAGM clean up objectives.	Moderate Petroleum Odor; Moderate Staining PID Readings Greater than 50 PPM and less than 1,000 PPM. Colorimetric tubes consistent with site COCs may be used for screening.	Limited use on Site only in restricted use areas or under paved parking lots and Covered with Class 1 Material; Limited use as landscaped bio-cell berms and covered with Class 1 Materials.
Class 4 Material	Solid waste physically unacceptable for re-use (e.g. lumber, refuse, metal scrap, rail road ties).	May contain evidence of Impairment.	Off Site disposal per 6 NYCRR Part 360 requirements.
Class 5 Material	Significantly impacted soils either solid waste impacted with petroleum or possibly solid waste impacted by other chemicals.	Strong petroleum or other odor; Significant staining or presence of free phase liquids; PID readings of 1000 PPM or greater; Colorimetric tubes consistent with site COC's will be used to guide laboratory analysis; Laboratory analysis required for characterization.	Off Site disposal to be determined based on waste stream characterization.
Class 6 Material	Soil and solid waste from the portion of the Site where the Northern and Southern restricted use areas exist.	May contain evidence of impairment. Note: If any class 6 materials exhibit evidence of impairment consistent with the guidance for Class 5 Materials above, the materials will be treated as Class 5 Materials and will characterized for off site disposal.	Limited use on site in the respective footprint of the restricted use area as deep fill covered with 2' of Class 1 Materials. See Figure 5.

The on site management and use of Class 2 and Class 3 Materials is supported by the site specific screening of materials with a PID and the corresponding analytical data gathered for fill materials at the Site.

4.2 Development of the Management Plan for Excavated Soil and Fill

Based on review of the numerous environmental and geotechnical reports, prepared by the City of Rochester, and the observations conducted recently during the geotechnical study, it appears that the majority of the soil and fill at the Site that contain low level and residual levels of petroleum products (Class 2 and Class 3 Material) across the excavation area are located above a depth of 8 feet below existing grade. At depths greater than 8 feet most soil appeared to be native or non-impacted soils.

An exception to these observations appears to exist in the former canal bed where low-level petroleum odors were observed at deeper depths.

Currently available Site grading plans and balance sheets dictate that several areas of the Site (including most of the Block 3 parking lot area) will need to be filled to raise the elevation of the site. The portion of the Site surrounding the playing field may also need to be filled.

Because most of the Class 2 and Class 3 Materials appear to be located at shallow depths and because of the significant need for filling portions of the site, excavation of the playing field area will be conducted in a layered fashion.

Generally the topsoil will be stripped from the mass excavation area and transported and staged to the northern portion of the site for later use as cover. Soil and fill from depths of 1 foot to 2-foot BGS will be excavated and screened in accordance with the procedures described in Table 3.

All soil and solid waste (Class 6 Material) that is excavated from the area of the pre-established restricted use areas will only be used as deep fill within the footprint of the respective pre-established restricted use area. This material will covered with a minimum of 2 feet of Class 1 material or other clean cover. See Figure 5.

Class 1 Materials: Will be staged with topsoil in the northern portion of the site for later use as cover material.

Class 2 Materials: Will be transported directly to the areas of the site that require filling (Parking lot areas on Block 3 and the areas surrounding the playing field). All Class 2 fill materials will be covered with Class 1 Material, or directly capped with asphalt pavement, concrete pavers, etc.

Class 3 Materials: In general will be excavated and staged on and covered with polyethylene sheeting in the northern limited use area at the Site. Direct filling or use of the Class 3 Material will be permitted under paved parking areas but will be subject to covering requirements detailed in Section 4.2.1 below. Class 3 materials will primarily be either used as fill in the existing limited use areas or will be constructed as bio-pile berms on the Site. All Class 3 fill materials will be covered with Class 1 Material. Class 3 Material will not be capped with asphalt or concrete pavers without first being covered with Class 1 Material. In accordance with NSYDEC solid waste regulations, Class 3 Materials will be either placed as fill or constructed into landscaping bio-berms within 60 days of stockpiling.

Class 4 Materials: Will be either directly loaded onto trucks for off site transport and disposal, or will be stockpiled for later off site disposal. The determination to direct load and transport vs. stockpile and transport at a later date will be determined by the construction manager. Visibly non-contaminated C&D will be allowed to be transported to a non Part 360 permitted construction and demolition debris disposal site if one is available. Any municipal waste, wood, railroad ties, refuse, metal scrap, or Class 4 Materials that exhibit evidence of impairment will be transported on Part 364 permitted vehicles to a Part 360 permitted landfill.

Class 5 Materials: Will be either directly loaded onto Part 364 permitted trucks for off site transport and disposal, or will be stockpiled for later off site disposal at a Part 360 permitted landfill. A generic waste characterization for known Class 5 Materials at the Site will be completed for landfill approval prior to initiating earthwork at the Site. The determination to direct load and transport vs. stockpile and transport at a later date will be determined by the construction manager. Any stockpiled Class 5 Material will be on and covered with polyethylene sheeting. If certain Class 5 Materials do not appear to be consistent with Class 5 Materials pre-excavation waste stream characterization, then stockpiling and additional waste stream characterization may be required. Any stockpiled Class 5 Material will be transported off site for disposal within 60 days.

Class 6 Materials: Will be used as deep fill within the footprint of the pre-established respective restricted use areas. This material will covered with a minimum of 2 feet of Class 1 material or other clean cover.

A General Fill Placement Plan is included as Figure 5. Please note that this plan is preliminary. Detailed grading plans and excavated material usage plans will be developed as the project design is completed.

4.2.1 Cover Thickness and Procedures for Class 2, Class 3, and Class 6 Materials

All Class 2, 3, & 6 Materials will be covered upon completion of the earthwork portion of the site development. Table 4 below details the final requirements for covering Class 2, 3, & 6 Materials during the earthwork Phase of Site development:

Table #4: Excavated Material Cover Requirements

Action	Class 2 Material	Class 3 & Class 6 Material
Daily Cover Requirement and Details	None	Cover with 6-inch Class I Material, polyethylene sheeting, foam vapor suppressant, or hydro seed mulch if fill area is within 100 feet of residential property line
Final Cover Requirement and Details	Covered with a minimum of 2 feet of Class 1 Material and hydroseed if area is not to be paved No cover requirement if area is to be paved or covered with other impervious building materials	Covered with 2 feet of Class 1 Material and hydro seed if fill area is not to be paved. Covered with a minimum of 6 inches of Class 1 Material or clean imported subbase if area is to be paved or covered with other impervious building materials

TABLE #4 (continued)

Action	Class 2 Material	Class 3 & Class 6 Material
Community Air Monitoring Plan	If routine air monitoring conducted as a	If routine air monitoring conducted as a
(CAMP) or Health and Safety Plan	part of the CAMP or HASP indicates	part of the CAMP or HASP indicates
(HASP) situational Cover Requirement	elevated levels of VOCs at property	elevated levels of VOCs at property
and Details	lines; or if neighbors complain of	lines; or if neighbors complain of
	objectionable odors filling activities will	objectionable odors filling activities will
	be stopped immediately, and the filled	be stopped immediately and the filled
	area will be either treated with a foam	area will be either treated with a foam
	suppressant, hydroseed mulch, or will be	suppressant, hydro seed mulch, or will
	covered with either Polyethylene	be covered with either Polyethylene
	Sheeting, a minimum of 6 inches of	Sheeting, a minimum of 6 inches of
	Class 1 Material, or 6 inches of clean	Class I Material or 6 inches of clean
	imported sub-base material. The	imported subbase. The decision of how
	decision of how to cover the material	to cover the material will depend on the
	will depend on the size of the area that	size of the area that needs to be covered
	needs to be covered and the levels of	and the levels of VOCs and odors
	VOCs and odors detected.	detected.

Figure 5 contains a simple cross section that illustrates final soil cover requirements for areas of the site that will not be paved.

4.2.2 Design and Construction of bio-pile Landscape Berms

The most desirable option to re-use Class 3 Materials on Site will be to utilize the Class 3 Materials as fill in the limited use areas of the Site. These areas are depicted on Figure Nos. 2 and 3. In areas that will be paved for use as parking lots Class 3 Materials will be able to be used as deeper fills with a cover of Class 2 Material.

Given the nature of the Site it is possible that an excess of Class 3 Material may remain after filling in the limited use areas and underneath parking lots.

As the design of the stadium progresses there will likely be the need for landscaping berms in the northern and eastern portions of the Site. This desired physical site feature presents an opportunity to passively treat and reuse Class 3 Materials on site, through the use of predesigned bio-pile landscape berms. The pre-designed landscaped bio-pile berms have been designed in accordance with NYSDEC Spill Technology and Remediation Series (STARS) Memo 2, and will allow for relatively un-delayed bio-pile landscape berm treatment of soils during construction.

As detailed in Section 3 Table 2 the test pits and soil borings that were advanced for Phase I of the geotechnical study were observed by an Environmental Analyst and screened with a PID for evidence of impairment. During this study select samples deemed to be the most representative of site-wide conditions were retained for laboratory analysis.

The two soil samples, that exhibited the most evidence of impairment during Phase I of the geotechnical study, were analyzed for Total Petroleum Hydrocarbons (TPH) by NYSDOH Method 310.13. By analyzing the two soil samples for TPH, the worst-case levels of petroleum-impaired soils encountered at the Site can be used for determining nutrient requirements for bio-pile landscape berms.

The results of the TPH Analysis are presented in Table #5 below:

Table 5: TPH Analysis

Soil Sample #	Medium PHC as Kerosene in mg/kg	Heavy PHC as Lube oil in mg/kg
TP-03-4A@ 2'-3' BGS	599	36,600
TP-03-6@ 7'-8' BGS	90.5	7,360

The average level of TPH in the samples is 22,720 mg/kg. NYSDEC Spill Technology and Remediation Series (STARS) Memo 2 recommends that petroleum impacted soils containing 20,000 mg/kg of TPH be blended with a 6:1 Nitrogen Phosphate ratio fertilizer at a rate of 3,941 pounds of fertilizer per 100 cubic yards of impacted soil.

Bio-pile landscape berms will be constructed in general accordance with the following design criteria:

- Bio-pile landscape berms will not be constructed along the eastern property line closest to residential properties. Bio-Pile landscape berms may be desired along the south edge of the eastern parking lot, and along the northwestern parking lot. See Figure 5.
- Bio-pile landscape berms will be constructed on and covered with a 6-inch layer of Class 1 Material or topsoil, and will be seeded to prevent erosion.
- The Bio-pile will be surrounded with a 2-foot high by 2-foot wide berm of Class 1 Material, and will be covered with a minimum of 6 inches of Class 1 Material upon completion.
- Class 3 Material will be placed into the Bio-pile in non-compacted controlled 12-inch lifts.
- A 6:1 Nitrogen/Phosphate (19:3:3) Nitrogen: Phosphorus: Potassium commercial fertilizer will be roto-tilled into each lift at a rate of approximately 40 lbs. of fertilizer per cubic yard of soil.
- Fabric wrapped, 4-inch diameter septic piping will be placed across the pile at 10-foot length intervals in every other lift (24-inch elevation), in a vertical saw tooth pattern. The ends of the pipe should extend approximately 1 inch 2 inches beyond to outer edge of the Landscape berm to allow air to enter the septic piping.
- The fabric wrap on the septic pipe end will be gathered and bound to prevent soil from entering the pipes; the pipes will then be capped with a PVC end cap with air holes or slots. The end cap shall be cemented/glued in place.
- During construction of any bio-pile landscape berms, the active portion of the bio-pile
 construction will be covered with polyethylene sheeting at the end of each workday to prevent
 objectionable odors during non-working hours. As detailed above, upon completion of the biopile landscaped berm, the berm will be covered with a minimum of 6 inches of Class 1 Materials
 or topsoil and hydro seeded to prevent erosion.
- Confirmatory sampling and analysis of the bio-pile landscape berms is not planned as the landscape berms are intended to be a permanent site feature.
- Upon completion of the earthwork portions of the project, LaBella will develop a soils
 management plan that will outline procedures to be followed if the bio-pile landscape berms are
 disturbed or require maintenance in the future.
- Diagrams depicting the proposed locations of the bio-pile landscape berms will be developed and supplied to the NYSDEC and NYSDOH as soon as Final Site grading plans and Final facility designs are completed for the project.

Figure 6 depicts a cross section of the bio-pile landscape berm design.

5.0 Excavation Derived Water Management Plan

5.1 Excavation Derived Water Management Plan Objective

The objective of developing an excavation derived water management plan is to develop a plan that will allow for both groundwater and rainwater that accumulates in the excavation areas (not general grading areas) to be managed without delaying earthwork schedules. This matter becomes more complex when working at a Site where soil and low level groundwater contamination is known to exist.

5.2 Excavation Derived Water Management Plan Approach

Because groundwater at the site is known to have been adversely impacted with Site COCs direct pumping and sewer disposal of groundwater and rainwater that accumulates in the excavations (not general grading areas) will not be feasible. Monroe County Pure Waters (MCPW) owns and operates the municipal sewer system in the vicinity of the Site. In order to discharge potentially contaminated groundwater to the sewer a temporary discharge permit will need to be obtained. In addition if the total levels of VOCs in the wastewater from the excavation exceed 2.1 ppm (parts per million), then the wastewater will have to be treated prior to discharge to the sewer system to remove the VOCs.

The excavation derived water management plan is based on recently gathered groundwater analytical and hydrologic data that was gathered from three existing monitoring wells at the Site by LaBella Associates and three recently installed groundwater monitoring wells completed at the Site by Haley and Aldrich of New York as a part of Phase I of the Geotechnical study recently completed at the Site.

5.3 Hydrologic Data

A Hydraulic Conductivity Analysis utilizing rising head tests at five of the existing wells at the Site was also recently completed by Haley and Aldrich of New York. The hydraulic conductivity testing results indicate hydraulic conductivity values for the wells with a median value of 2 x 10-3 cm/second. One exception was noted in the hydraulic conductivity value for a well that was installed into the shot rock fill of the former canal bed. This well had a hydraulic conductivity value of 2 x 10-1cm/second.

These hydraulic conductivity values, coupled with observations made during the geotechnical test pitting study, appear to indicate that quantities of excavation derived wastewater will likely be manageable during construction with a simple pump/batch/test/treat/batch/test/discharge work plan.

5.4 Analytical Data for site COC's

During Phase I of the geotechnical study, LaBella Associates sampled and analyzed groundwater for site COCs and MCPW discharge criteria chemicals from three existing monitoring wells that are present at the Site from previous investigations.

Haley and Aldrich of New York installed three additional groundwater-monitoring wells in the vicinity of the mass excavation area footprint as part of Phase I of the geotechnical study. These three wells were also sampled and analyzed for site COCs and MCPW discharge criteria chemicals.

These three wells are generally located across the mass excavation area footprint and are depicted in Figure 3. The results of analysis for the groundwater from these six groundwater-monitoring wells are summarized in Table 6 below.

Table 6: Groundwater Analytical Data

Monitoring Well ID Number	Total VOC Analytical Result in mg/L or ppm
TB-90-3	0.152
TB-90-4	0.345
TB-90-5	0.012
HA-03-106	non detect
HA-03-113	0.010
HA-03-121	0.007

The MCPW discharge limit for VOCs is 2.1 ppm. As noted in the table above all of the wells, which are located geographically across the footprint of the mass excavation area exhibited VOC concentrations well below the MCPW limit of 2.1 ppm total VOCs.

Levels of iron were detected in the water samples generally at levels above MCPW discharge criteria. This may represent a pre-treatment requirement for post construction long-term sewer discharge, but likely will not represent an issue with short term dewatering during the construction phase.

A full copy of the analytical results is included in Appendix 2.

5.5 Excavation Derived Water Management Plan

Implementation of the excavation derived water management plan is as follows:

- 5.5.1 LaBella will meet with MCPW prior to the start of construction to present the existing analytical data and obtain a temporary waste water discharge permit;
- 5.5.2 A minimum of two 20,000-gallon tractor-trailer type frac tanks will be staged at a location close to the excavation and the sewer laterals at the site by the contractor. The contactor will need to supply the appropriate number and size of trash pumps to dewater the excavation. The pumps will need to be able to generate enough head to pump the water to the frac tanks, or a water truck could be utilized to transport the water from the excavation to the frac tanks. Site conditions may warrant the need for additional frac tanks at the site.
- 5.5.3 Based on the existing analytical data, it appears that the majority of the earthwork-derived water may not need to be pre-treated for VOCs prior to discharge. The water will be batched into the frac tanks. When each frac tank becomes full, one sample of the water from the tank will be obtained for VOC analysis by Method 602 as required by MCPW. If the sample contains VOCs at a level less than the 2.1-ppm discharge limit for VOCs, then the water can be directly discharged to the sewer at the rate specified in the permit. If the sample contains VOCs above the MCPW discharge permit, then the water will need to be treated with a carbon filtration unit or a portable air stripper, re batched into a frac tank, tested and analyzed to ensure MCPW compliance, and discharged to the sewer. The contractor will be responsible to provide suitable treatment equipment (e.g. carbon system or air stripper).

6.0 SWMP Implementation and Environmental Monitoring

During the earthwork phases, a LaBella Environmental Analyst or Environmental Geologist will be assigned to the project on a full time basis. The on-site environmental personnel will be supported by a LaBella Project Manager, and the LaBella Safety Director will be assigned to the project. Depending on the size and pace of the mass excavation contractor crew, it may be necessary to assign an additional Environmental Analyst to conduct the Community Air Monitoring program at the Site. Together this group of personnel is referred to as the environmental team.

The responsibilities of the environmental team with regard to implementation of the SWMP are as follows:

- Working with the construction manager to pre determine off site disposal locations;
- Preparation of a waste stream profiles using existing information for Class 4 and Class 5 Materials that may be encountered during excavation;
- Work closely with the contractor monitor excavations for evidence of environmental impairment;
- Make determinations with regard to the classification of materials as detailed in Section 4.1;
- Direct the construction manager as to the proper placement and covering of Class 2, 3, & 6 Materials at the Site;
- Direct the construction manager as to the proper staging and covering of Class 4 and Class 5
 Materials during any disposal waste stream characterization activities;
- Sampling, analysis, and any additional waste stream profiling for Class 4 and Class 5 Materials as required by the receiving part 360 landfill, or the NYSDEC;
- Implementation of the LaBella Health and Safety Plan (HASP), for LaBella and Rochester Rhino personnel at the Site. The construction manager and contractor area responsible for their own health and safety plan.
- Implementation of the Community Air Monitoring Plan (CAMP) for the Site.

7.0 <u>Decontamination of Equipment</u>

All equipment used on the work site and that comes in contact with soil and/or groundwater will require decontamination using clean water to wash off soil and water residue from construction activities. The contractor will need to construct a decontamination pad to collect rinse water. The rinse water will need to be placed in an appropriate container or can be pumped into the Frac tanks that are being used for site dewatering. Sampling of the rinse water may be performed by the Environmental Monitor and follow the above procedures detailed in Sections 6.0.

Personal decontamination procedures shall follow the procedures set forth in LaBella's Health and Safety Plan and the contractor shall supply a suitable container for disposing of personal protective equipment, such as a steel drum. Disposal of PPE is the responsibility of the contractor.

8.0 **Health and Safety Plan**

LaBella has developed a Site Specific Health and Safety Plan (HASP) for the project. This HASP is attached as Appendix 3.

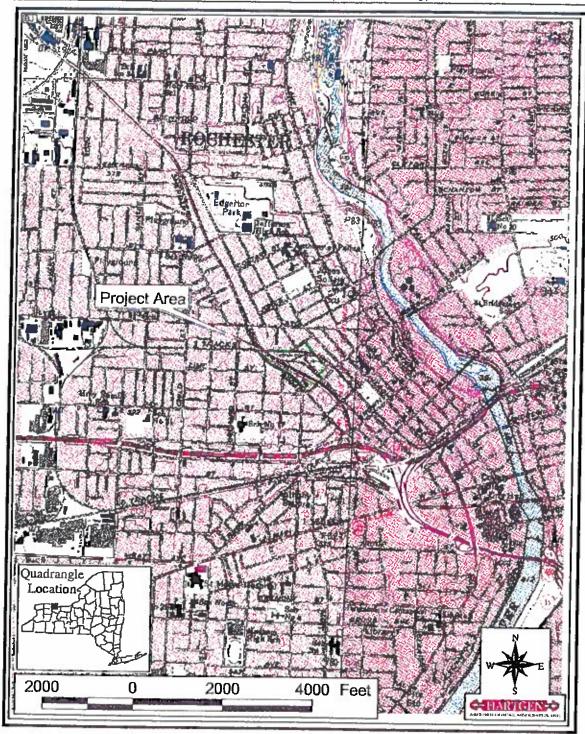
Contractors disturbing subsurface soil and water will need to have a HASP to manage health and safety issues associated with potential exposure to site COCs. LaBella will adhere to its HASP. Contractors working at the site may refer to the LaBella HASP, but are required to develop their own HASP.

9.0 Community Air Monitoring Plan

LaBella has developed a Community Air Monitoring Plan (CAMP) for the earthwork portions of the Site development. This CAMP is attached as Appendix 4.

The LaBella Environmental Team will be responsible to implement the CAMP and will direct the Contractor's disturbing subsurface soil and water when measures required to mitigate particulate or VOC emissions need to be implemented. The contractor will be required to implement these measures as directed by LaBella. The contractor will also be required to have water trucks, polyethylene sheeting, and other mitigative supplies staged and readily available at the site.

10.0 Environmental Considerations and Site Design Requirements


The voluntary cleanup of the Site conducted by the City of Rochester in 1998 established two limited use areas at the Site. These limited use areas are depicted on Figure 3.

The northeastern corner of the playing field, seating area, and one building will infringe upon the eastern corner of the northern limited use area. The seating infrastructure will be completely open to the air, and will be constructed of a poured concrete base with steel and aluminum bleacher type seating. The playing field and seating arrangement will be open to the air. Conversations with the NYSDEC have indicated that because this part of the stadium will be open to the air, sub slab vapor barriers will not be required.

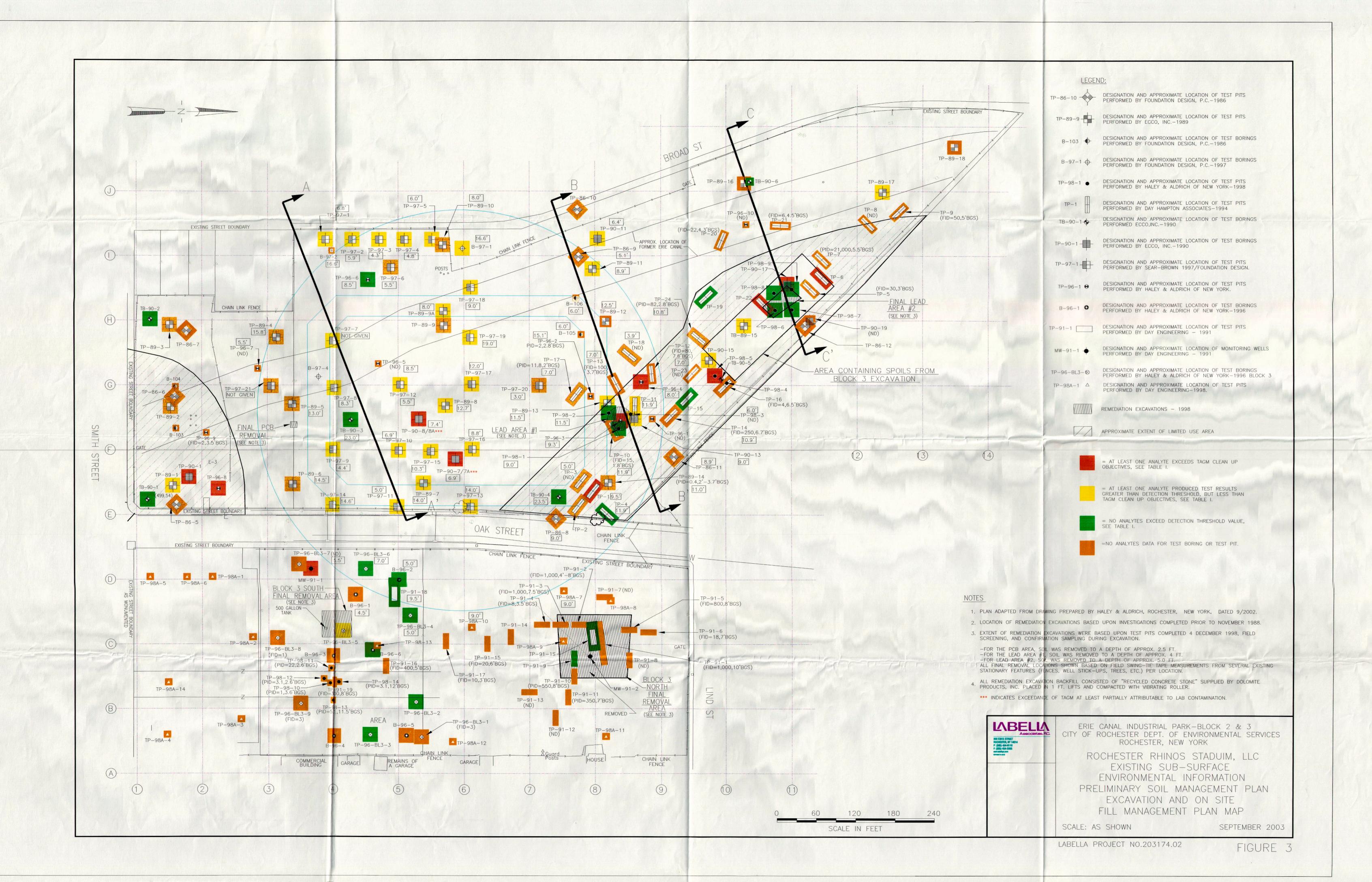
One enclosed building structure will be completed within the existing footprint of the north preestablished limited use area. This building structure will be equipped with a sub-slab vapor barrier and ventilation system. This sub slab vapor barrier and ventilation system will be designed and submitted to the NYSDEC and the NYSDOH for approval, prior to construction of the building at the Site.

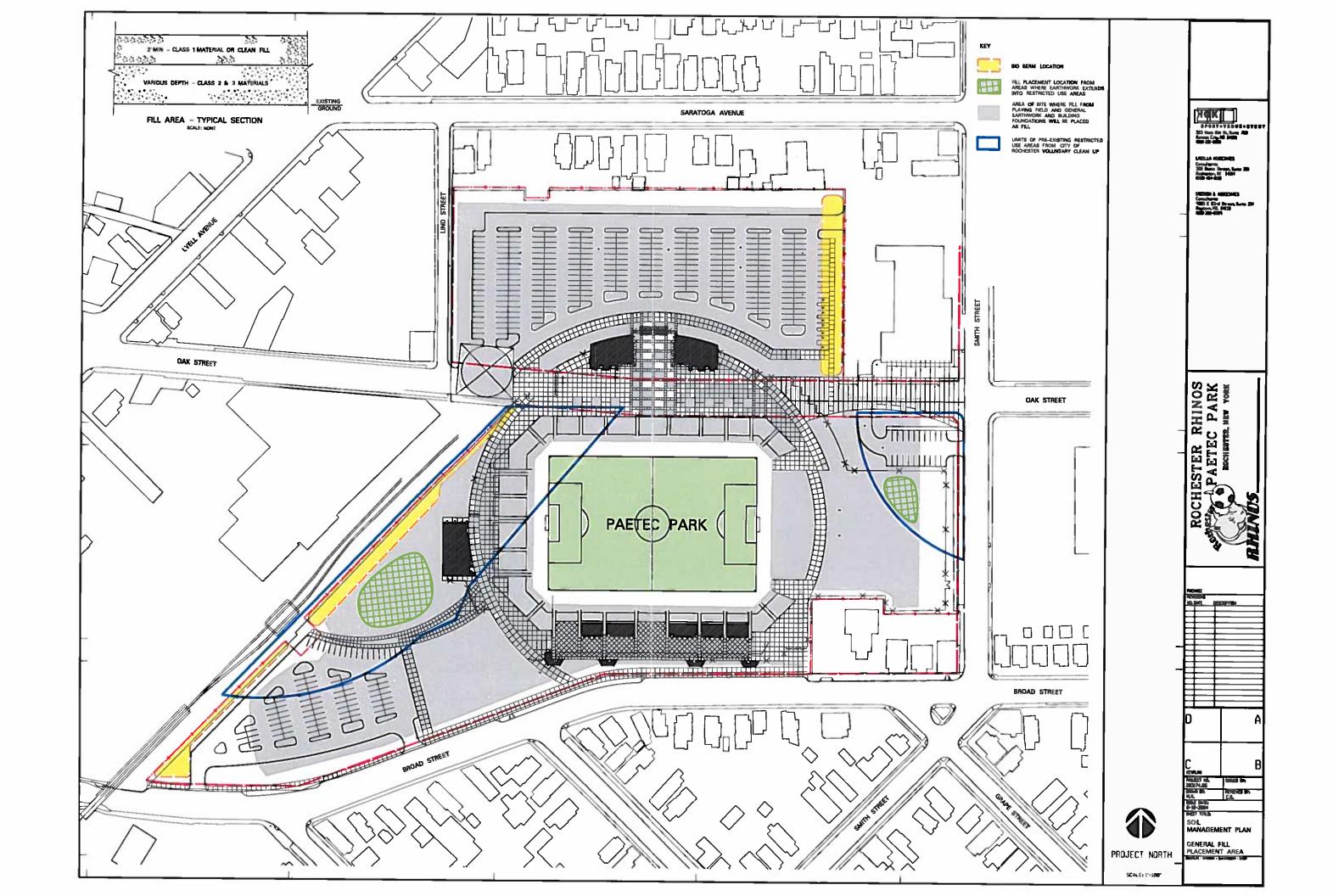
All Class 6 Material that is excavated from this portion of the site will be used as deep fill within the existing footprint of the pre-established limited use area. This material will be covered with a minimum of 2' of Class 1 material or other clean cover. See Figure 5.

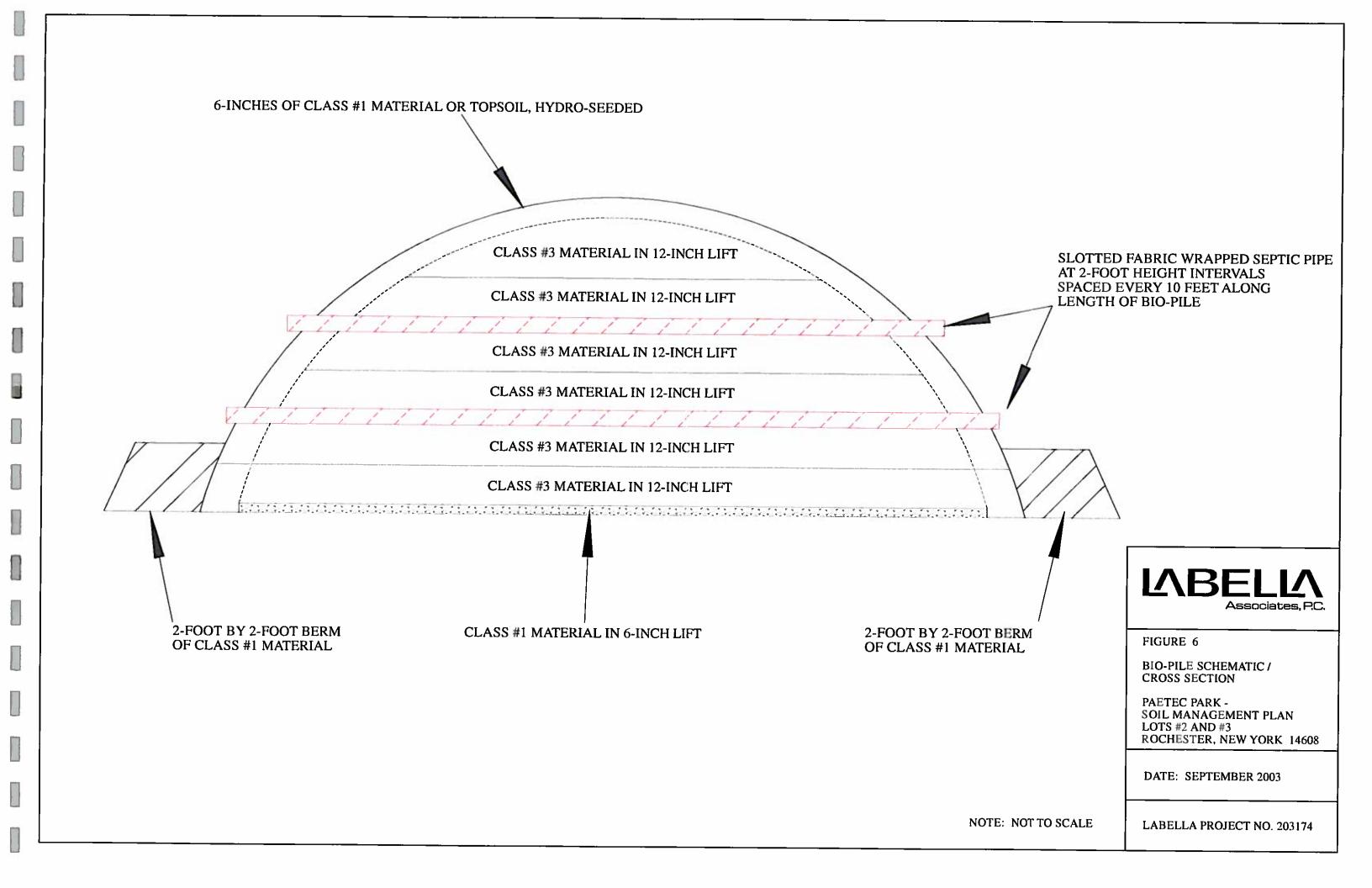
N:\ROCHESTER RHINOS, LLC\203174.06\CLERICAL\WORD\RPT\R4H19GS1.DOC

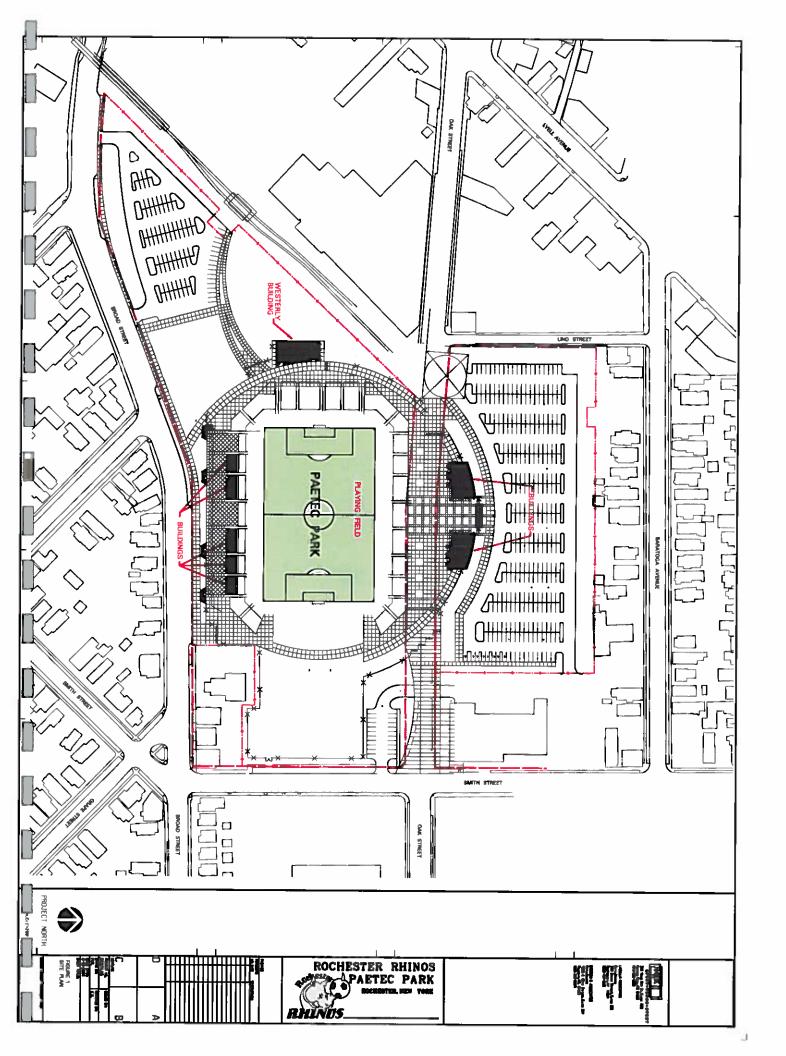
Map 1
1978 USGS Rochester West and Rochester East 7.5' Series Topographic Quadrangles

Š WATER. ш SIT /DWG/EXPLORATION 202 70606-


DESIGNATION AND APPROXIMATE LOCATION OF PROPOSED TEST BORINGS, PHASE II


APPROXIMATE CROUNDWATER ELEVATIONS IN FEET OBTAINED ON 11-12 JUNE 2003. ELEVATIONS REFERENCED FROM LABELIA ASSOCIATES TOPOGRAPHIC SURVEY (RED = NOW DEPLOATIONS, BLACK = EXISTING WELLS)


EXTEX! OF REMEDIATION EXCAVATIONS WERE BASED UPON TEST PITS COMPLETED 4 DECEMBER 1998. FELD SCREENING, AND CONFIRMATION SAMPLING DURBNG EXCAVATION.


PHASE I SUBSURFACE INVESTIGATION

JUNE 2003

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella

Client Job Site:

Paetec

Lab Project Number:

Lab Sample Number:

03-1539 5599

Client Job Number:

203174.02

Field Location:

TP-03-1 @ 17' BGS

Field ID Number:

N/A

Date Sampled: **Date Received:** 06/11/2003

Sample Type:

Soil

Date Analyzed:

06/13/2003 06/17/2003

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 10.9
Bromomethane	ND< 10.9
Bromoform	ND< 10.9
Carbon tetrachloride	ND< 10.9
Chloroethane	ND< 10.9
Chloromethane	ND< 10.9
2-Chloroethyl vinyl ether	ND< 10.9
Chloroform	ND< 10.9
Dibromochloromethane	ND< 10.9
1,1-Dichloroethane	ND< 10.9
1,2-Dichloroethane	ND< 10.9
1,1-Dichloroethene	ND< 10.9
cis-1,2-Dichloroethene	ND< 10.9
trans-1,2-Dichloroethene	ND< 10.9
1,2-Dichloropropane	ND< 10.9
cis-1,3-Dichloropropene	ND< 10.9
trans-1,3-Dichloropropene	ND< 10.9
Methylene chloride	ND< 27.3
1,1,2,2-Tetrachloroethane	ND< 10.9
Tetrachloroethene	ND< 10.9
1,1,1-Trichloroethane	ND< 10.9
1,1,2-Trichloroethane	ND< 10.9
Trichloroethene	ND< 10.9
Trichlorofluoromethane	ND< 10.9
Vinyl Chloride	ND< 10.9
ELAP Number 10958	Metho

Aromatics	Results in ug / Kg
Benzene	ND< 10.9
Chlorobenzene	ND< 10.9
Ethylbenzene	ND< 10.9
Toluene	ND< 10.9
m,p - Xylene	ND< 10.9
o - Xylene	ND< 10.9
Styrene	ND< 10.9
1,2-Dichlorobenzene	ND< 10.9
1,3-Dichlorobenzene	ND< 10.9
1,4-Dichlorobenzene	ND< 10.9

Ketones	Results in ug / Kg
Acetone	110
2-Butanone	ND< 27.3
2-Hexanone	ND< 27.3
4-Methyl-2-pentanone	ND< 27.3

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 27.3
Vinyl acetate	ND< 27.3

od: EPA 8260B

Data File: 65782,D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger. Technical Director

Chain of Custody provides additional sample information

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella

Client Job Site: Paetec Lab Project Number: 03-1539

Lab Sample Number: 5599

Client Job Number:

203174.02

TP-03-01 @ 17' BGS Date Sampled: 06/11/2003

Field Location: Field ID Number:

N/A

Date Received:

06/13/2003

Sample Type:

Soil

Date Analyzed:

06/17/2003

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 10.9	1,2,4-Trimethylbenzene	ND< 10.9
sec-Butylbenzene	ND< 10.9	1,3,5-Trimethylbenzene	ND< 10.9
tert-Butylbenzene	ND< 10.9	·	
n-Propylbenzene	ND< 10.9	Miscellaneous	
Isopropylbenzene	ND< 10.9	Methyl tert-Butyl Ether	ND< 10.9
p-Isopropyltoluene	ND< 10.9	•	
Naphthalene	ND< 27.3		

ELAP Number 10958

Method: EPA 8260B

Data File: 65782.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella

Client Job Site: Paetec

Lab Project Number:

Lab Sample Number: 5600

Client Job Number:

203174.02

Date Sampled:

0044/000

03-1539

Field Location: Field ID Number:

TP-03-4A @ 2'-3' BGS

Date Received:

06/11/2003 06/13/2003

Sample Type:

N/A Soil

Date Analyzed:

06/17/2003

	Halocarbons	Results in ug / Kg
	Bromodichloromethane	ND< 21.4
	Bromomethane	ND< 21.4
	Bromoform	ND< 21.4
	Carbon tetrachloride	ND< 21.4
	Chloroethane	ND< 21.4
	Chloromethane	ND< 21.4
	2-Chloroethyl vinyl ether	ND< 21.4
	Chloroform	ND< 21.4
	Dibromochloromethane	ND< 21.4
	1,1-Dichloroethane	ND< 21.4
	1,2-Dichloroethane	ND< 21.4
	1,1-Dichloroethene	ND< 21.4
	cis-1,2-Dichloroethene	ND< 21.4
	trans-1,2-Dichloroethene	ND< 21.4
	1,2-Dichloropropane	ND< 21.4
	cis-1,3-Dichloropropene	ND< 21,4
	trans-1,3-Dichloropropene	ND< 21.4
	Methylene chloride	ND< 53.6
	1,1,2,2-Tetrachloroethane	ND< 21.4
	Tetrachloroethene	ND< 21.4
1	1,1,1-Trichloroethane	ND< 21.4
	1,1,2-Trichloroethane	ND< 21.4
	Trichloroethene	ND< 21.4
	Trichlorofluoromethane	ND< 21.4

Aromatics	Results in ug / Kg
Benzene	433
Chlorobenzene	ND< 21.4
Ethylbenzene	1,900
Toluene	977
m,p - Xylene	E 8,900
o - Xylene	E 5,150
Styrene	ND< 21.4
1,2-Dichlorobenzene	ND< 21.4
1,3-Dichlorobenzene	ND< 21.4
1,4-Dichlorobenzene	ND< 21.4

Ketones	Results in ug / Kg	
Acetone	ND< 107	
2-Butanone	ND< 53.6	
2-Hexanone	ND< 53.6	
4-Methyl-2-pentanone	ND< 53.6	

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 53.6
Vinyl acetate	ND< 53.6

ELAP Number 10958

Vinyl Chloride

Method: EPA 8260B

Data File: 65784.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

E denotes Estimated. Concentration exceeds calibration range.

Sample exhibited low-surrogate recovery. Possible matrix interference.

ND< 21.4

Signature:

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella

Client Job Site:

Paetec

Lab Project Number: Lab Sample Number:

03-1539 5600

Client Job Number:

203174.02

06/11/2003

Field Location:

TP-03-4A @ 2'-3' BGS

Date Sampled: Date Received:

06/13/2003

Field ID Number: Sample Type: N/A Soil

Date Analyzed:

06/17/2003

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 21.4	1,2,4-Trimethylbenzene	E 5,270
sec-Butylbenzene	261	1,3,5-Trimethylbenzene	1.880
tert-Butylbenzene	ND< 21.4	•	•
n-Propylbenzene	413	Miscellaneous	
Isopropylbenzene	246	Methyl tert-Butyl Ether	ND< 21.4
p-Isopropyltoluene	1,190		
Naphthalene	662		
ELAP Number 10958	Method: EPA 8260B		Data File: 65784.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kliogram

E denotes Estimated. Concentration exceeds calibration range.

Signature:

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella

Client Job Site:

Paetec

Lab Project Number: 03-1539

Lab Sample Number: 5601

Client Job Number: **Field Location:**

203174.02 TP-03-6 @ 7'-8' BGS

Date Sampled:

06/11/2003

Field ID Number:

N/A

Date Received:

06/13/2003

Sample Type:

Soil

Date Analyzed:

06/19/2003

Halocarbons	Results in ug / K
Bromodichloromethane	ND< 8.77
Bromomethane	ND< 8.77
Bromoform	ND< 8.77
Carbon tetrachloride	ND< 8.77
Chloroethane	ND< 8.77
Chloromethane	ND< 8.77
2-Chloroethyl vinyl ether	ND< 8.77
Chloroform	ND< 8.77
Dibromochloromethane	ND< 8.77
1,1-Dichloroethane	ND< 8.77
1,2-Dichloroethane	ND< 8.77
1,1-Dichloroethene	ND< 8:77
cis-1,2-Dichloroethene	ND< 8.77
trans-1 2-Dichloroethene	ND< 8.77
1,2-Dichloropropane	ND< 8.77
cis-1,3-Dichloropropene	ND< 8.77
trans-1,3-Dichloropropene	ND< 8.77
Methylene chloride	ND< 21.9
1,1,2,2-Tetrachloroethane	ND< 8.77
Tetrachloroethene	ND< 8.77
1,1,1-Trichloroethane	ND< 8.77
1,1,2-Trichloroethane	ND< 8.77
Trichloroethene	ND< 8.77
Trichlorofluoromethane	ND< 8.77
Vinyl Chloride	ND< 8.77

	<u> </u>
Aromatics	Results in ug / Kg
Benzene	12.9
Chlorobenzene	ND< 8.77
Ethylbenzene	109
Toluene	ND< 8.77
m,p - Xylene	103
o - Xylene	17.3
Styrene	ND< 8,77
1,2-Dichlorobenzene	ND< 8,77
1,3-Dichlorobenzene	ND< 8.77
1,4-Dichlorobenzene	ND< 8.77

Ketones	Results in ug / Kg	
Acetone	180	
2-Butanone	ND< 21.9	
2-Hexaпone	ND< 21.9	
4-Methyl-2-pentanone	ND< 21.9	

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 21.9
Vinyl acetate	ND< 21.9
1	

ELAP Number 10958

Method: EPA 8260B

Data File: 65804.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Chain of Custody provides additional sample information

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella

Client Job Site:

Paetec

Lab Project Number: Lab Sample Number:

03-1539 5601

Client Job Number:

203174.02

Date Sampled:

06/11/2003

Field Location: Field ID Number: TP-03-6 @ 7'-8' BGS N/A

Date Received:

06/13/2003

Sample Type:

Soil

Date Analyzed:

06/19/2003

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 8,77	1,2,4-Trimethylbenzene	870
sec-Butylbenzene	115	1,3,5-Trimethylbenzene	9.63
tert-Butylbenzene	ND< 8,77	·	
n-Propylbenzene	157	Miscellaneous	
Isopropylbenzene	74.4	Methyl tert-Butyl Ether	ND< 8.77
p-isopropyltoluene	28.8		
Naphthalene	ND< 21.9		
ELAP Number 10958	Method: EPA 8260B		Data File: 65804.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella

Client Job Site:

Paetec

Lab Project Number: Lab Sample Number:

03-1539 5602

Client Job Number:

203174.02

Date Sampled:

Field Location: Field ID Number: TP-03-4C @ 2'-3' BGS

Date Received:

06/11/2003 06/13/2003

Sample Type:

N/A Soil

Date Analyzed:

06/19/2003

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 10.2	1,2,4-Trimethylbenzene	10.4
sec-Butylbenzene	ND< 10.2	1,3,5-Trimethylbenzene	ND< 10.2
tert-Butylbenzene	ND< 10.2	•	
n-Propylbenzene	ND< 10.2	Miscellaneous	
Isopropylbenzene	ND< 10.2	Methyl tert-Butyl Ether	ND< 10.2
p-Isopropyltoluene	ND< 10.2	•	
Naphthalene	ND< 25.6		

ELAP Number 10958

Method: EPA 8260B

Data File: 65805.D

Comments

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella

Client Job Site: Paetec Lab Project Number: 03-1539 Lab Sample Number: 5603

Client Job Number: 203174.02

Field Location: TP-03-6 @ 2' BGS Date Sampled: 06/11/2003

Field ID Number: N/A Date Received: 06/13/2003 Sample Type: Soil Date Analyzed: 06/19/2003

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 9.93
Bromomethane	ND< 9.93
Bromoform	ND< 9.93
Carbon tetrachloride	ND< 9.93
Chloroethane	ND< 9.93
Chloromethane	ND< 9.93
2-Chloroethyl vinyl ether	ND< 9.93
Chloroform	ND< 9.93
Dibromochloromethane	ND< 9.93
1,1-Dichloroethane	ND< 9.93
1,2-Dichloroethane	ND< 9.93
1,1-Dichloroethene	ND< 9.93
cis-1,2-Dichloroethene	ND< 9.93
trans-1,2-Dichloroethene	ND< 9.93
1,2-Dichloropropane	ND< 9.93
cis-1,3-Dichloropropene	ND< 9.93
trans-1,3-Dichloropropene	ND< 9.93
Methylene chloride	ND< 24.8
1,1,2,2-Tetrachloroethane	ND< 9.93
Tetrachloroethene	ND< 9.93
1,1,1-Trichloroethane	ND< 9.93
1,1,2-Trichloroethane	ND< 9.93
Trichloroethene	ND< 9.93
Trichlorofluoromethane	ND< 9.93
Vinyl Chloride	ND< 9.93
ELAD Number 10000	

Aromatics	Results in ug / Kg
Benzene	ND< 9.93
Chlorobenzene	ND< 9.93
Ethylbenzene	ND< 9.93
Toluene	ND< 9.93
m,p - Xylene	ND< 9.93
o - Xylene	ND< 9,93
Styrene	ND< 9.93
1,2-Dichlorobenzene	ND< 9.93
1,3-Dichlorobenzene	ND< 9.93
1,4-Dichlorobenzene	ND< 9.93

Ketones	Results in ug / Kg
Acetone	ND< 49.6
2-Butanone	ND< 24.8
2-Нехапопе	ND< 24.8
4-Methyl-2-pentanone	ND< 24.8

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 24.8
Vinyl acetate	ND< 24.8

ELAP Number 10958 Method: EPA 8260B Data File: 65806.D

ND denotes Non Detect Comments:

ug / Kg = microgram per Kilogram

Signature:

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella

Client Job Site:

Paetec

Lab Project Number:

03-1539

Client Job Number:

203174.02

Lab Sample Number:

5603

Field Location:

Date Sampled:

06/11/2003

Field ID Number:

TP-03-6 @ 2' BGS N/A

Date Received:

06/13/2003

Sample Type:

Soil

Date Analyzed:

06/19/2003

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 9.93	1,2,4-Trimethylbenzene	ND< 9.93
sec-Butylbenzene	ND< 9.93	1,3,5-Trimethylbenzene	ND< 9.93
tert-Butylbenzene	ND< 9.93	, e, e · · · · · · · · · · · · · · · · ·	110 5.53
n-Propylbenzene	ND< 9.93	Miscellaneous	
Isopropylbenzene	ND< 9.93	Methyl tert-Butyl Ether	ND< 9.93
p-Isopropyitoluene	ND< 9.93	mong ton Daty Euro	II 14D 5.33
Naphthalene	ND< 24.8		
ELAP Number 10058	Marke and B	D 4 00000	

Method: EPA 8260B

Data File: 65806.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Client: LaBella

Client Job Site:

Paetec

Lab Project Number:

03-1539 Lab Sample Number: 5599

Client Job Number:

203174.02

Date Sampled:

Field Location: Field ID Number:

TP-03-1 @ 17' BGS N/A

Date Received:

06/11/2003 06/13/2003

Sample Type:

Soil

Date Analyzed:

06/17/2003

Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 318
Anthracene	ND< 318
Benzo (a) anthracene	ND< 318
Benzo (a) pyrene	379
Benzo (b) fluoranthene	354
Benzo (g,h,i) perylene	ND< 318
Benzo (k) fluoranthene	ND< 318
Chrysene	491
Dibenz (a,h) anthracene	ND< 318
Fluoranthene	509
Fluorene	ND< 318
Indeno (1,2,3-cd) pyrene	ND< 318
Naphthalene	ND< 318
Phenanthrene	ND< 318
Pyrene	1,320

ELAP Number 10958

Method: EPA 8270C

Data File: 11433.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger Technical Director

Chain of Custody provides additional sample information

Client: LaBella

Client Job Site:

Paetec

Lab Project Number: Lab Sample Number:

03-1539 5600

Client Job Number:

203174.02

Date Sampled:

06/11/2003

Field Location: Field ID Number: TP-03-4A @ 2'-3' BGS

Date Received:

Sample Type:

N/A

Date Analyzed:

06/13/2003

Soil

06/17/2003

Date Reissued:

06/23/2003

	Base / Neutrals	Results in ug / Kg	
	Acenaphthene	ND< 1,530	
	Anthracene	ND< 1,530	
	Benzo (a) anthracene	ND< 1,530	
9.1	Benzo (a) pyrene	ND< 1,530	
	Benzo (b) fluoranthene	ND< 1,530	
	Benzo (g,h,i) perylene	ND< 1,530	ĺ
	Benzo (k) fluoranthene	ND< 1,530	23
	Chrysene	1,830	
ł	Dibenz (a,h) anthracene	ND< 1,530	
	Fluoranthene	3,440	
	Fluorene	ND< 1,530	
	Indeno (1,2,3-cd) pyrene	ND< 1,530	
	Naphthalene	ND< 1,530	
	Phenanthrene	2,090	
	Pyrene	3,270	

ELAP Number 10958

Method: EPA 8270C

Data File: 11434.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Chain of Custody provides additional sample information

Client: LaBella

Client Job Site:

Paetec

Lab Project Number: Lab Sample Number:

Data File: 11435.D

03-1539 5601

Client Job Number:

203174.02

Date Sampled:

06/11/2003

Field Location: Field ID Number:

TP-03-6 @ 7'-8' BGS

Date Received:

06/13/2003

Sample Type:

N/A Soil

Date Analyzed:

06/17/2003

Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 406
Anthracene	ND< 406
Benzo (a) anthracene	ND< 406
Benzo (a) pyrene	ND< 406
Benzo (b) fluoranthene	ND< 406
Benzo (g,h,i) perylene	ND< 406
Benzo (k) fluoranthene	ND< 406
Chrysene	ND< 406
Dibenz (a,h) anthracene	e ND< 406
Fluoranthene	547
Fluorene	ND< 406
Indeno (1,2,3-cd) pyren	e ND< 406
Naphthalene	ND< 406
Phenanthrene	580
Pyrene	671

Method: EPA 8270C

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

ELAP Number 10958

Signature:

Client: LaBella

Client Job Site:

Paetec

Lab Project Number:

03-1539 Lab Sample Number: 5602

Client Job Number:

203174.02

Field Location: Field ID Number: TP-03-4C @ 2'-3' BGS

Date Sampled: Date Received:

06/11/2003 06/13/2003

N/A

Sample Type:

Soil

Date Analyzed:

06/17/2003

	Base / Neutrals	Results in ug / Kg
	Acenaphthene	ND< 396
	Anthracene	ND< 396
ľ	Benzo (a) anthracene	ND< 396
	Benzo (a) pyrene	ND< 396
	Benzo (b) fluoranthene	ND< 396
	Benzo (g,h,i) perylene	ND< 396
1	Benzo (k) fluoranthene	ND< 396
	Chrysene	ND< 396
1	Dibenz (a,h) anthracene	ND< 396
	Fluoranthene	ND< 396
	Fluorene	ND< 396
ĺ	Indeno (1,2,3-cd) pyrene	ND< 396
	Naphthalene	ND< 396
}	Phenanthrene	ND< 396
	Pyrene	ND< 396

ELAP Number 10958

Method: EPA 8270C

Data File: 11436.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Client: LaBella

Client Job Site:

Paetec

Lab Project Number: Lab Sample Number:

03-1539 5603

Client Job Number:

Field Location:

203174.02

TP-03-6 @ 2' BGS

Date Sampled:

06/11/2003

Field ID Number:

N/A

Date Received:

06/13/2003

Sample Type:

Soil

Date Analyzed:

06/17/2003

Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 332
Anthracene	359
Benzo (a) anthracene	_1,180
Benzo (a) pyrene	1,440
Benzo (b) fluoranthene	1,070
Benzo (g,h,i) perylene	890
Benzo (k) fluoranthene	1,040
Chrysene	1,140
Dibenz (a,h) anthracene	ND< 332
Fluoranthene	1,640
Fluorene	ND< 332
Indeno (1,2,3-cd) pyrene	1,070
Naphthalene	ND< 332
Phenanthrene	1,120
Pyrene	1,590

ELAP Number 10958

Method: EPA 8270C

Data File: 11437.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

LaBella Associates

Lab Project No.: 03-1539

Client Job Site:

Paetec

Lab Sample No.: 5602

Client Job No.:

203174.02

Sample Type:

Soil

Field Location:

2'-3' BGS

Date Sampled:

06/11/2003

Field ID No.:

TP-03-4C

Date Received: 06/13/2003

Laboratory Report for Solid Waste Analysis

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Arsenic	06/18/2003	SW846 6010	5.47
Barium	06/18/2003	SW846 6010	75.1
Cadmium	06/18/2003	SW846 6010	<0.540
Chromium	06/18/2003	SW846 6010	9.96
Lead	06/18/2003	SW846 6010	43.2
Mercury	06/17/2003	SW846 7471	0.170
Selenium	06/18/2003	SW846 6010	<0.540
Silver	06/18/2003	SW846 6010	<1.08

ELAP ID No.:10958

Comments:

Approved By:

Client:

LaBella Associates

Lab Project No.: 03-1539

Client Job Site:

Paetec

Lab Sample No.: 5603

Client Job No.:

203174.02

Sample Type:

Soil

Field Location:

2' BGS

Date Sampled:

06/11/2003

Field ID No.:

TP-03-6

Date Received: 06/13/2003

Laboratory Report for Solid Waste Analysis

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Arsenic	06/18/2003	SW846 6010	11.1
Barium	06/18/2003	SW846 6010	52.4
Cadmium	06/18/2003	SW846 6010	0.718
Chromium	06/18/2003	SW846 6010	9.80
Lead	06/18/2003	SW846 6010	23.3
Mercury	06/17/2003	SW846 7471	0.221
Selenium	06/18/2003	SW846 6010	<0.598
Silver	06/18/2003	SW846 6010	<1.20

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

PHC Analysis Report for Soils/Solids/Sludges

Client: LaBella

Client Job Site:

Paetec

Lab Project Number: Lab Sample Number: 03-1539 5600

Client Job Number:

203174.02

Date Sampled:

Field Location: Fleid ID Number: TP-03-4A @ 2'-3' BGS

Date Received:

06/11/2003 06/13/2003

N/A

Sample Type:

Soil

Date Analyzed:

06/20/2003

PHC Classification

Results in ug / Kg

Medium Weight PHC as:

Kerosene

599,000

Heavy Weight PHC as:

Lube Oil

36,600,000

ELAP Number 10958

Method: NYSDOH 310.13

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

PHC = Petroleum Hydrocarbon

Signature:

Bruce Hoogesteger: Technical Director

PHC Analysis Report for Soils/Solids/Sludges

Client: LaBella

Client Job Site:

Paetec

Lab Project Number: Lab Sample Number: 03-1539

5601

Client Job Number:

203174.02

Date Sampled:

06/11/2003

Field Location: Field ID Number:

TP-03-6 @ 7'-8' BGS N/A

Date Received:

06/13/2003

Sample Type:

Soil

Date Analyzed:

06/20/2003

PHC Classification	Results in ug / Kg
Medium Weight PHC as, Kerosene	90,500
Heavy Weight PHC as: Lube Oil	7,360,000

ELAP Number 10958

Method: NYSDOH 310.13

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram PHC = Petroleum Hydrocarbon

Signature:

Bruce Hoogesteger Technical Director

PARADIGM

CHAIN OF CUSTODY

ENVIRONMENTA

ENVIRONMENTAL	BEPOBITION		ONTORONIO		
SERVICES, INC.	COMPANY: LAGE NA	COMPANY:	Same	LAB PROJECT#:	CLIENT PROJECT #:
	ADDRESS: 300 Souche Schroot	ADORESS:		103-1539 203174.0Z	203174.0Z
FOCHESTER, INT. 14508 (585) 647-2530 * (800) 724-1997 EAY (685) 647-3311	GITT: Rechester STATE: ZIP:	CITY:	STATE: ZIP:	TURNAROUND TIME: (WORKING DAYS)	ORKING DAYS)
	10 FAX: 454-3	PHONE:	FAX:		STD OTHER
PROJECT NAME/SITE NAME:	Leurs Rode	ATTN:			
Tacker	COMMENTS:				
		REQUE	REQUESTED ANALYSIS		

DATE	TME	00 X T O W - F M	0 K 4 E	SAMPLE LOCATION/FIELD ID	≅∢⊢α-×	0 × + 4 - × m x w	esate otsg elaban asosi 8		REMARKS	PARADIGM LAB SAMPLE NUMBER
1 6/11/03			×	76-03-1 e 17.365	Ŋ	-	7		Added ou DP 4/13	5599
2			>	1P-03-4A @ 2'-3' BGS	ท		7		PHC310,13 \$	5600
3			×	70-03-6 @ 7-8.865	S	7	7		PHC 3B. 3	5601
4			×	17-03-4C @ 2'-3' Bes	S	/	7			5 60 2
5			×	TP-03-6 & Z' BGS	S	-	7			
6										
7										
8										
6										
10										
LAB USE ONLY	ONLY**			/				\ 		
SAMPLE CONDITION: Check box if acceptable or note deviation:	TION: Chec note deviati	ik box on:		CONTAINER TYPE: V PRESERVATIONS:	نق		HOLDING TIME:		TEMPERATURE: V 00	102 jed
Sampled By:	\	1			Relinquished By:	7	1/4	26-18-1-9	Date/Time: Tota //~/ \$~26.3 / //2? ?	Total Cost:
Relinquished By:		1			ed Bv			,		

P.I.F.

(a) (3.30) Date/Time:

(4)(3)(03

PAMILLA IM. BULL

3

6/13/03 Date/Time:

- Kasis

Homela M. Blake

04:81 @ Edella

PARADIGM

CHAIN OF CUSTODY

	724-1997
179 Lake Avenue	(585) 647-2530 * (800) 7
Rochester NY 14608	FAX: (585) 647-3311

SERVICES, INC.	ES, INC.	ļ	COMPANY:	MEPORITOS MY: La Gella		INVOICESTO:		LAB PROJECT #: CL	CLIENT PROJECT #;
179 Lake Avenu	16	200	ADDRESS:	300 State Street	- 4	ESS:		103-1539 12	203174.07
nocijester, NT 14006 (585) 647-2530 * (800) 724-1997 FAX: 7585) 647-3311	* (800) 724-19 3311		CITY:	Rachester 8.14	ZIP: Lejcold	an: STATE:	ZP.	<u></u>	ING DAYS)
vv. (See) of		П	3.5	454-(a)10 FAX:	9	PHONE:		_	STD
PROJECT NAME/SITE NAME:	E NAME:		COMMENTS:	Jenna Hokez		ATTN:		1 2 3	10
7						REQUESTED ANALYSIS			
DATE	TME	002c0nm	© æ ∢ m	SAMPLE LOCATION/FIELD ID	≥ < ⊢ & − ×	23A72 + 197 095 23A72 + 197 095 23A72 05 SQ 24A3911 A3JS SQ		REMARKS	PARADIGM LAB SAMPLE NUMBER
6/11/03			×	TD-03-1 5 17 705	ν.	8 2	2 ddie	A 00 10 101/2	200
-			≫	16-03-48 @ 7:5 BOE	ŊΊ	\ \frac{1}{2}	OHA	A tr	
			×	TP.03-6 6 7.8 Res	ιΛ	7	DHC	J	١.
		7	×	TE-101-146 6 7 5 5 5 5	λO				5 (00) 2
			×	Th. 03 - 6 5 7 Pm.	ď	2 2			
		7							
0	6								
*LAB USE ONLY**	ONLY**								
AMPLE CONDITION: Check box acceptable or note deviation:	TION: Check	k box	"	CONTAINER TYPE: V PRESERVATIONS:		HOLDING TIME:	TEMPERATURE	>	
)	3

Total Cost:

Date/Time:

Relinquished By

Date/Time:

Mur Received By:

C/II/OS Date/Time:

//230 Date/Time:

P.I.F.

O 13:30 Date/Time:

5018/163

13:40

13/93

Amelo M. Blat

Received @ Lab By:

6/13/03 Date/Time:

The state of the s

Received By:

Relinquished By:

Sampled By:

Volatile Analysis Report for Non-potable Water

Client: LaBella Associates, P.C.

Client Job Site:

Paetec Park SMP

Lab Project Number:

03-1424

Client Job Number:

203174.02

Lab Sample Number: 5186

Field Location:

TB-90-4

Date Sampled: Date Received: 05/30/2003

Field ID Number:

N/A

05/30/2003

Sample Type: Water Date Analyzed:

06/05/2003

Halocarbons	Results in ug / L
Bromodichioromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 2.00
Carbon tetrachloride	ND< 2,00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyl vinyl ether	ND< 2,00
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	3,5 6
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	157
trans-1,2-Dichloroethene	ND< 2.00
1,2-Dichioropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Diohloropropene	ND< 2.00
Methylene chloride	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00
Vinyl Chloride	134
ELAP Number 10958	Metho

Aromatics	Results in ug / L
Benzene	44,3
Chlorobenzene	ND< 2.00
Ethylbenzene	5,98
Toluene	ND< 2,00
m,p - Xylene	ND< 2.00
o - Xylene	ND< 2.00
Styrene	ND< 2.00
1,2-Dichiorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10,0
2-Butanone	ND< 5,00
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5,00

ND< 5.00 ND< 5.00
ND< 5.00

ELAP Number 10958

Method: EPA 8260B

Data File: 65576,D

Comments;

ND denotes Non Detect ug / L = mlcregram per Liter

Signature:

Bruce Hoogesteger. Technical Director

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site!

Paetec Park SMP

Lab Project Number: 03-1424

Client Job Number:

203174.02

Lab Sample Number: 5186

Field Location:

TB-9()-4

Date Sampled:

05/30/2003

Field ID Number: Sample Type:

N/A Water Date Received: Date Analyzed: 05/30/2003

06/05/2003

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2.00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00	•	
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 2.00	Methyl tert-Butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 2.00	- 10	
Naphthalene	ND< 5.00		

ELAP Number 10958

Method; EPA 8260B

Data File: 65576,D

Comments:

ND denotes Non Detect ug / L ≈ mlorogram per Liter

Signature:

Bruce Hoogesteger Technical Director

Volatile Analysis Report for Non-potable Water

Client: LaBella Associates, P.C.

Client Job Site:

Paetec Park SMP

Lab Project Number: Lab Sample Number:

03-1424 5187

Client Job Number:

203174,02

Date Sampled:

05/30/2003

Fleid Location: Field ID Number: TB-90-5

Date Received:

05/30/2003

N/A

06/05/2003

Sample Type:

Water

Date Analyzed:

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2,00
Bromomethane	ND< 2.00
Bromoform	ND< 2.00
Carbon tetrachloride	ND< 2.00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyl vinyl ether	ND< 2.00
Chloroform	ND< 2.00
Dibromochioromethane	ND< 2.00
1,1-Dichloroethane	6,36
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	5,54
trans-1,2-Dichloroethene	ND< 2,00
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylane chloride	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00
Vinyl Chloride	ND< 2.00

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p - Xylene	ND< 2.00
o - Xylene	ND< 2.00
Styrene	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0
2-Butanone	ND< 5.00
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5,00

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5,00
Vinyl acetate	ND< 5.00
<u></u>	
A 8260B	Data File: 65577.D

Method: EPA 8260B ELAP Number 10958

Comments:

ND denotes Non Detect ug / L = mlcrogram per Liter

Signature:

Bruce Hoogesteger / echnical Director

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

Paetec Park SMP

Lab Project Number: Lab Sample Number: 5187

03-1424

Client Job Number:

203174.02

Date Sampled:

05/30/2003

Field Location: Field ID Number:

TB-90-5 N/A

Date Received:

05/30/2003

Sample Type:

Water

Date Analyzed:

06/05/2003

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 2,00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2.00	1,3,5-Trimethylbanzane	ND< 2,00
teπ-Butylbenzene	ND< 2.00		
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 2,00	Methyl tert-Butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 2.00		
Naphthaiene	ND< 5.00		

ELAP Number 10958

Method: EPA 8260B

Data File: 65577.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogestager, Technical Director

179 Lake Avenue Rochester, New York 14508 (585) 647 - 2530 FAX (595) 647 - 3311

Volatile Analysis Report for Non-potable Water

Client: LaBella Associates, P.C.

Client Job Site:

Paetec Park SMP

Lab Project Number: 03-1424 Lab Sample Number: 5168

Client Job Number:

Sample Type:

203174.02

Field Location: Field ID Number: TB-9(I-3

N/A Water Date Sampled:

05/30/2003

Date Received:

05/30/2003

06/05/2003

Date Analyzed:

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 2.00
Carbon tetrachloride	ND< 2,00
Chloroethane	ND< 2,00
Chloromethane	ND< 2,00
2-Chloroethyl vinyl ether	ND< 2.00
Chloroform	ND< 2,00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	26.6
trans-1,2-Dichloroethene	ND< 2.00
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5.00
1.1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00
Vinyl Chloride	29.8
ELAP Number 10958	Meth

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chlorobenzene	ND< 2,00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p - Xylene	ND< 2.00
o - Xylene	ND< 2,00
Styrene	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2,00

Ketones	Results in ug / L
Acetone	95.6
2-Butanone	ND< 5.00
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 6.00
•	

hod: EPA 8260B

Data File: 65578,D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogestege. Technical Director

Chain of Custody provides additional sample information

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

Paetec Park SMP

Lab Project Number:

03-1424 Lab Sample Number: 5188

Client Job Number:

203174.02

05/30/2003

Field Location: Field ID Number: TB-9()-3

Date Sampled: Date Received:

05/30/2003

N/A

Sample Type:

Water

Date Analyzed:

06/05/2003

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2.00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2,00	•	
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 2.00	Methyl tert-Butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 2.00		
Naphthalene	ND< 5.00		

ELAP Number 10958

Method: EPA 8260B

Data File: 65578.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signatura:

Bruce Hoogesteger: Technical Director

Chain of Custody provides additional sample information

PARADIGM

回る

~%₩₹

NVIRONMENTAL	MENT			ENDINGTO.	1	1	*	, ,	Mydige 10:	(dict 1	jo.			The state of the state of				
ERVICES, INC.	S. INC.		COMPANY	LABBUA ASSILLES.	TES. P.C.		COMPANY:	4	SAME					LAB PROJECT &	25	ENT PROJ	ECT &	
9 Lake Avenue	•	-	ACORESS	AUDRESS: 300 STATE STREET, SUITE 30	REET SU	_	ADORESS:							03-1424	<u>,</u>	203174.02	74.	4
ochester, NY 14608 85) 647-2530 * (800) 724-1997	608 (800) 724-19		am: R	GITY: GUCHESTER NY	146		am:			Į _į	STATE:		2IP:	TURNAROLIND TIME: (MORIONG DAYS)	TIME: (NYORIO)	NG DAYS	_	
X: (585) 647-33	Ĭ.		FRONE: 585	٥	3066		PHONE			FAX						STD		OTHER
PAINTE PARE	NAME:		ATTN: W	"미	,		ATTN:							1 2	2 X X	Ž		-
SWP			COMMENTS:			3							i				i	
1000000	***			明天中 2 中の中 大			No.	THE STATE OF	THE WARREST TO WARREST FOR THE PARTY OF THE	MANA	10000	2				4	. 5	, j
DATE	THE	ひひ至む○の一ヶ田	U E < B	SAMPLE LOCATION/RELD ID	2	34-E-X	とし対する日内では、対し、対し、対し、対し、対し、対し、対し、対し、対し、対し、対し、対し、対し、	SANTA LOJES	8					REWARKS			PARADICH IAB Sarple number	648 648
5-30-3003	200			TB-90-4		WATTE	B	×								70	8	0
	1230			TB-90-5		-Ded-VM	લ	×	_							5	8	7
	13.30			5-06-07		WATER	a	*								5	80	90
																		-
									_									
																		-
																		+
																		\dashv
																		_
LAB USE ONLY"	NLY"			,														
AMPLE CONDITION: Check box acceptable of note deviation:	NON: Chec	k box on:	Ū	CONTALMEN TYPE:	PRESERVATIONS:	ري لا	51	 -	HOLDING TIME:	¥E.	\sum		TEMPERATURE:		区 17℃	()		
				10.4.00		No. Contraction of the Contracti							Dato(Timo.		Total Cost	1		
mpled By:				Date/Itme:	Kenuda	Janea o'						_) 9 -			

P.I.F.

Received @ Lab By:

Received By:

5-30-2003, Date/Time:

MICHAEL F. POLYCHATY

1690

Date/Time:

LABORATORY REPORT OF ANALYSIS

Client:

LaBella Associates, P.C.

Lab Project No.:

03-1544

Client Job Site:

Paetec Park

SMP

Client Job No.:

203174.02

Sample Type:

Water

Analytical Method: EPA 335.3

Date Sampled:

06/12/2003

Date Received:

06/13/2003

Date Analyzed:

06/23/2003

Lab Sample ID.	Sample Location/Field ID	Total Cyanide (mg/l)
5625B	TB-90-3	ND<0.01
5626B	TB-90-4	ND<0.01
5627B	TB-90-5	ND<0.01

ELAP ID No. 10709

Comments:

ND denotes Non-Detected.

Approved By Technical Director:

Bruce Hoogesteger

Client:

Labella Associates, P.C.

Lab Project No. 03-1544

Lab Sample No 5625

Client Job Site:

Paetec Park

Sample Type: Water

Client Job No.:

203174.02

Field Location:

N/A

SMP

Field ID No.:

TB-90-3

Date Sampled: 06/04/2003 **Date Received: 06/13/2003**

Laboratory Report for Metals Analysis in Waters

Parameter	Date Analyzed	Analytical Method	Result (mg/L)
Antimony	06/18/2003	EPA 200.7	<0.060
Arsenic	06/18/2003	EPA 200.7	0.046
Barium	06/18/2003	EPA 200.7	0.130
Beryllium	06/18/2003	EPA 200.7	<0.005
Cadmium	06/18/2003	EPA 200.7	<0.005
Chromium	06/18/2003	EPA 200.7	<0.010
Copper	06/18/2003	EPA 200.7	0.032
lron	06/18/2003	EPA 200.7	37.1
Lead	06/18/2003	EPA 200.7	<0.005
Manganese	06/18/2003	EPA 200.7	0.676
Mercury	06/17/2003	EPA 245.1	<0.0002
Nickel	06/18/2003	EPA 200.7	<0.040
Selenium	06/18/2003	EPA 200.7	<0.005
Silver	06/18/2003	EPA 200.7	<0.010
Thallium	06/18/2003	EPA 200.7	<0.006
Zinc	06/18/2003	EPA 200.7	0.109

ELAP ID No.:10958

Comments:

Approved By:

Bruce Høgesteger, Technical Director

Chain of Custody provides additional sample information.

File ID:031544.xls

Client: <u>Labella Associates, P.C.</u>

Lab Project No. 03-1544 Lab Sample No 5626

Client Job Site:

Paetec Park

SMP

Client Job No.:

203174.02

Field Location:

N/A

Field ID No.:

TB-90-4

Sample Type: Water

Date Sampled: 06/04/2003

Date Received: 06/13/2003

Laboratory Report for Metals Analysis in Waters

Parameter	Date Analyzed	Analytical Method	Result (mg/L)
Antimony	06/18/2003	EPA 200.7	<0.060
Arsenic	06/18/2003	EPA 200.7	<0.005
Barium	06/18/2003	EPA 200.7	0.168
Beryllium	06/18/2003	EPA 200.7	<0.005
Cadmium	06/18/2003	EPA 200.7	<0.005
Chromium	06/18/2003	EPA 200.7	<0.010
Соррег	06/18/2003	EPA 200.7	0.093
Iron	06/18/2003	EPA 200.7	6.11
Lead	06/18/2003	EPA 200.7	0.035
Manganese	06/18/2003	EPA 200.7	3.50
Mercury	06/17/2003	EPA 245.1	0.0011
Nickel	06/18/2003	EPA 200.7	<0.040
Selenium	06/18/2003	EPA 200.7	0.022
Silver	06/18/2003	EPA 200.7	<0.010
Thallium	06/18/2003	EPA 200.7	<0.006
Zinc	06/18/2003	EPA 200.7	0.111

ELAP ID No.:10958

Comments:

Approved By: _

Bruce Hoogesteger, Technical Director

Chain of Custody provides additional sample Information.

Client:

Labella Associates, P.C.

Lab Project No. 03-1544

Client Job Site:

Paetec Park

Lab Sample No 5627

SMP

Sample Type: Water

Client Job No.:

203174.02

Date Sampled: 06/04/2003 **Date Received:** 06/13/2003

Field Location: Field ID No.:

N/A TB-90-5

Laboratory Report for Metals Analysis in Waters

Parameter	Date Analyzed	Analytical Method	Result (mg/L)
Antimony	06/18/2003	EPA 200.7	<0.060
Arsenic	06/18/2003	EPA 200.7	0.016
Barium	06/18/2003	EPA 200.7	0.149
Beryllium	06/18/2003	EPA 200.7	<0.005
Cadmium	06/18/2003	EPA 200.7	<0.005
Chromium	06/18/2003	EPA 200.7	<0.010
Copper	06/18/2003	EPA 200.7	0.088
Iron	06/18/2003	EPA 200.7	19.1
Lead	06/18/2003	EPA 200.7	0.066
Manganese	06/18/2003	EPA 200.7	1.19
Mercury	06/17/2003	EPA 245.1	<0.0002
Nickel	06/18/2003	EPA 200.7	<0.040
Selenium	06/18/2003	EPA 200.7	<0.005
Silver	06/18/2003	EPA 200.7	<0.010
Thallium	06/18/2003	EPA 200.7	<0.006
Zinc	06/18/2003	EPA 200.7	0.129

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoggesteger, Technical Director

Chain of Custody provides additional sample information.

THE RESIDENCE OF THE PARTY OF T

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Non-potable Water

Client: Hely & Aldrich

Client Job Site:

Paetec Park

Lab Project Number:

03-1543

Client Job Number:

70806-201

Lab Sample Number:

5621

Field Location:

Trip Blank 061203

Date Sampled:

06/12/2003 06/13/2003

Field ID Number: Sample Type:

N/A Water

Date Received: Date Analyzed:

06/20/2003

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2,00
Bromomethane	ND< 2.00
Bromoform	ND< 2.00
Carbon tetrachloride	ND< 2.00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloraethyl vinyl ether	ND< 2.00
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2,00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2,00
1,1-Dichlaroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2,00
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5,00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachioroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
I TF 62 - 12 12 12 12 12 12 12 1	

Aromatics	Results in ug / L
Benzene	
Chlorobenzene	ND< 0.700
	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p - Xylene	ND< 2.00
o - Xylene	ND< 2.00
Styrene	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichtorobenzene	ND< 2.00
1,4-Dichlarobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0
2-Butanone	ND< 5.00
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

<u></u>	"-"
Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 5.00

ELAP Number 10958

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

Method: EPA 8280B

ND< 2.00

ND< 2.00

ND< 2.00

Data File: 65834.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Tegenical Director

Chain of Cualody provides additional sample intermation

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Haley & Aldrich

Client Job Site:

Paetec Park

Lab Project Number:

03-1543

Client Job Number:

70606-201

Lab Sample Number:

5621

Field Location:

Trip Blank 061203

Date Sampled:

06/12/2003

Fleid ID Number:

N/A

Date Received:

06/13/2003

Sample Type:

Water

Date Analyzed:

06/20/2003

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2.00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00	,	100 - 2.00
n-Propylbenzene	ND< 2.00	Miscellaneous	
isaprapyibenzene	ND< 2.00	Methyl tert-Butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 2,00	and the second second	140 2.00
Naphthalene	ND< 5.00		
ELAP Number 10058	B. B. a. Allerson	ED4 propp	

ELAP Number 1095B

Method; EPA 8260B

Data File: 65834,D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger; Zechnical Director

Chain of Custody provides additional sample information

Volatile Analysis Report for Non-potable Water

Client: Hely & Aldrich

Client Job Site:

Paetec Park

Lab Project Number: 03-1543

Client Job Number:

70606-201

Lab Sample Number:

5622

Field Location:

HA-03-113

Date Sampled: **Date Received:** 06/12/2003 06/13/2003

Field ID Number: Sample Type:

N/A Water

Date Analyzed:

06/20/2003

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 2.00
Carbon tetrachloride	ND< 2.00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyl vinyl ether	ND< 2.00
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichlorosthene	ND< 2.00
cis-1,2-Dichloraethene	ND< 2.00
trans-1,2-Diohloroethene	ND< 2.00
1,2-Dichtoropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropane	ND< 2.00
Methylene chloride	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00

Aromatics	Results in ug / L
Benzene	1.54
Chlorobenzene	ND< 2,00
Ethylbenzene	ND< 2.00
Toluene	ND< 2,00
m,p - Xylene	ND< 2.00
o - Xylene	ND< 2.00
Styrene	ND< 2.00
1,2-Dichlorobenzene	ND< 2,00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2,00

Ketones	Results in ug / L
Acetone	ND< 10.0
2-Butanone	ND< 5,00
2-Нехалопе	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L	
Carbon disulfide	ND< 5,00	
Vinyl acetate	ND< 5.00	

ELAP Number 10958

Trichlorofluoromethane

Trichlaraethene

Vinyl Chloride

Method: EPA 8260B

ND< 2.00

ND< 2.00

ND< 2.00

Data File: 65835.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature;

Bruce Hoogesteger: Technical Director

Chain of Gualady provides additional female Information

179 Leke Avenue Rochester, New York 1460B (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Haley & Aldrich

Client Job Site:

Paetec Park

Lab Project Number:

03-1543

Client Job Number:

70806-201

Lab Sample Number:

5622

Field Location:

HA-03-113

Date Sampled: Date Received:

06/12/2003 06/13/2003

Field ID Number:

N/A

Sample Type:

Water

Date Analyzed:

06/20/2003

Aromatics	Results In ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2,00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00	.,.,.	110 7 2.00
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropyibenzene	ND< 2.00	Methyl tert-Butyl Ether	ND< 2.00
p-Isopropyltoluene	8,05		140 ~ 2,00
Naphthalene	ND< 5.00		
ELAP Number 10958	Method:	EPA 8260B	Dala File: 85835 D

Method: EPA 8250B

Data File: 85835.D

0.010 mg/L

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature

Bruce Hoogesteger Technical Director

Chain of Custody provides additional semals information

Aromatics

Benzene

Volatile Analysis Report for Non-potable Water

Client: Hely & Aldrich

Client Job Site:

Paetec Perk

Lab Project Number: 03-1543

Client Job Number:

70606-201

Lab Sample Number: 5623

Field Location:

HA-03-121

Date Sampled:

06/12/2003

Results in ug / L

Field ID Number: Sample Type:

N/A Water

Date Received: Date Analyzed:

06/13/2003 06/20/2003

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethana	ND< 2.00
Bromoform	ND< 2.00

Carbon tetrachloride ND< 2.00 Chloroethane ND< 2.00 Chloromethane ND< 2,00 2-Chloroethyl vinyl ether ND< 2.00 Chloroform ND< 2.00

Dibromochloromethane ND< 2.00 1.1-Dichloroethane ND< 2.00

1,2-Dichloroethane ND< 2,00 1,1-Dichloroethene ND< 2.00 cis-1,2-Dichloroethene 2.85

trans-1,2-Dichloroethene ND< 2.00 1,2-Dichloropropane ND< 2,00 cis-1,3-Dichloropropene ND< 2,00 trans-1,3-Dichloropropene ND< 2.00 Methylene chloride ND< 5.00

1,1,2,2-Tetrachloroethane ND< 2.00 Tetrachloroethene ND< 2.00 1,1,1-Trichloroethane ND< 2.00 1,1,2-Trichloroethane ND< 2.00

Trichloroethene ND< 2,00 Trichlorofluoromethana ND< 2.00 Vinyl Chloride 4.41

ELAP Number 10958

Delirelle	ND< 0,700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p - Xylane	ND< 2.00
o - Xylene	ND< 2.00
Styrene	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L	
Acetone	ND< 10.0	
2-Butanone	ND< 5.00	
2-Hexanone	ND< 5.00	
4-Methyl-2-pentanone	ND< 5,00	

Miscellaneous	Results in ug / L
Carbon disulfida	ND< 5.00
Vinyl acetate	ND< 5.00

Melhod: EPA B260B

Data File: 65836.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogasteger: Zechnical Director

n of Perstadu menidas additional appois Information

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Haley & Aldrich

Client Job Site:

Paetec Park

Lab Project Number:

03-1543

Client Job Number:

70606-201

Lab Sample Number:

5623

Field Location:

HA-03-121

Date Sampled:

06/12/2003

Field ID Number:

N/A

Date Received:

06/13/2003

Sample Type:

Water

Date Analyzed:

06/20/2003

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sac-Butylbenzene	ND< 2.00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbanzane	ND< 2.00	Total Translaty Delizerie	NU< 2.00
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 2.00	Methyl tert-Butyl Ether	ND< 2.00
p-isopropyltoluene	ND< 2.00	with the Daty Ellis	ND 2.00
Naphthalene	ND< 5.00		
ELAP Number 10958	Method;	EPA 8250B	Data File: 65836.0

Data File: 65836,D

7.06 ug/h 0.007 mg/L

Comments:

ND denotes Non Detect ug / L = mlcrogram per Liter

Signature:

Bruce Hoogesteger: Teotinical Director

Chain of Custody amplifus additional assents info

179 Lake Avenue Rochester, New York 14806 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Non-potable Water

Client: Hely & Aldrich

Client Job Site:

Paetec Park

Lab Project Number:

03-1543

Client Job Number:

70606-201

Lab Sample Number:

5B24

Field Location:

HA-03-106

Date Sampled:

06/12/2003 06/13/2003

Field ID Number:

N/A

Date Received:

06/20/2003

Sample Type:

Water

Date Analyzed:

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 2,00
Carbon tetrachloride	ND< 2.00
Chloroethane	ND< 2,00
Chloromethane	ND< 2.00
2-Chloroethyl vinyl ether	ND< 2.00
Chloroform	ND< 2,00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00
1,2-Dichloropropane	ND< 2,00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 5'00
Tetrachloroethene	ND< 2,00
1,1,1-Trichlorgethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichiorofluoromethane	ND< 2.00
Vinyl Chloride	ND< 2.00

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p - Xylene	ND< 2.00
o - Xylene	ND< 2.00
Styrene	ND< 2,00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2,00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0
2-Butanone	ND< 5.00
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5,00

Results in ug / L
ND< 5.00
ND< 5.00

ELAP Number 10958

Method: EPA 82608

Data File: 65837,D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Haley & Aldrich

Client Job Site:

Paetec Park

Lab Project Number:

03-1543

Client Job Number:

70606-201

Lab Sample Number: 5624

Field Location:

HA-03-106

Date Sampled: Date Received: 06/12/2003 06/13/2003

Fleid ID Number: Sample Type:

N/A Water

Date Analyzed:

06/20/2003

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butyibenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2.00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00		
n-Propylbenzene	ND< 2.00	Miscellaneous	90000
Isopropylbenzene	ND< 2.00	Methyl tert-Butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 2.00	-	
Naphthalene	ND< 5,00		

ELAP Number 10958

Melhod: EPA 8260B

Data File: 65837.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesleger: Technical Director

Volatile Matrix Spike Analysis Report for Non-potable Water

Client: Haley & Aldrich

Client Job Site:

Paetec Park

Lab Project Number:

03-1543

Client Job Number:

70606-201

Field Location:

HA-03-106

Date Sampled:

06/12/2003

Field ID Number:

N/A

Date Received:

06/13/2003

Sample Type: Water

Date Analyzed:

06/20/2003

Lab Sample Number: 5624

Matrix Spike Recovery Table

Spiked Compound	Spike Conc	% Recovery
1,1-Dichloroethene	50 ug / L	90.0
Trichloroethene	50 ug / L	100
Benzene	50 ug / L	104
Toluene	50 ug / L	102
Chlorobenzene	50 ug / L	106

Lab Sample Number: 5624

Matrix Spike Duplicate Recovery Table

Spiked Compound	Spike Conc	% Recovery
1,1-Dichloroethens	50 ug/L	96.0
Trichloroethene	50 ug / L	102
Benzene	50 ug / L	108
Toluene	50 ug / L	104
Chlorobenzene	50 ug / L	106

ELAP Number 10958

Water

 Spike
 Advisory QC Spike Limits

 1,1-Dichloraethene
 34% - 121%

 Trichloraethene
 41% - 179%

 Benzene
 67% - 134%

 Toluene
 70% - 147%

 Chlorabenzene
 78% - 128%

Commenta:

ND denotes Not Spiked ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

EIL ID: 034E13704 Y) P

Volatile LCS Analysis Report for Non-potable Water

Client: Haley & Aldrich

Client Job Site:

Paetec Park

Lab Project Number: 03-1543

Client Job Number:

70606-201

N/A

Date Sampled: **Date Received:** N/A N/A

Field ID Number: Sample Type:

Field Location:

N/A Water

Date Analyzed:

06/19/2003

Lab Sample Number: LCS

Laboratory Control Spike Recovery Table

Spiked Compound	Spike Conc	% Recovery	
1,1-Dichloroethene	50 ug / L	98.0	
Trichloroethene	50 ug / L	104	
Benzene	50 ug / L	102	
Toluene	50 ug / L	96.0	
Chlorobenzene	50 ug / L	102	

ELAP Number 10958

Water

Spike 1,1-Dichloroethene Advisory QC Spike Limits

Trichloraethene

34% - 121%

Benzene

41% - 179% 67% - 134%

Toluene

70% - 147%

Chlorobenzene

78% - 128%

Comments;

ND denotes Not Spiked

ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Volatile Analysis Report for Non-potable Water

Client: Hely & Aldrich

Client Job Site:

Paetec Park

Lab Project Number:

Client Job Number:

70606-201

Lab Sample Number: Method Blank

Field Location:

N/A

Date Sampled: Date Received:

N/A N/A

Fleid ID Number: Sample Type:

N/A Water

Date Analyzed:

06/19/2003

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2,00
Bromoform	ND< 2,00
Carbon tetrachloride	ND< 2,00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyl vinyl ether	ND< 2.00
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2,00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 5.00
trans-1,2-Dichloroethene	ND< 2.00
1.2-Dichloropropane	ND< 2.00
cls-1,3-Dichloropropene	ND< 2,00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5,00
1,1,2,2-Tetrachloroethane	ND< 2,00
Tetrachloroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2,00

Aromatics	Results in ug / L
Banzene	ND< 0.700
Chiorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p - Xylene	ND< 2.00
o - Xylene	ND< 2.00
Styrene	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0
2-Butanone	ND< 5.00
2-Нехаполе	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
VInyl acetate	ND< 5,00

ELAP Number 10958

Trichloroethene

Vinyl Chloride

1,1,2-Trichloroethane

Trichlorofluoromethane

Method: EPA 82608

ND< 2.00

ND< 2,00

ND< 2.00

ND< 2,00

Data Flie: 65833.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger; Technical Director

FIL ID - PRIESMIE WIT

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Haley & Aldrich

Client Job Site:

Paetec Park

Lab Project Number:

03-1543

Client Job Number:

70606-201

Lab Sample Number: Method Blank

Field Location:

N/A

Date Sampled: Date Received: N/A N/A

Fleid ID Number: Sample Type:

N/A Water

Date Analyzed:

06/19/2003

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzena	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sac-Butylbenzene	ND< 2,00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00	•	
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isapropylbenzene	ND< 2.00	Methyl tert-Butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 2.00	• 2000	
Naphthalene	ND< 5,00		

ELAP Number 10958

Method: EPA 8260B

Data File: 65833,D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruca Hoogesteger: Technical Director

Volatile Analysis Report for Non-potable Water

Client: Haley & Aldrich

Client Job Site:

Paetec Park

Lab Project Number: 03-1543

Client Job Number:

70606-201

Date Received:

08/13/2003

Sample Type:

Water

Lab Sample Number	Field Number	Field Location	1,2-DCE	Tol	4-BFB
Method Blank 6/19	N/A	N/A	105	99	93
LCS 5/19	N/A	N/A	110	98	96
5621	N/A	Trip Blank 061203	106	100	96
5622	N/A	HA-03-113	117	108	107
5623	N/A	HA-03-121	107	104	99
5624	N/A	HA-03-106	101	96	93
5624 MS	N/A	HA-03-106	111	102	99
5624 MSD	N/A	HA-03-108	108	102	98

ELAP Number 10958

Soil

Water

Surrogate

Advisory QC Surrogate Limits

Advisory QC Surrogate Limits 78% - 129%

1,2-Dichloroethane-d4 (1,2-DCE)

71% - 133%

Toluene-dB (Tol)

75% - 136%

79% - 122%

4-Bromofluorobenzene (4-BFB)

67% - 128%

81% - 125%

Comments:

Signature:

Bruce Hoogesteger: Technical Director

PARADIGM ENV

Client:

Haley & Aldrich

Lab Project No. 03-1543

Client Job Site:

Paetec Park

Sample Type: Water

Lab Sample No 5622

Client Job No.:

70606-201

Fleid Location: Fleid ID No.:

N/A

HA-03-113

Date Sampled: 06/12/2003 Date Received: 06/13/2003

Laboratory Report for Metals Analysis in Waters

Parameter	Date Analyzed	Analytical Method	Result (mg/L)
Antimony	06/18/2003	EPA 200.7	<0.060
Arsenic	06/18/2003	EPA 200.7	0.052
Barlum	06/18/2003	EPA 200.7	0.452
Beryllium	06/18/2003	EPA 200.7	<0.005
Cadmium	06/18/2003	EPA 200.7	<0.005
Chromium	06/18/2003	EPA 200.7	0,091
Copper	06/18/2003	EPA 200.7	0.291
fron	06/18/2003	EPA 200.7	124
Lead	06/18/2003	EPA 200.7	0.207
Manganese	06/18/2003	EPA 200.7	3.79
Mercury	06/17/2003	EPA 245.1	0.0009
Nickel	06/18/2003	EPA 200.7	0.106
Selenium	06/18/2003	EPA 200.7	<0.005
Silver	08/18/2003	EPA 200.7	<0.010
Thallium	08/18/2003	EPA 200.7	<0.006
Zinc	06/18/2003	EPA 200.7	0.423

ELAP ID No.;10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Chain of Gustody provides additional sample information.

File ID:031543.xls

Client:

Haley & Aldrich

Lab Project No. 03-1543

Client Job Site:

Paetec Park

Lab Sample No 5623

Client Job No.:

70606-201

Sample Type: Water

Field Location:

N/A

Date Sampled: 06/12/2003

Field ID No.:

HA-03-121

Date Received: 06/13/2003

Laboratory Report for Metals Analysis in Waters

Parameter	Date Analyzed	Analytical Method	Result (mg/L)
Antimony	06/18/2003	EPA 200.7	<0.060
Arsenic	06/18/2003	EPA 200.7	0.091
Barlum	06/18/2003	EPA 200,7	0.938
Beryllium	06/18/2003	EPA 200.7	<0.005
Cadmium	06/18/2003	EPA 200.7	<0.005
Chromium	06/18/2003	EPA 200,7	0.144
Copper	06/18/2003	EPA 200.7	0.148
Iron	06/18/2003	EPA 200.7	182
Lead	06/18/2003	EPA 200.7	0.086
Manganese	06/18/2003	EPA 200.7	5.17
Mercury	06/17/2003	EPA 245.1	0.0003
Nickel	06/18/2003	EPA 200.7	0.142
Selenium	06/18/2003	EPA 200.7	<0.005
Silver	06/18/2003	EPA 200.7	0.011
Thallium	06/18/2003	EPA 200.7	<0.006
Zinc	06/18/2003	EPA 200.7	0.455
			ELAP IO No :10958

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Chain of Custody provides additional sample information.

File ID:031543,x/s

Client:

Haley & Aldrich

Lab Project No. 03-1543

Client Job Site:

Paetec Park

Lab Sample No 5824

Client Job No.:

70806-201

Sample Type: Water

Fleld Location:

N/A

Date Sampled: 06/12/2003

Field ID No.:

HA-03-106

Date Received: 06/13/2003

Laboratory Report for Metals Analysis in Waters

Parameter	Date	Result (mg/L)	
	Analyzed	Analytical Method	Tresuit (mg/L)
Antimony	08/18/2003	EPA 200.7	<0.060
Arsenic	08/18/2003	EPA 200.7	0.046
Barlum	08/18/2003	EPA 200.7	0,295
Beryllium	06/18/2003	EPA 200.7	<0.005
Cadmlum	06/18/2003	EPA 200.7	<0.005
Chromium	06/18/2003	EPA 200.7	0.046
Copper	06/18/2003	EPA 200.7	0.059
Iron	06/18/2003	EPA 200.7	66.8
Lead	06/18/2003	EPA 200.7	0.075
Manganese	06/18/2003	EPA 200.7	2,55
Mercury	06/17/2003	EPA 245.1	<0.0002
Nickel	06/18/2003	EPA 200.7	0.072
Selenium	08/18/2003	EPA 200.7	<0.005
Silver	08/18/2003	EPA 200.7	<0.010
Thailium	06/18/2003	EPA 200.7	<0.006
Zinc	08/18/2003	EPA 200.7	0.149

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Chain of Custody provides additional sample information.

PARADIGM ENV

Client:

Haley & Aldrich

Lab Project No. 03-1543

Client Job Site:

Paetec Park

Lab Sample No Method Blank

Client Job No.:

70606-201

Sample Type: Water

Fleid Location: Field ID No.;

N/A N/A

Date Sampled: N/A Date Received: N/A

Laboratory Report for Metals Analysis in Waters

Parameter	Date	Analytical	Daniel (())
	Analyzed	Method	Result (mg/L)
Antimony	08/18/2003	SW846 6010	<0.060
Arsenic	06/18/2003	SW846 6010	<0.005
. Barlum	06/18/2003	SW846 6010	<0.020
Beryllium	06/18/2003	SW846 6010	<0.005
Cadmlum	06/18/2003	SW846 8010	<0.005
Chromium	06/18/2003	SW846 6010	<0.010
Copper	06/18/2003	SW846 6010	<0.010
Iron	06/18/2003	SW846 6010	<0.100
Lead	08/18/2003	SW846 6010	<0.005
Manganese	06/16/2003	SW846 6010	<0.010
Mercury	06/17/2003	SW846 7471	<0.0002
Nickel	06/18/2003	SW846 6010	<0.040
Selenium	06/18/2003	SW846 6010	<0.005
Silver	06/18/2003	SW846 6010	<0.010
Thallium	06/18/2003	SW846 6010	<0.008
Zinc	06/18/2003	SW848 6010	<0.020
			CLACID N

ELAP ID No.:10958

Comments:

Bruce Hoogesteger, Technical Director

Chain of Custody provides additional sample information.

LABORATORY QUALITY CONTROL Metals

Client:

Haley & Aldrich

QC Type:

Laboratory Control Sample

ANALYTE	Spike Added (mg/L)	Method Blank Amount (mg/L)	Spike Recovered (mg/L)	% Recovery
Antimony Arsenic Barlum Beryllium Cadmium Chromium Copper Iron Lead Manganese Meroury Nickel Selenium Silver Thallium Zinc	2.50 2.50 2.50 0,500 1.00 2.50 2.50 2.50 1.00 0.0050 5.00 2.50 0.250 2.50	<0.060 <0.005 <0.020 <0.005 <0.005 <0.010 <0.100 <0.005 <0.010 <0.0002 <0.040 <0.005 <0.010 <0.005 <0.010 <0.005	2.34 2.36 2.63 0.460 0.964 2.44 2.43 2.40 2.51 0.969 0.00498 4.97 2.31 0.242 2.44 2.40	93.6 94.4 105 92.0 96.4 97.8 97.2 98.0 100 96.9 99.5 99.4 92.4 96.8 97.6

The acceptance windows for lcs recoveries is 80-120%.

PARADIGM ENV

LABORATORY QUALITY CONTROL Metals

Client: Haley & Aldrich

QC Type: Sample Replicate Matrix: Water Sample Number: Ics

	Result	Duplicate	
Analyte	(mg/L)	(mg/L)	% Difference
	1 (3/3/	(118/2)	The Circle line
Antimony	2.34	2,43	3.9
Arsenic	2.36	2.44	3.0
Barium	2.83	2.68	2.1
Beryllium	0.460	0.488	1.7
Cadmium	0.964	0.986	2.3
Chromium	2.44	2.50	2.3
Copper	2.43	2.49	2.4
Iron	2.40	2.44	1.8
Lead	2.51	2,59	3.1
Manganese	0,969	0.992	2.4
Mercury	0.00498	0.00498	0
Nickei	4.97	5.09	2.3
Selenium	2.31	2.38	3.3
Silver	0.242	0.247	2.0
Thaillum	2.44	2.53	3.6
Zinc	2.40	2.46	2.4
			"

The target windows for duplicates is $\pm 20\%$

LABORATORY QUALITY CONTROL Metals

Client: Haley & Aldrich

QC Type: Sample Replicate
Matrix: Water
Sample Number: Ics

	Result	Duplicate	
l Annhan	11) i
Analyte	(mg/L)	(mg/L)	% Difference
Antimony	<0.060	<0.060	NC NC
Arsenic	0.052	0.056	7.4
Barium	0.452	0.437	2.8
Beryllium	<0.005	<0.005	NC :
Cadmlum	<0.005	<0.005	NC
Chromium	0.091	0.091	0
Copper	0.291	0,298	2,5
Iron	124	121	2.1
Lead	0.207	0.213	2.6
Manganese	3.79	3.78	0.2
Mercury	0.0009	N/A	N/A
Nickel	0.108	0.105	0.6
Selanium	<0.005	<0.005	NC
Silver	<0.010	<0.010	NC
Thalllum	<0.006	<0.006	NC
Zinc	0.423	0.422	0.2

The target windows for duplicates is ± 20% N/A = This sample was not used for matrix QC.

179 Lake Avenue, Rochester, NY 14508 (585) 547-2530 FAX (585) 647-3311

LABORATORY QUALITY CONTROL

Client: Haley & Aldrich

QC Type: Matrix Spike Matrix: Water Sample No.: 5622

ANALYTE	Spike Added (mg/L)	Sample Amount (mg/L)	Spike Recovered (mg/L)	% Recovery
Anlimony Arsenic Barlum Beryllium Cadmium Chromlum Copper Iron Lead Manganese Mercury Nickel Selenium Silver Thallium Zinc	2.50 2.50 2.50 0.500 1.00 2.60 2.50 2.50 2.50 1.00 0.0050 5.00 2.50 0.250 2.50	<0.060 0.052 0.452 <0.005 <0.005 0.081 0.291 124 0.207 3.79 0.0009 0.106 <0.005 <0.010 <0.006 0.423	2.02 2.21 2.60 0.412 0.784 2.16 2.50 121 2.24 4.47 N/A 4.11 2.09 0.230 1.94 2.32	80.8 86.3 85.9 82.4 78.4 82.8 86.4 V 81.3 68.0 N/A 60.1 63.6 92.0 77.6 75.9

The target windows for matrix spike recoveries is 75-125%.

N/A = This sample was not used for matrix QC.

V = Sample concentration is greater than ten times the value of the spike.

10c-201 PARADIGM LAB SAWPLE NUMBER 562 ω 3 3 9 TIRNABOUND TIME: (WORDENG DAYS) 9 56 5 S Total Cost: Cascard per Collis ر ع discard on Bio4/13 F1/08812 03-1543 REMARKS TEMPERATURE SED . Date/Time: CHAIN OF CUSTODY Ā HOLDING TIME: V635<2 ८३ @ कि PHOME 2 7 Metals PRESERVATIONS: Cholans 10 V V V SAMPLE LOCATIONFIELD ID 183 COMMENTS: COLAR (a-13-03 321-4348 Conorata 160 m 6-12-03 6-12-03 CONTAINER TYPE: SAMPLE CONDITION: Check box ENVIRONMENTAL **PARADIGM** 179 Lake Avenue Rochester, NY 14608 (585) 647:2530 * (800) 724-1997 FAX: (585) 647-3311 f acceptable or note deviation: SERVICES, INC. 550 338 13.45 **記** Beec Park "LAB USE ONLY" PROJECT NAME/SITE NAME 1610h3 8 4O 53/53 ₽AGE PARADIGM ENV T2826473311 89:90 8002/82/90

Appendix 3

Site Health and Safety Plan

Location:

Paetec Park –Former Erie Canal Industrial Park Lots #2 and #3 Oak Street Rochester, New York 14608

Prepared For:

Rochester Rhinos Stadium, LLC 116 Business Park Drive Utica, New York 13502

February 2004 Revised: August 2004

LaBella Project No's. 203174.02 & 203174.06

Appendix 3

Site Health and Safety Plan

Location:

Paetec Park –Former Erie Canal Industrial Park
Lots #2 and #3
Oak Street
Rochester, New York 14608

Prepared For:

Rochester Rhinos Stadium, LLC 116 Business Park Drive Utica, New York 13502

> February 2004 Revised: August 2004

LaBella Project No's. 203174.02 & 203174.06

Table of Contents

	Pag	e
1.0	Introduction1	
2.0	Responsibilities1	
3.0	Activities Covered1	
4.0	Work Area Access and Site Control1	
5.0	Potential Health and Safety Hazards1	
6.0	Decontamination Procedures3	
7.0	Personal Protective Equipment3	
8.0	Air Monitoring3	
9.0	Emergency Action Plan4	
10.0	Medical Surveillance4	
11.0	Employee Training4	

1.0 Introduction

The purpose of this Health and Safety Plan (HASP) it to provide guidelines for responding to potential health and safety issues that may be encountered during the earthwork construction of Paetec Park. The requirements of this HASP are applicable to all LaBella Associates personnel and their authorized visitors at the work site. This document's project specifications, the Soil and Water Management Plan (SWMP), and the Community Air Monitoring Plan (CAMP), are to be consulted for guidance in preventing and quickly abating any threat to human safety or the environment. The provisions of the HASP do not replace or supersede any regulatory requirements of the USEPA, NYSDEC, OSHA or and other regulatory body.

2.0 Responsibilities

The HASP presents guidelines to minimize the risk of injury, to project personnel, and to provide rapid response in the event of injury. The LaBella Associates HASP is applicable only to activities of LaBella personnel and their authorized visitors. The LaBella Associates Project Manager shall implement the provisions of this HASP for the duration of the project. It is the responsibility of employees to follow the requirements of this HASP, and all applicable company safety procedures.

3.0 Activities Covered

The activities covered under this HASP are limited to the following:

- Observation and inspection of construction activities
- □ Environmental Monitoring
- Collection of samples
- ☐ Assistance with the on-Site management of excavated soil and fill.

4.0 Work Area Access and Site Control

The general contractor will have primary responsibility for work area access and site control.

5.0 Potential Health and Safety Hazards

This section lists some potential health and safety hazards that project personnel may encounter at the project site and some actions to be implemented by LaBella Associates personnel to control and reduce the associated risk to health and safety. This is not intended to be a complete listing of any and all potential health and safety hazards. New or different hazards may be encountered as site environmental and site work conditions change. The suggested actions to be taken under this plan are not to be substituted for good judgment on the part of project personnel. At all times the Site Safety Officer has responsibility for site safety and his or her instructions must be followed.

5.1 Hazards Due to Heavy Machinery

Potential Hazard:

Heavy machinery including trucks, excavators, backhoes, etc will be in operation at the site. The presence of such equipment presents the danger of being struck or crushed. Use caution when working near heavy machinery.

Protective Action:

Make sure that operators are aware of your activities, and heed operator's instructions and warnings. Wear bright colored clothing and walk safe distances from heavy equipment. A safety orange vest, hard hat, and steel toe shoes are required.

5.2 Excavation Hazards

Potential Hazard:

Excavations and trenches can collapse, causing injury or death. Edges of excavation can be unstable and collapse. Toxic and asphyxiant gases can accumulate in confined spaces and trenches.

Protective Action:

LaBella Associates personnel are not to enter excavations over 4 feet in depth unless excavations are adequately sloped. LaBella Associates personnel must receive approval from the LaBella Project Manager to enter an excavation for any reason. Subsequently, LaBella personnel are to receive authorization for entry from the Site Safety Officer.

LaBella Associates personnel should exercise caution near all excavations at the site as it is expected that excavation sidewalls will be unstable.

5.3 Cuts, Punctures and Other Injuries

Potential Hazard:

In any excavation or construction work site there is the potential for the presence of sharp or jagged edges on rock, metal materials, and other sharp objects. Serious cuts and punctures can result in loss of blood and infection.

Protective Action:

The LaBella Associates Project Manager is responsible for making First Aid supplies available at the work site to treat minor injuries. The First Aid supplies will be kept in the work trailer. The Site Safety Officer is responsible for arranging the transportation of authorized on-site personnel to medical facilities when First Aid treatment in not sufficient. Do not move seriously injured workers. All injuries requiring treatment are to be reported to the LaBella Project Manager. Serious injuries are to be reported immediately (see Section 9.0 - Emergency Action Plan).

5.4 Injury Due to Exposure of Chemical Hazards

Potential Hazards:

Volatile organic vapors from petroleum products, chlorinated solvents or other chemicals may be encountered during excavation activities at the project work site. Inhalation of high concentrations of organic vapors can cause headache, stupor, drowsiness, confusion and other health effects. Skin contact can cause irritation, chemical burn, or dermatitis.

Protective Action:

The presence of organic vapors may be detected by their odor and by monitoring instrumentation. LaBella Associates employees will not work in environments where hazardous concentrations of organic vapors are present. Air monitoring performed by LaBella Associates (see Section 8.0) of the work area will be performed at least every 120 minutes or more often using a Photoionization Detector (PID) or a Flame Ionization Detector (FID). LaBella Associates personnel are to leave the work area whenever PID or FID measurements of ambient air exceed 25 ppm consistently for a 15 minute period.

6.0 Decontamination Procedures

Upon leaving the work area, LaBella Associates personnel shall decontaminate footwear as needed. Under normal work conditions detailed personal decontamination procedures will not be necessary. Work clothing may become contaminated in the event of an unexpected splash or spill or contact with a contaminated substance. Minor splashes on clothing and footwear can be rinsed with clean water. Heavily contaminated clothing should be removed if it cannot be rinsed with water. LaBella Associates personnel should be prepared with a change of clothing whenever on site.

LaBella will use the contractor's disposal container for disposal of PPE.

7.0 Personal Protective Equipment

Conditions requiring a level of protection greater than Level D are not expected at this work site. Typical safety equipment identified in company safety and health procedures is required, i.e., hard hat, safety glasses, orange vest, rubber nitrile sampling gloves, splash resistant coveralls, construction grade boots, etc. Additional site-specific personal protective equipment is not necessary when working under the conditions of this plan.

8.0 Air Monitoring

The LaBella Associates representative/Environmental Monitor will utilize a PID to screen the ambient air in the work areas (excavation, soil staging, and soil grading areas) for total Volatile Organic Compounds (VOCs). Work area ambient air will generally be monitored downwind of the excavation or earthwork area in the general breathing zone

Air monitoring of the work areas will be performed at least every 120 minutes or more often using a photoionization Detector (PID). LaBella Associates personnel are to leave the work area whenever PID measurements of ambient air exceed 25 ppm consistently for a 5 minute period.

LaBella personnel may re-enter the work areas wearing a ½ face respirator with organic vapor cartridges for an 8-hour duration when VOC concentrations average between 25-50 ppm. Organic vapor cartridges are to be changed after each 8-hour of use. If PID readings are sustained at levels above 50 ppm for a 5 minute average, work will be stopped immediately until safe levels of VOCs are encountered.

At all times, the Site Safety Officer has authority over actions of LaBella Associates personnel and their guests at the site and his or her requests for evacuation are to be heeded without delay. Skin and clothing should be rinsed with clean water if chemical exposure has occurred as a result of splash or spill. Contaminated clothing must be removed; LaBella personnel should bring a change of clothes to the site. Water repellant suits will be provided to help prevent contamination of clothing. Medical attention should be provided if skin irritation has occurred. Please refer to Table 1 outlining chemical compounds detected in recent soil samples at the proposed Paetec Park site.

9.0 Emergency Action Plan

In the event of an emergency, employees are to turn off and shut down all powered equipment and leave the work areas immediately. Employees are to walk or drive out of the Site as quickly as possible and wait at the assigned 'safe area'. Follow the instructions of the Site Safety Officer.

LaBella Associates employees are not authorized or trained to provide rescue and medical efforts. Rescue and medical efforts will be provided by local authorities.

10.0 Medical Surveillance

LaBella Associates will provide medical surveillance to all LaBella employees who are injured due to overexposure from an emergency incident involving hazardous substances at this site.

11.0 Employee Training

LaBella personnel who are not familiar with this site plan will receive training on its entire content and organization before working at the Site.

N/ROCHESTER RHINOS, LLC/203174.06/CLERICAL/WORD/RPT/R4H19GS2.DOC

SITE HEALTH AND SAFETY PLAN

Project Title: Paetec Park Earthwork Construction

Project Number: 203174.02

Project Location (Site): Oak Street, Rochester, New York 14608

Project Manager: Dennis Porter, CHMM

Plan Approval Date:

Plan Review Date:

Site Safety Supervisor: Michael Pelychaty

Site Contact Michael Pelychaty

LaBella Safety Director Richard Rote, CIH

Activities:

Proposed Date(s) of Field October through December 2003

Site Conditions: Generally level, encompassing approximately 5 +/- acres

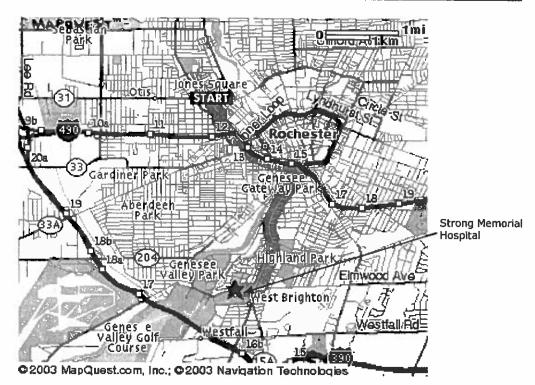
Site Environmental Prior Environmental Reports by H&A of New York, Day Information Provided By: Environmental, Sear-Brown, etc. and LaBella Associates

Environmental, Scal-Drown, etc. and Labella Associates

Air Monitoring Provided By: LaBella Associates

Site Control Provided By: General Contractor – LeChase Construction

EMERGENCY CONTACTS


	Name	Phone Number
Ambulance:	As Per Emergency Service	911
Hospital Emergency:	Strong Memorial Hospital	585-275-4551
Poison Control Center:	Finger Lakes Poison Control	585-275-3232
Police (local, state):	City of Rochester Police Department	911
Fire Department:	City of Rochester Fire Department	911
Site Contact:	Michael Pelychaty	585-451-6225
Agency Contact	NYSDEC – Todd Caffoe MCDOH – Joseph Albert NYSDOH – Matthew Farcucci	585-226-5350 585-274-6904 716-847-4513
Project Manager	Dennis Porter, CHMM LaBella Associates, P.C.	Direct: 585-295-6245 Cell: 585-451-4854 Home: 585-289-3380
Safety Supervisor	Michael Pelychaty LaBella Associates, P.C.	Direct: 585-295-6253 Cell: 585-451-6225 Home: 585-654-7923
LaBella Associates Safety Director	Richard Rote, CIH	Direct: 585-295-6241 Home: 585-889-

N/ROCHESTER RHINOS, LLC\203174.06\CLERICAL\WORD\RPT\R4H19GS2.DOC

MAP AND DIRECTIONS TO THE MEDICAL FACILITY - STRONG MEMORIAL HOSPITAL

FROM:
Oak St
Rochester, NY
14608 US
TO:
601 Elmwood Ave
Rochester, NY
14620-2945 US

Directions	Distance
1: Start out going Southeast on OAK ST toward LIND ST.	0.21 miles
2: Turn RIGHT onto SMITH ST.	0.09 miles
3: Turn LEFT onto NY-31/W BROAD ST/BROAD ST. Continue to follow NY-31/W BROAD ST.	0.38 miles
4: Merge onto I-490 E via the ramp- on the left.	0.95 miles
5: Take the SOUTH AVE exit- exit number 15- toward RT-15.	0.17 miles
6: Stay straight to go onto SOUTH AVE.	0.04 miles
7: Turn RIGHT onto NY-15/MT HOPE AVE.	1.83 miles
8: Turn RIGHT onto ELMWOOD AVE.	0.30 miles
Total Distance:	3.97 miles
Estimated Drive Time:	8 minutes

Exposure Limits and Recognition Qualities Table 1

(ppm)(c)(d) 750 NA 10 0.2 NA 100 NA 065 NA 100 NA NA NA NA	(%)(e) 2.5 NA 1.3 NA 1.0 NA NA	(%)(f) 13 NA 7.9 NA	(b)(g)(mdd)	Sweet	(mdd)	Potential
750 NA 10 0.2 NA 100 NA 065 NA NA NA	2.5 NA NA NA NA NA	13 NA NA	20,000	Sweet		1
NA 10 0.2 NA 100 NA 065 NA NA NA	NA N	7.9 NA	-0,000		- I3	69.6
10 0.2 NA 100 NA 065 NA NA NA	1.3 NA NA NA NA	7.9 NA	NA	NA	NA	NA AN
0.2 NA 100 NA 065 NA NA NA	NA NA NA	NA	Z _a	Pleasant	4.7	9.24
NA 100 NA 065 NA NA NA	NA NA NA		700	AA	NA	NA
100 NA 065 NA 10 NA NA	1.0 NA NA	NA	NA	NA	NA	ΑN
NA 065 NA NA NA	NA NA	6.7	2,000	Ether	2.3	8.76
065 NA 10 NA NA	NA	NA	NA	NA	NA	Y.
NA NA NA		NA	င္မ	Na	Na	Za
NA NA	NA	NA	NA	NA	NA	NA
NA	6.0	5.9	250	Moth Balls	0.3	8.12
NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	ΝΑ
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	AN
NA	NA	NA	NA	NA	NA	AN
100	6.0	9.5	2,000	Sweet	2.1	8.82
25	6.0	6.4	NA	Distinct	2.4	NA AN
25	NA	NA	NA	Distinct	2.4	NA
100			1,000	Sweet	1:1	8.56
0.7	NA	NA	100, Ca	Almond		Ϋ́
0.5	NA	NA	1,100			Ϋ́Z
0.5	NA	NA				NA
0.5	NA	NA				NA
0.15	NA	NA	700			AN
0.05	NA	NA	28	Odorless		NA AN
0.02	NA	NA	Unknown			NA
0.01	NA	NA				NA
	0.05 0.02 0.01	0.05 NA 0.02 NA 0.01 NA	NA NA NA	NA NA NA NA NA NA NA NA	NA NA 28 NA NA Unknown NA NA NA	NA NA 28 NA NA Unknown NA NA NA

@@@@@@

Skin = Skin Absorption
OSHA-PEL Permissible Exposure Limit (flame weighted average, 8-hour): NIOSH Guide, June 1990
ACGIH — 8 hour time weighted average from Threshold Limit Values and Biological Exposure Indices for 2003.
Metal compounds in mg/m3
Lower Exposure Limit (%)
Upper Exposure Limit (%)
Immediately Dangerous to Life or Health Level: NIOSH Guide, June 1990.

- All values are given in parts per million (PPM) unless otherwise indicated. Ca = Possible Human Carcinogen, no IDLH information.
- Notes: 1. All 2. Ca

Appendix 4

Community Air Monitoring Plan For Earthwork Construction Activities

Location:

Paetec Park –Former Erie Canal Industrial Park Lots #2 and #3 Oak Street Rochester, New York 14608

Prepared For:

Rochester Rhinos Stadium, LLC 116 Business Park Drive Utica, New York 13502

February 2004

Revised: August 2004

LaBella Project No's. 203174.02 & 203174.06

Table of Contents

			Page
1.0 Introduction		duction	1
2.0	Methodology1		
	2.1	Perimeter Monitoring	1
	2.2	Work Area Monitoring	2
	2.3	Fugitive Dust Control	2
	2.4	Minor Vapor Emission Plan	3
	2.5	Major Vapor Emission Plan	3

1.0 Introduction

This Community Air Monitoring Plan (CAMP) has been prepared by LaBella Associates on behalf of the Rochester Rhinos, LLC. This CAMP addresses potential Volatile Organic Vapor (VOC) and particulate emissions that may occur during the earthwork portion of construction activities at the proposed Paetec Park. The new PaeTec Park Rhino's stadium is to be located at the former Erie Canal Industrial Park, Lots #2 and #3 adjacent to Oak Street, City of Rochester, Monroe County, New York 14608 (see Figure 1) herein after referred to as the "Site."

The construction tasks planned for this project that are covered by this CAMP include soil excavation, soil transportation and staging activities, utility installation, and site grading. Low levels of VOCs, semi-VOCs, and metals have been detected in the soil or groundwater at the Site. The volatilization of organic compounds through disturbance of soil and groundwater at the Site can potentially result in nuisance odors or health threats to the neighborhood in the immediate vicinity of the Site. Inorganic compounds, present in dust, could potentially be disturbed during earthwork construction activities. This CAMP describes daily air monitoring activities intended to identify and control environmental conditions presenting the potential for neighborhood exposure to ambient airborne hazards resulting from fugitive emissions during earthwork construction activities at the Site.

Pursuant to the New York State Department of Environmental Conservation (NYSDEC) Technical Administrative Guidance Manual (TAGM) #4031 – Fugitive Dust Suppression and particulate Monitoring Program at Inactive Hazardous Waste Sites, (HWR-89-4031), this CAMP addresses methods that will be utilized to monitor particulate (dust) levels at the perimeter of, and within the work areas (excavation, soil staging, and soil grading areas) of the Site. If elevated levels of particulate emissions are encountered, this CAMP identifies the procedures that will be employed to mitigate elevated particulate levels.

Perimeter air monitoring procedures for VOCs are also included in this CAMP. VOC monitoring of the work areas (excavation, soil staging, and soil grading areas) of the Site will also be conducted per the Health and Safety Plan (HASP) prepared for the earthwork portion of this construction project.

2.0 Methodology

This CAMP has been designed for construction activities at the proposed PaeTec Park. The CAMP pertains primarily to earthwork activities that disturb soil and groundwater at the Site. Previously completed soil investigations have indicated that soil contamination is not significant or wide spread. No significant vapor emissions are expected. However, the following procedures will be implemented to monitor and, if necessary, mitigate the potential migration of fugitive particulate and/or VOC emissions at the Site.

2.1 Site Perimeter Monitoring

Each day of field work during the intrusive earthwork portion of this construction project, a wind sock or flag will be used to monitor wind direction in the work areas (excavation, soil staging, and soil grading areas). Based upon daily wind conditions two temporary monitoring points, one up and one down wind of the work areas, will be identified at the perimeter of the Site or field work area.

Real time particulate monitoring will be performed utilizing DustTrakTM Model 8520 aerosol monitors. VOC monitoring will be performed with a Photovac 2020 Photoionization Detector (PID). Sufficiently wet Site conditions, such as after precipitation, may temporarily eliminate the need for particulate monitoring.

Each day, prior to the commencement of the intrusive earthwork work, background concentrations of particulate and VOCs will be measured and recorded as 5 minute averages at the identified upwind and downwind locations with the typical construction equipment engines and any other gas/diesel engines operating on Site.

Afterward, measurements will be recorded at approximate 120 minute intervals. The recorded 5 minute averages will be used to determine the difference in value between upwind and downwind particulate and VOC concentrations. Work will be temporarily halted and engineering controls, as per Section 2.3 or 2.5, will be implemented if the difference between the upwind and downwind particulate measurements exceed $100 \,\mu g/m^3$, or downwind VOC readings exceed upwind readings by 5 parts per million (ppm). It should be noted that downwind VOC readings will be adjusted for engine exhaust. If work is required to be temporarily halted, the Contractor will be required to implement dust suppression methods or other means to control dust and VOCs.

2.2 Work Area Monitoring

In addition to monitoring the perimeter of the work Site for VOCs and particulates, the immediate work areas (excavation, soil staging, and soil grading areas) will be monitored for VOCs as per the HASP developed for this project. Real time readings from the Work Area Perimeters will be observed and recorded as 5 minute averages at 60 minute intervals or twice the frequency of the perimeter measurements. If measurements exceed 25 ppm, as a 5 minute average, the requirements of Section 2.4 will be implemented.

2.3 Fugitive Dust Control

If the monitoring at the Site Perimeter, as described in Sections 2.1, indicates an upwind/downwind difference in fugitive particulate emissions greater than $100 \mu g/m^3$, the contractor will be required to implement dust control measures that may include the following methods:

- □ Apply water on haul roads.
- □ Wetting equipment and excavation faces.
- Restricting vehicle speeds to 10 mph.
- Hauling material in properly targed containers.
- Spraying water in buckets during excavation and dumping.
- □ Reducing excavation size and/or number of excavations.

The contractor will be required to have a water truck or equivalent on site for dust suppressions methods.

2.4 Minor Vapor Emission Response Plan

If any single Work Area Perimeter ambient air reading of total VOC exceeds 25 ppm above background, as a 5 minute average, <u>continuous</u> Site Perimeter air monitoring shall be conducted at the downwind monitoring location.

Work activities may continue if total organic vapors are between 5 ppm and 25 ppm over background at the Work Area Perimeter, provided that the organic vapor levels measured at the Site Perimeter remain below 5 ppm over background.

Work activities may need to be modified as per the HASP if VOC measurements remain above 25 ppm at the Work Area Perimeter. See the HASP for further details.

All work activities must be halted and the Major Vapor Emission Response Plan (Section 2.5) will be implemented immediately if organic vapor levels exceed 5 ppm, as a 5 minute average, over background at the Site Perimeter.

2.5 Major Vapor Emission Plan

Engineering controls to abate the VOC emissions source will immediately be put into effect if total organic vapor levels exceed 5 ppm above background at the Site Perimeter. These engineering controls may include:

- □ Vapor suppression utilizing foam vapor suppressants, polyethylene sheeting, or water.
- Backfilling of excavations.
- Covering emission sources with stockpiled materials.

If the measures taken to abate the emission source are ineffective and the total organic vapor readings continue at 5 ppm or above background for more than 15 minutes at the Site Perimeter, then the following actions shall be placed into effect.

- Occupants of the residential and commercial buildings will be advised to stay inside their respective structure and to close all windows.
- All personnel listed in the Emergency Contacts section of the HASP for this project will be contacted.
- ☐ The Site Safety Supervisor will immediately contact the local authorities and advise them of the circumstances.
- Continuous air monitoring will be conducted at the Site Perimeter and 1 minute average measurements will be recorded every 15 minutes. Air monitoring may be halted or modified by the Site Safety Supervisor when two successive measurements are below 5 ppm.

If readings remain elevated above 5 ppm over background for a period of 60 minutes the Site Safety Officer will request that local authorities evacuate the occupants of the buildings.

N:\ROCHESTER RHINOS, LLC\203174.06\CLERICAL\WORD\RPT\R4H19GS3A.DOC