Appendix A:
 Project Location Maps, Existing On-Street Parking Plan, Alternative 4: Concept Graphic, Alternative 4: Typical Sections, Plans, Profiles

Figure 1.2.1
Project Location Map

SCALE	DATE
NTS	$07 / 14$

$\prod_{\text {architects //engineers }} \mathrm{Bec} /$ /planners

Intersection Realigment Plan
Dewey Avenue / Driving Park Avenue Intersection Realignment Project
City of Rochester, New York

Dewey Ave / Driving Park Ave Intersection Realignment Project PC \#12105 City of Rochester $8 \sqrt[8]{8}$ nvironmental Services

Bergmann 28 East Main Street

www.bergmannoc.con
$\xrightarrow{\text { No. ONE }}$

```
Thu underground strucures and ustities shown
```

Thu underground strucures and ustities shown
*)
*)
lol

```
lol
```

DESIGN REPORT

Date

TYPICAL SECTIONS

Dewey Ave / Driving
Park Ave Intersection Park Ave Intersection Realignment Project City of Rochester $\xrightarrow[8]{8}$ nvironmental Services Bergmann

200 Cirst federal Plaza

Rochester, New York 1461-1-1909 | oftice: 585.232 .5135 |
| :---: |
| fax: 555.232 .4652 |

tax: 585.232 .4652
www.bergmannoc.con
\qquad

DESIGN REPORT

Date

TYPICAL SECTIONS

\section*{
 | Educaion Law Arial |
| :--- |
| rojoct Manager: |
| M.T.C. |
 Signed By:
 W.T.
 }

DRIVING PARK AVENUE (4)
SA. op 14.50 To STA. OP $16+56$

general plan

Unauthorized alteration or adadition tothis
rawing is violation of the New York State

Pesigned By: Project Number:
W.T.
W.T.
Designea By:
D.W.T.
D.a.t By:
D.W.T.
D.
C.W....
Ched By:
T.R.D.

Drawing Num
GP. 1

Dewey Ave / Driving Park Ave Intersection Realignment Project PC \#12105 City of Rochester

Department of Environmental Services architects / /engineerss // / planeress ${ }_{2}^{28}$ East Main Street
200 First Federal lial
200 First fe dereal Plaza

Rochester, New York 14614-1909 | office: 585.232 .5135 |
| :---: |
| fax: 585.232 .4652 |

tax: 585.232 .4652
www.bergmannec.con www.berg

No. OAAE | RESCOPIPTION |
| :---: |
| REV. CKO |

DESIGN REPORT

general plan

nauthorized alieration or addition tothis awing is a violation of the New York Stat ducaion Law Articie 145 , Section 7209 .

 GP-2

Dewey Ave / Driving Park Ave Intersection Realignment Project PC \#12105

Department
Department of
Environmental Services
Bergmann architects // engineers // planners

28 East Main Street
200 First Federal Plaza

200 First Federal Plaza
Rochester, New York 14614-1909 oftice: 585.232 .5135
fax: 585.232 .4652
tax: 585.232.4652
www.bergmannoc.con
A

DESIGN REPORT
\square

PROFILES

nauthorized alteration or adation to this

ducaito Law Alation of t the Ne, Nection Yor Stag.

Project Manager
n.T.C.

Projigect Number.

awing Nun
PR-1

PROFILES

Unauthorizad aliteration or addition to this

Proiect Manager
ri.t.c.
.
.
M.T.C.
Designed By:
owT.
W.
W.T.

awing Num
PR-2

Appendix B: Environmental Information

Environmental Scoping Checklist

PIN：4755．55	TYPE FUNDING：Federal Aid
DESCRIPTION：Dewey Avenue／Driving Park Avenue Intersection Realignment Project	TOWN：City of Rochester
	COUNTY：Monroe

SOCIAL，ECONOMIC AND ENVIRONMENTAL CONSIDERATIONS		RESOURCE PRESENT			RESOURCE IMPACTED		
	N／A	YES	No	TBD	YES	No	TBD
Social							
Land Use	囚				\square	\square	\square
Neighborhoods and Community Cohesion	区	\square	\square	\square	\square	\square	\square
General Social Groups Benefited or Harmed	区	\square	\square	\square	\square	\square	\square
School Districts，Rec．Areas and Places of Worship	区	\square	\square	\square	\square	\square	\square
Economic							
Regional and Local Economies	区				\square	\square	\square
Business Districts	\square	区	\square	\square	区	\square	\square
Specific Business Impacts	\square	区	\square	\square	囚	\square	\square
Environment							
Wetlands	\square	\square	区	\square	\square	\square	\square
Surface Waterbodies and Watercourses	\square	\square	区	\square	\square	\square	\square
Wild，Scenic，and Recreational Rivers	\square	\square	区	\square	\square	\square	\square
Navigable Waters	\square	\square	区	\square	\square	\square	\square
Floodplains	\square	\square	区	\square	\square	\square	\square
Coastal Resources	\square	\square	区	\square	\square	\square	\square
Aquifers，Wells，and Reservoirs	\square	\square	区	\square	\square	\square	\square
Stormwater Management	\square				\square	区	\square
General Ecology and Wildlife Resources	\square	\square	\square	\square	\square	\square	区
Critical Environmental Areas	\square	\square	区	\square	\square	\square	\square
Historic and Cultural Resources	\square	\square	\square	\square	\square	\square	区
Parks and Recreational Resources	\square	\square	区	\square	\square	\square	\square
Visual Resources	\square				\square	\square	区
Farmlands	\square	\square	区	\square	\square	\square	\square
Air Quality	\square				\square	\square	区
Energy	\square				\square	\square	区
Noise	\square				\square	\square	区
Asbestos	\square	\square	\square	\square	\square	\square	囚
Contaminated and Hazardous Materials	\square	\square	\square	\square	\square	\square	区
Construction Effects	\square				\square	\square	区
Indirect（Secondary）Effects	区				\square	\square	\square
Environmental Cumulative Effects	区				\square	\square	\square

Environmental Scoping Checklist

PERMITS	APP．	N／A	TBD
NYSDEC：			
State Pollutant Discharge Elimination System（SPDES）General Permit	\square	区	\square
New York State Department of Environmental Conservation，Article 24－ Freshwater Wetlands Permit	\square	区	\square
Mined Land Permit	\square	区	\square
Floodplain Variance	\square	区	\square
Wild，Scenic，Recreational Rivers Permit	\square	区	\square
Water Quality Certification（Blanket Sec 401）	\square	区	\square
Water Quality Certification（Individual Sec 401）	\square	区	\square
USCG：			
U．S．Coast Guard Section 9 Permit	\square	区	\square
USACOE：			
U．S．Army Corps of Engineers，Section 404 \＆10 Nationwide Permit－PCN \square	\square	区	\square
U．S．Army Corps of Engineers，Section 404 Individual Permit	\square	区	\square
U．S．Army Corps of Engineers，Section 10 Permit	\square	囚	\square
NYSDOS：			
Coastal Zone Consistency Certification Statement	\square	区	\square
EPA：			
NPDES General Permit	\square	区	\square

EXECUTIVE ORDERS（Federal Aid）	APP．	N／A	tbd
EO 11990 Protection of Wetlands	\square	区	\square
EO 11988 Floodplains	\square	区	\square
EO 12372 Groundwater Assessment	\square	区	\square
EO 13112 Invasive Species	\square	区	\square
EO 12898 Environmental Justice	\square	区	\square

OTHER APPROVALS／AUTHORIZATIONS	APP．	N／A	TBD
Section 106 （National Historic Preservation Act）－SHPO，FHWA	\square	区	\square
Section 4（f）（Park，Wildlife Refuge and Historic Sites）－Resource Agency，FHWA	\square	区	\square
Section 6（f）（Land and Water Conservation Funds）－Resource Agency，FHWA	\square	区	\square
Local Waterfront Revitalization Prog．Consistency Rev．－Municipality，NYSDOS	\square	区	\square
Endangered Species Act－NYSDEC，USFWS，USACE，FHWA	区	\square	\square
Migratory Bird Act－USFWS	\square	区	\square

\qquad
Version 9／16／11

Federal Environmental Approval Worksheet

PIN: 4755.55	Comp. by:Jim Boggs, Bergmann Associates	Date Comp.: 8/15/14
DESCRIPTION: Realignment	Fewey Avenue and Driving Park Avenue Intersection	NEPA CLASS: Class II
	SEQR TYPE: Unlisted	
LOCALITY (Village, Town, City): City of Rochester	COUNTY: Monroe	

Purpose of this Worksheet:

- Communicate project National Environmental Policy Act (NEPA) classification to Federal Highway Administration (FHWA).
- Identify additional required FHWA environmental determinations, approvals and/or concurrences required before the Categorical Exclusion (CE) determination can be made
- Reflect the documentation in the Design Approval Document (DAD) and enable the approving authority (per PDM Exhibit 4-2) to make the CE determination

Instructions: (also see "WorkshheetInstructions.doc")

Complete the worksheet prior to the end of Design Phase I. If project parameters or site condition changes result in potential resource impacts, re-do worksheet prior to Design Approval to confirm NEPA determination and recertify (on page 4)

Categorical Exclusion (CE)- a category of actions which do not individually or cumulatively have a significant effect on the human environment and which have been found to have no such effect in procedures adopted by a Federal agency (40 CFR 1508.4). Actions that do not individually or cumulatively have a significant environmental effect are excluded from the requirement to prepare an Environmental Assessment (EA) or Environmental Impact Statement (EIS) (23 CFR 771.115(b)).

Step 1: Unusual Circumstances Threshold Determination - 23 CFR 771.117(b)

Any action which normally would be classified as a CE but could involve unusual circumstances (or even uncertainty) will require consultation with FHWA to determine if the CE classification is proper or whether an EA or EIS is required.

Do any, or the potential for any, unusual circumstances exist?

1. Significant environmental impacts;
2. Substantial controversy on environmental grounds;
3. Significant impact on properties protected by Section 4(f) of the DOT Act or Section 106 of the National Historic Preservation Act; or
4. Inconsistencies with any Federal, State, or local law, requirement or administrative determination relating to the environmental aspects of the action. YES \square NO \boxtimes

- If yes to any of the above, contact the Main Office Project Liaison (MOPL) (see PDM Exhibit 4-1). If after consultation with FHWA it is determined that the project cannot be progressed as a CE, skip to step 4 and see PDM Chapter 4 for NEPA Class I (EIS) or Class III (EA) processing. -Or-
- If no to all, then this project qualifies as a Categorical Exclusion (CE); proceed to step 2.

Federal Environmental Approval Worksheet

Step 2：Other FHWA environmental actions required prior to CE Determination

Classification as a CE does not exempt the project from further environmental review．Compliance with Federal Statutes，Regulations and Executive Orders（EO＇s）must be documented．Refer to the Department＇s Project Development Manual（PDM）and Environmental Manual（TEM）to determine the requirements．

2.1	Other required FHWA environmental independent determinations	FHWA Independent Determination and／or Concurrence Required \＆ Received ${ }^{1}$	Date FHWA determination issued	FHWA Independent Determination and／or Concurrence not required or resource not present ${ }^{1}$
		A	B	C
EO 11990 Protection of Wetlands Individual Finding		\square	Date Received	®
ESA Section 7 Threatened and Endangered Species		》	See Note Below	\square
Section 106 （National Historic Preservation Act）		\square	Date Received	区
4（f）（Park，Wildlife Refuge Historic Sites and National Wild and Scenic Rivers）		\square	Date Received	®
2.2	Other FHWA environmental compliance and／or approvals／concurrence required	Resource present and threshold ${ }^{1}$ exceeded		Resource not present，or present but threshold ${ }^{1}$ not exceeded
EO 11988 Floodplains		\square		区
EO 13112 Invasive Species		\square		®
EO 12898 Environmental Justice		\square		区
Safe Drinking Water Act Section 1424（e）		\square		区
U．S．Army Corps of Engineers，Section 404／10 NW 23		\square		区
Section 6（f）（Land and Water Conservation Funds）		\square		区
Migratory Bird Treaty Act		\square		区
23CFR772 Type I Noise abatement		\square		区
2.3	Other Environmental Issues requiring FHWA notification	Resource present and threshold ${ }^{1}$ exceeded		Resource not present，or present but threshold ${ }^{1}$ not exceeded
U．S．Army Corps of Engineers，Section 404／10 Individual Permit		\square		区
National Wild and Scenic Rivers		\square		区
U．S．Coast Guard Bridge Permit		\square		区
Known hazardous waste site（only EPA National Priority list）		\square		\boxtimes
Project on or affecting Native American Lands		\square		区

Note：ESA Section 7 Request Letter for FHWA determination，attached．
Proceed to step 3.

[^0]FEAW＿Final．doc／Version

Federal Environmental Approval Worksheet

PIN: 4755.55

Step 3: Who makes the NEPA Categorical Exclusion Determination?

FHWA Regulations describe two types of CEs; CEs listed in 23 CFR 771.117(c) [aka the C list], and CEs such as those listed in 23 CFR 771.117 (d) [aka the D list]. NYSDOT can make the CE determination for C list projects once all required approvals and concurrences have been secured. NEPA determination for d list projects has been retained by FHWA. NYSDOT can also make the CE determination where a project meets the July 15, 1996 FHWA NY Division NEPA Programmatic Categorical Exclusion memo criteria.

To determine by whom, FHWA or NYSDOT, and how the CE determination is made, follow the instructions beginning in section 3.1 of the table below:

	Condition	Action
ल	Determine whether FHWA or NYSDOT makes the CE determination.	
ल	If the project is an action that would normally be a CE in 23 CFR 771.117 (c) (drop down list), check the "Yes" box. If not, check the "No" box.	If yes, NYSDOT can make the CE determination once all the approvals and coordinations required are complete. Is the project an action that would normally be a CE in $\underline{23 \text { CFR771.117(c)? }}$ YES \square NOZ Choose an item. If yes, choose an item and proceed to step 3.1.1. If no, proceed to step 3.2.
	Determine if any of the required environmental determinations, compliance and/or approvals/ concurrences are outstanding.	If there are: - outstanding environmental determinations (Table 2.1:checks in column A without dates in column B) - and/or circumstances requiring demonstration of applicable EO compliance or issues requiring FHWA environmental review (checks in column A in Table 2.2) The project will use Memo Shell 2 (FHWA needs to review this project). Proceed to step 4. If the project does not meet the conditions above proceed to step 3.1.2.
	Determine if any issues are present that require FHWA notification.	If there are: - any issues requiring FHWA environmental notification (checks in column A in Table 2.3); then The project will use Memo Shell 3 (FHWA must be notified of this project). Proceed to step 4. If the project does not meet the conditions above proceed to step 3.1.3.
	No Determinations, Approvals, Concurrences or Notifications required.	The project will use Memo Shell 1 (memo to file). Proceed to step 4.
	The project is a D list CE as per 23 CFR 771.117(d). Choose appropriate entry from drop down list. If "other" provide an explanation.	Certain actions eligible for categorical exclusion require NYSDOT to transmit documentation and a determination that a CE applies. Examples of activities that may proceed as a CE are listed in 23 CFR 771.117(d) (D list). Activities not directly listed on the D List also have the potential to proceed as a CE with submitted documentation (other). All other environmental, social and economic factors that affect the project's NEPA classification, as per 23 CFR 771.117 and the July 1996 FHWA NY Division NEPA Programmatic Categorical Exclusion memo must still be addressed, for example the project: does not change the functional class; does not add mainline capacity; is not on new location; will not change travel patterns; acquires only minor amounts of ROW (temporary or permanent); does not cause displacements; does not change access control; is air quality exempt; is consistent with NYS Coastal Zone Management Plan; and the analysis and requirements of the Farmland Protection Policy Act have been satisfied.

Federal Environmental Approval Worksheet

The project is an action that would normally be a CE in 23 CFR 771.117(d). "Modernization of a highway by resurfacing, restoration, rehabilitation, reconstruction, adding shoulders, or adding auxiliary lanes (e.g., parking, weaving, turning, climbing).".

Other: provide explanation here
Proceed to step 3.2.1.

PIN: 4755.55

	Determine if any of the required environmental determinations, compliance and/or approvals/ concurrences are outstanding and/or notification is required.	If there are: - any outstanding environmental determinations (any checks in column A without dates in column B in Table 2.1); - and/or any circumstances requiring demonstration of applicable EO compliance (any checks in column A in Table 2.2); - and/or issues requiring FHWA environmental notification (any checks in column A in Table 2.3); then The project will use Memo Shell 4 (MOPL and FHWA need to review this project). Proceed to Step 4.
	Design Approval Document sent to FHWA	If the project: - does not meet the conditions above (3.2.1), then the project has met the criteria established as per the programmatic agreement dated July 15, 1996. The project will use Memo Shell 5 (memo to file). Proceed to Step 4.

Step 4: Summary and Recommendation

- This project does qualify to be progressed as a Categorical Exclusion.
- The NEPA Determination is being made by FHWA
- All outstanding FHWA environmental approvals will be obtained and are listed here.

ESA Section 7 Threatened and Endangered Species

I certify that the information provided above is true and accurate and recommend the project be processed as described above.

Regional Environmental Unit Supervisor \qquad Date \qquad
Print Name and Title: \qquad
Regional Local Project Liaison \qquad Date \qquad
Print Name and Title:
(Locally Administered Projects Only)
Changes that may have occurred since the preparation of the worksheet which would create the need to go through the
Worksheet again include but are not limited to:

- A change in the scope of the proposed project.
- A change in the social, economic or environmental circumstances or the setting of the project study area (i.e. the affected environment).
- A change in the federal statutory environmental standards.
- Discovering new information not considered in the original process.
- A significant amount of time has passed (equal or greater than three years).

Instructions for Completing

Part 1 - Project Information. The applicant or project sponsor is responsible for the completion of Part 1. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification. Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information.

Complete all items in Part 1. You may also provide any additional information which you believe will be needed by or useful to the lead agency; attach additional pages as necessary to supplement any item.

18. Does the proposed action include construction or other activities that result in the impoundment of water or other liquids (e.g. retention pond, waste lagoon, dam)? If Yes, explain purpose and size:	NO	YES
	\square	\square
19. Has the site of the proposed action or an adjoining property been the location of an active or closed solid waste management facility? If Yes, describe:	NO	YES
	\checkmark	\square
20. Has the site of the proposed action or an adjoining property been the subject of remediation (ongoing or completed) for hazardous waste? If Yes, describe: \qquad See attached. \qquad	NO	YES
	$\square \square$	
I AFFIRM THAT THE INFORMATION PROVIDED ABOVE IS TRUE AND ACCURATE TO THE BEST OF MY KNOWLEDGE		
Applicant/sponsor name: Jeron Rogers, P.E. Date: $7-8-1 /$	Date: $7-8-1 /$	

Part 2 - Impact Assessment. The Lead Agency is responsible for the completion of Part 2. Answer all of the following questions in Part 2 using the information contained in Part 1 and other materials submitted by the project sponsor or otherwise available to the reviewer. When answering the questions the reviewer should be guided by the concept "Have my responses been reasonable considering the scale and context of the proposed action?"

	No, or small impact may occur	Moderate to large impact may occur
1. Will the proposed action create a material conflict with an adopted land use plan or zoning regulations?	\checkmark	
2. Will the proposed action result in a change in the use or intensity of use of land?	\checkmark	
3. Will the proposed action impair the character or quality of the existing community?	\checkmark	
4. Will the proposed action have an impact on the environmental characteristics that caused the establishment of a Critical Environmental Area (CEA)?	\checkmark	
5. Will the proposed action result in an adverse change in the existing level of traffic or affect existing infrastructure for mass transit, biking or walkway?	\checkmark	
6. Will the proposed action cause an increase in the use of energy and it fails to incorporate reasonably available energy conservation or renewable energy opportunities?	\checkmark	
7. Will the proposed action impact existing: a. public / private water supplies?	\checkmark	
b. public / private wastewater treatment utilities?	\checkmark	
8. Will the proposed action impair the character or quality of important historic, archaeological, architectural or aesthetic resources?	\checkmark	
9. Will the proposed action result in an adverse change to natural resources (e.g., wetlands, waterbodies, groundwater, air quality, flora and fauna)?	\checkmark	

| | No, or
 small
 impact
 may
 occur | Moderate
 to large
 impact
 may
 occur |
| :--- | :--- | :--- | :--- |
| 10. Will the proposed action result in an increase in the potential for erosion, flooding or drainage
 problems? | $\boxed{ }$ | \square |
| 11. Will the proposed action create a hazard to environmental resources or human health? | \square | \square |

Part 3 - Determination of significance. The Lead Agency is responsible for the completion of Part 3. For every question in Part 2 that was answered "moderate to large impact may occur", or if there is a need to explain why a particular element of the proposed action may or will not result in a significant adverse environmental impact, please complete Part 3. Part 3 should, in sufficient detail, identify the impact, including any measures or design elements that have been included by the project sponsor to avoid or reduce impacts. Part 3 should also explain how the lead agency determined that the impact may or will not be significant. Each potential impact should be assessed considering its setting, probability of occurring, duration, irreversibility, geographic scope and magnitude. Also consider the potential for short-term, long-term and cumulative impacts.

See attached.

Check this box if you have determined, based on the information and analysis above, and any supporting documentation, that the proposed action may result in one or more potentially large or significant adverse impacts and an environmental impact statement is required.
Check this box if you have determined, based on the information and analysis above, and any supporting documentation, that the proposed action will not result in any significant adverse environmental impacts.

Part 1 / Question 7 [Critical Environmental Area]	No
Part 1 / Question 12a [National Register of Historic Places]	No
Part 1 / Question 12b [Archeological Sites]	Yes
Part 1 / Question 13a [Wetlands or Other Regulated Waterbodies]	No
Part 1 / Question 15 [Threatened or Endangered]	Yes
Part 1 / Question 16 [100 Year Flood Plain]	No
Part 1 / Question 20 [Remediation Site]	Yes

Part I Attachment

12b. Is the proposed action located in an archeological sensitive area?

The entire project area is located in an archaeologically sensitive area; however, all of the proposed excavation will take place within existing pavement/sidewalk areas or areas previously disturbed by construction activities in the last 20 years. It is anticipated that any excavation below the existing pavement, greater than 2 feet in depth, will be limited to drainage facilities, underground utility relocations, and various light pole/traffic signal pole foundations. All other excavations are anticipated to be less than 2 feet in depth.

A Project Review Package was prepared for review by the New York State Department of Transportation Regional Cultural Resource Coordinator (CRC). In a memorandum dated May 22, 2014, the Regional CRC concluded that "the project activities have no potential to cause effects on historic properties in accordance with 36 CFR 800.3(a)(1) therefore, there are no further obligations for compliance with Section 106 of the National Historic Preservation Act." A copy of this memorandum is attached.

15. Does the site of the proposed action contain any species of animal, or associated habitats, listed by the State or Federal government as threatened or endangered?

In a letter dated April 7, 2014, the NYSDEC New York Natural Heritage Program stated that they "have no records of rare or state-listed animals or plans, or significant natural communities, at your site or in its immediate vicinity." A copy of this letter is included in Appendix B.

A review of the United States Fish and Wildlife Service (USFWS) Information, Planning and Conservation (IPAC) System of federally threatened and endangered species (listed and proposed species) lists the federally threatened species, bog turtle (Clemmys muhlenbergil). It also included the proposed endangered Northern longeared bat (Myotis septentrionalis).

The bog turtle is a semi-aquatic species. The bog turtle prefers open, sunny, spring fed wetlands in muck soils with scattered dry areas. The bog turtle is generally found in "mucky" open areas with high amounts of sunlight for basking and nesting. Since the project area is urban, with no wetlands or surface waters near the project site, there is no suitable habitat for the bog turtle.

In November 2013, the USFWS announced the proposed listing of the northern long-eared bat in October 2014, which will require the review of any tree removals greater than 3" diameter breast height (dbh) as suitable roosting habitat. Suitable habitat is defined as trees providing gaps underneath bark, in cavities, or in crevices of both live and dead trees. Other roosting locations include caves, mines and occasionally in barns and sheds. It should be noted that the "Northern Long-eared Bat Interim Conference and Planning Guidance" of January 6, 2014 notes on page 3 that "trees found in highly-developed urban areas (e.g. street trees, downtown areas) are extremely unlikely to be suitable NLEB habitat." During this interim period a biological evaluation of all tree removals has been conducted. In order to reduce the potential to impact this species, it is recommended that any tree removals occur during the approved winter cutting window of October 1 to March 31. At this time, it is estimated that 22 trees over 3 inches dbh would be removed as shown on Table 1.

Table 1		
Estimated Number of Trees to be Removed.		
Quadrant	Number	Size/Type
NW	1	$42^{\prime \prime}$ Maple
NE	1	$24 "$ Maple
NE	1	18 " Maple
NE	1	$16 "$ Maple
NE	2	14" Maple
NE	1	10" Maple
NW	2	8" Maple
NW	1	6" Maple
NW	1	$42 "$ Hickory
NW	2	$16 "$ Locust
NW	1	$14 "$ Locust
SW	1	$14 "$ Crabapple
SW	1	$12 "$ Crabapple
SW	1	$10 "$ Crabapple
NW, SW	2	$8 "$ Crabapple
SW	1	6" Crabapple
SW	2	$4 "$ Crabapple
Total	$\mathbf{2 2}$	

It is recommended that the proposed project will have a "May Affect, not likely to adversely Affect" determination on this new proposed listed species. Consultation with USFWS is ongoing.

20. Has the site of the proposed action or an adjoining property been the subject of remediation (ongoing or completed) for hazardous waste?

There are two remediation sites in the general vicinity of the project.
One is the former site of the Dupont E I De Nemours \& Co Rochester at 666 Driving Park Avenue which is on the north side of Driving Park Avenue, west of Dewey Avenue, approximately 0.3 miles west of the proposed project. The site is currently vacant, but historically was a manufacturer of photography film and paper. The processes included the use of methanol, silver, cadmium, lead, and mercury. The site entered into the Brownfield Program in May of 2007. Based on the assumed northerly groundwater flow direction and distance from the project area, this site will not have a negative impact on the proposed project.

The other is the RG\&E Genesee River Gorge (Lower Falls), at Driving Park Bridge and Lake Avenue. It is located approximately 0.3 miles east of the intersection at Dewey Avenue and Driving Park Avenue. Various aromatic hydrocarbon materials were found during numerous investigations conducted between the Lower Falls and Upper Falls of the Genesee River at the RG\&E Station \#5 tunnels. The probable source of the contamination is coal tar. Based on the assumed groundwater flow direction to the east, this site will not have a negative impact on the proposed project. Also, the contamination found was within bedrock, and the proposed project will not have an impact on bedrock.

Part 3 Attachment

Following the issuance of Part 1 of the Short Environmental Assessment Form (EAF), the project went through a public and agency review process. This process brought to light a minor safety concern inherent in the proposed geometry where westbound traffic on Driving Park Avenue would turn right (northbound) on to Dewey Avenue. To mitigate this concern, the geometry for the proposed intersection improvement was modified slightly to provide additional sight distance for this movement. The rendering originally attached (dated May 19, 2014) to the issued Part 1 of the Short EAF has therefore been replaced with the rendering attached to this document (dated June 23, 2014).

The address for Mr. Rogers in Part 1 of the Short EAF is being changed to 30 Church Street, Rochester, NY 14614.

Following is an expansion of the Brief Description of the Proposed Action:
Dewey Avenue and Driving Park Avenue currently meet at an offset intersection resulting in the need for two sets of traffic signals to control movements through the area. The northbound and southbound approaches are offset by approximately 180 feet which complicates mobility through the area. The offset configuration results in congestion, delays and accidents creating difficult travel conditions for all modes of transportation including vehicles, pedestrians, bicyclists, and mass transit users.

The proposed action would consolidate the offset intersections as shown on the attached rendering. The northern approach would be shifted west along Driving Park Avenue to align with the southbound approach of Dewey Avenue. There would be one travel lane and a left turn lane in each direction. There would also be a right turn roadway connecting Driving Park Avenue westbound with Dewey Avenue northbound. The intersection would simplify navigation along Dewey Avenue and eliminate one of two signals.

The proposed action would enhance overall mobility for all users of the intersection. The southbound bicycle lane would extend along Dewey Avenue through the intersection. Northbound travel on Dewey Avenue would be facilitated by a bicycle lane and shared lane use markings. Shared lane use markings would be added eastbound and westbound along Driving Park Avenue extending the existing markings through the project limits. Pedestrian accommodations and safety would be improved by eliminating one traffic signal and consolidating road crossings to a single location. Pedestrian crossings would be enhanced with high visibility markings. Transit mobility would improve through the intersection associated with a reduction in vehicle hours of delay. All sidewalks within project limits would be replaced. The area vacated by shifting Dewey Avenue west would provide an opportunity to develop a pocket park. Community aesthetics would be enhanced with streetscape and landscape features.

The proposed action would reduce congestion and improve highway safety as discussed in the expanded project description. It would also include enhanced bicycle and pedestrian facilities. These would all be beneficial impacts to the infrastructure for biking and walking (Part 2, Item 5).

The reduction of congestion and elimination of a traffic signal would also lower the potential for impacts to energy and the emission of greenhouse gases, which would be a beneficial impact to energy use (Part 2, Item 6).

As result of further project development, there may be no additional treatment as stated in Part 1, Item 11; however, there would be no net increase in the impervious pavement area as a result of the proposed action. Therefore the same amount of stormwater from the proposed action would continue to be directed to the combined sewer system (wastewater and stormwater), with no impact to that system (Part 2, Item 7.b.)

The proposed action is located in an archaeologically sensitive area. A Project Review Package was reviewed by the New York State Department of Transportation Regional Cultural Resource Coordinator (CRC). In a memorandum dated May 22, 2014, the Regional CRC concluded that "the project activities have no potential to cause effects on historic properties in accordance with 36 CFR 800.3(a)(1) therefore, there are no further obligations for compliance with Section 106 of the National Historic Preservation Act." The proposed action would therefore have no impact on historic properties, including archaeologic resources (Part 1, Item 12.b / Part 2, Item 8).

In Part 1 (Part 1, Item 15), the potential for the presence of the Northern long-eared bat (Myotis septentrionalis) is discussed. Based in the information and guidance available at this time, and assuming that any tree removals occur during the approved winter cutting window of October 1 to March 31, it is concluded that the proposed action would have a "May Affect, not likely to adversely Affect" determination on this new proposed listed species. This would translate to a small impact on the Northern long-eared bat (Part 2, Item 9).

Intersection Realigment Plan
Dewey Avenue / Driving Park Avenue Intersection Realignment Project
City of Rochester, New York

Joe Martens

 CommissionerApril 07, 2014
James Bugs
Bergmann Associates
28 East Main Street, 200 First Federal Plaza
Rochester, NY 14614

Re: Dewey Ave./Driving Park Ave. Intersection Realignment Project (PIN 4755.55)
Town/City: City Of Rochester. County: Monroe.

Dear James Dogs :
In response to your recent request, we have reviewed the New York Natural Heritage Program database with respect to the above project.

We have no records of rare or state-listed animals or plants, or significant natural communities, at your site or in its immediate vicinity.

The absence of data does not necessarily mean that rare or state-listed species, natural communities or other significant habitats do not exist on or adjacent to the proposed site. Rather, our files currently do not contain information which indicates their presence. For most sites, comprehensive field surveys have not been conducted. We cannot provide a definitive statement on the presence or absence of all rare or state-listed species or significant natural communities. Depending on the nature of the project and the conditions at the project site, further information from on-site surveys or other resources may be required to fully assess impacts on biological resources.

This response applies only to known occurrences of rare or state-listed animals and plants, significant natural communities and other significant habitats maintained in the Natural Heritage Data bases. Your project may require additional review or permits; for information regarding other permits that may be required under state law for regulated areas or activities (e.g., regulated wetlands), please contact the appropriate NYS DEC Regional Office, Division of Environmental Permits, as listed at www.dec.ny.gov/about/39381.html.

Sincerely,

Andrea Chaloux
Environmental Review Specialist

Natural Resources of Concern

This resource list is to be used for planning purposes only - it is not an official species list.

Endangered Species Act species list information for your project is available online and listed below for the following FWS Field Offices:

New York Ecological Services Field Office
3817 LUKER ROAD
CORTLAND, NY 13045
(607) 753-9334
http://www.fws.gov/northeast/nyfo/es/section7.htm

Project Name:

Dewey Ave / Driving Park Ave

Natural Resources of Concern

Project Location Map:

Project Counties:

Monroe, NY

Geographic coordinates (Open Geospatial Consortium Well-Known Text, NAD83): MULTIPOLYGON (($-77.638675343 .1819391,-77.638670543 .1810002,-77.637624443 .1810159$, $-77.637592243 .1808398,-77.638547143 .1808477,-77.638525743 .1806716,-77.638671343 .1806712$, $-77.638718843 .1808633,-77.639416143 .1808398,-77.639378643 .1800262,-77.6396243 .1800144$, $-77.639598543 .1807851,-77.639662943 .1808516,-77.640655643 .1808359,-77.640649943 .1810159$, $-77.639930643 .1810198,-77.639935743 .1813602,-77.639463943 .1813445,-77.639474643 .181458$, $-77.639023743 .1814736,-77.639034743 .1819508,-77.638675343 .1819391)$))

Natural Resources of Concern

Project Type:

Transportation

Endangered Species Act Species List (USFWS Endangered Species Program).

There are a total of $\mathbf{2}$ threatened, endangered, or candidate species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fishes may appear on the species list because a project could cause downstream effects on the species. Critical habitats listed under the Has Critical Habitat column may or may not lie within your project area. See the Critical habitats within your project area section below for critical habitat that lies within your project area. Please contact the designated FWS office if you have questions.

Species that should be considered in an effects analysis for your project:

$\left.$| Mammals | Status | | Has Critical Habitat | Contact |
| :--- | :--- | :--- | :--- | :--- |
| northern long-eared Bat
 (Myotis septentrionalis)
 Population: | Proposed
 Endangered | species info | | |\quad| New York Ecological |
| :--- |
| Services Field Office | \right\rvert\, | Reptiles | Threatened | species info |
| :--- | :--- | :--- |

Critical habitats within your project area:

There are no critical habitats within your project area.

FWS National Wildlife Refuges (USFWS National Wildlife Refuges Program).

There are no refuges found within the vicinity of your project.

FWS Migratory Birds (USFWS Migratory Bird Program).

Most species of birds, including eagles and other raptors, are protected under the Migratory Bird Treaty Act (16 U.S.C. 703). Bald eagles and golden eagles receive additional protection under the

Natural Resources of Concern

Bald and Golden Eagle Protection Act (16 U.S.C. 668). The Service's Birds of Conservation Concern (2008) report identifies species, subspecies, and populations of all migratory nongame birds that, without additional conservation actions, are likely to become listed under the Endangered Species Act as amended (16 U.S.C 1531 et seq.).

Migratory bird information is not available for your project location.

NWI Wetlands (USFWS National Wetlands Inventory).

The U.S. Fish and Wildlife Service is the principal Federal agency that provides information on the extent and status of wetlands in the U.S., via the National Wetlands Inventory Program (NWI). In addition to impacts to wetlands within your immediate project area, wetlands outside of your project area may need to be considered in any evaluation of project impacts, due to the hydrologic nature of wetlands (for example, project activities may affect local hydrology within, and outside of, your immediate project area). It may be helpful to refer to the USFWS National Wetland Inventory website. The designated FWS office can also assist you. Impacts to wetlands and other aquatic habitats from your project may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal Statutes. Project Proponents should discuss the relationship of these requirements to their project with the Regulatory Program of the appropriate U.S. Army Corps of Engineers District.

There are no wetlands found within the vicinity of your project.

Species Conclusions Table

Project Name:
Date:
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{l}\text { Species Name/Critical } \\ \text { Habitat }\end{array} & \begin{array}{l}\text { Potential } \\ \text { Habitat } \\ \text { Present? }\end{array} & \begin{array}{l}\text { Species } \\ \text { Present? }\end{array} & \begin{array}{l}\text { Critical } \\ \text { Habitat } \\ \text { Present? }\end{array} & \text { ESA / Eagle Act Determination } & \begin{array}{l}\text { Notes / Documentation Summary (include full } \\ \text { rationale in your report) }\end{array} \\ \hline \begin{array}{l}\text { Northern long-eared } \\ \text { bat (Myotis } \\ \text { septentrionalis) }\end{array} & \text { Yes } & \text { No } & & & \begin{array}{l}\text { Note: The Northern Long-eared Bat Interim } \\ \text { Conference and Planning Guidance of January 6, } \\ \text { 2014 notes on page 3 that "trees found in highly- } \\ \text { developed urban areas (e.g. street trees, } \\ \text { downtown areas) are extremely unlikely to be } \\ \text { suitable NLEB habitat. }\end{array} \\ \hline \begin{array}{l}\text { Bog Turtle (Clemmys } \\ \text { muhlenbergii) }\end{array} & \text { No } & \text { No } & & & \text { No wetlands present in this urban area. }\end{array}\right\}$

MEMORANDUM
DEPARTMENT OF TRANSPORTATION

TO: Frank DiCostanzo, Regional Local Project Liaison

FROM: Chris Caraccilo, Regional Cultural Resource Coordinator

SUBJECT: PROJECT SUBMITTAL PACKAGE - SECTION 106 RECOMMENDATIONS

PIN 4755.55, DEWEY AVE AND DRIVING PARK AVENEUE INTERSECTION

 REALIGNMENT PROJECT, CITY OF ROCHESTER, MONROE COUNTYMay 22, 2014

As the Regional Cultural Resource Coordinator (RCRC) I have reviewed the Project Submittal Package (PSP) prepared for the above referenced Locally Administered Federal Aid project for assessment of obligations under Section 106 of the National Historic Preservation Act (36 CFR Part 800).

Based on review of this PSP, I conclude:
\checkmark The project activities have no potential to cause effects on historic properties in accordance with 36 CFR 800.3(a)(1) therefore, there are no further obligations for compliance with Section 106 of the National Historic Preservation Act. This determination should be recorded in the project environmental documentation.

The project activities may cause effects on historic properties:
$\square \quad$ However, this is no potential for historic properties present. Therefore, there are no further obligations for compliance with Section 106 of the National Historic Preservation Act. This determination should be recorded in the project environmental documentation.
$\square \quad$ A Phase I Cultural Resource Survey is needed to identify historic and cultural resources. Based on project description and activities, the following preliminary Area of Potential Effect is recommended.Based on project description and activities in the PSP a preliminary Area of Potential Effect is provided.A bridge inventory and evaluation of National Register eligibility is needed for BIN \qquad a pre-1961 bridge that has not been previously evaluated.A Finding Documentation package is needed to assess the project effect on one or more previously identified National Register (NR) listed and/ or NR eligible historic buildings, structures, bridges, districts, objects, or sites.

The following additional information is needed to complete our assessment:
$\square \quad$ Detailed project description \& activitiesProject location map showing project limits (USGS Quad)BIN and date of construction for pre-1961 bridge(s)Approximate limits of ground disturbance associated with proposed project activities (vertical \& horizontal)Photos of buildingsOther

TO: Michael T. Croce, P.E.
Bergmann Associates
28 East Main Street
Rochester, New York 14614-1909
FROM: Geoffrey R. Bijak, M.S.
Ravi Engineering \& Land Surveying, P.C.
DATE: \quad May 20, 2014
PROJECT: PIN 4755.55
Dewey / Driving Park Realignment Intersection of Dewey Avenue and Driving Park Avenue City of Rochester, Monroe County, New York

SUBJECT: PRELIMINARY ASBESTOS AND LEAD PAINT ASSESSMENT

PURPOSE

The purpose of this memorandum is to discuss the method and findings of the Preliminary Asbestos and Lead Paint Assessment conducted for the proposed realignment of the intersection of Dewey Avenue and Driving Park Avenue in the City of Rochester, New York. This assessment includes a preliminary evaluation of the Family Dollar.

INTRODUCTION

Ravi Engineering \& Land Surveying, P.C. (RE\&LS), as a sub-consultant to Bergmann Associates has been retained by the City of Rochester to perform a Preliminary Asbestos and Lead Paint Assessment of the Family Dollar and intersection of Dewey Avenue and Driving Park Avenue in the City of Rochester, New York. The objective of this Preliminary Assessment was to identify suspect asbestos containing materials (ACMs) and lead paint that have the potential to be impacted by the proposed reconstruction project. This Preliminary Assessment is based on a review of available records and a visual inspection conducted on April 21, 2014.

A New York State Department of Labor (NYSDOL) Certified Asbestos Inspector and United States Environmental Protection Agency (USEPA) Certified Lead Risk Assessor completed this assessment. The asbestos assessment was performed in accordance with the New York State Department of Transportation's Environmental Manual, Chapter 4.4.19: Asbestos Management, and the USPEA 40 CFR Part 61.145 and 40 CFR Part 763, Subpart E. The lead paint assessment
was performed using sections of Chapter 7 of the HUD Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing, 2012 (HUD Guidelines) and the Occupational Safety and Health Administration 29 CFR 1926.62. (OSHA 1926.62.)

HIGHWAY RECORD REVIEW

At the time of this Technical Memorandum, record plans were not yet available from the City of Rochester. When these plans are received they will be reviewed and pertinent findings will be included in our assessment report.

AS-BUILT DRAWING REVIEW

As-built drawings were not available for the Family Dollar store. Based on aerial imagery provided by Environmental Data Resources (EDR) the parcel consisted of residential housing from 1938 to 1985. The property was vacant from 1985 until 1994. According to LandMax database, the Family Dollar was reported to be constructed in 1995. The construction date of the Family Dollar exempts this structure from lead-based paint testing. An asbestos inspection is required in accordance with 40 CFR Part 61.145.

UTILITY RECORD REVIEW

Utility Record Review was coordinated with information received by the RE\&LS Survey Department. According to the responses received from various agencies in early April of 2014, the following companies reported underground utilities within the project limits:

- \quad City of Rochester Water Bureau
- Frontier Telephone
- Monroe County Pure Waters (MCPW)
- Rochester Gas and Electric (RGE)
- Rochester District Heating
- Time Warner Cable

City of Rochester Water Bureau

Two (2) record drawings entitled, "City of Rochester Water Bureau Water Record Map", dated March 11, 2014, designer unknown, were reviewed. Various pipe sizes were indicated including a 6 ", 16 ", and 20 " diameter water line. The construction material and paint of the water lines is currently unknown and subject to high variability due to modifications over many years. Based
on RE\&LS experience in the City of Rochester, the water lines are most likely constructed of unpainted ductile iron. We recommend conducting a visual inspection for suspect ACM's once excavation activities begin, to verify this assumption.

Frontier Communications

Frontier Communications reported utilities on one untitled record drawing. This drawing indicates pre-cast concrete and PVC materials which are not considered suspect for ACM.

The presence of buried Orangeburg conduit is very likely. Orangeburg conduit exists in various locations throughout the greater Rochester area. We recommend conducting a visual inspection for this material once excavation activities begin.

Monroe County Pure Waters

A total of twelve (12) record plans were reviewed from the MCPW. The plans viewed were from 1886, 1887, 1888, 1889, 1891, 1892, 1896, 1904, 1908, and 1914. These plans indicate the presence of a vitrified clay sanitary line. There were no recent records reviewed. We recommend conducting a visual inspection once excavation activities begin to verify the presence of the vitrified line, painted surfaces, and document suspect ACM's if present.

Rochester Gas and Electric

Separate record plans for gas and electric were provided by RGE and reviewed. It could not be determined from the gas utility drawing titled " 508 " what construction materials were used. We recommend conducting a visual inspection once excavation activities begin to verify the presence of suspect ACM's and painted surfaces.

A total of nine (9) record plans were reviewed pertaining to electric utilities. These plans are titled "Driving Pk. Ave. 90.05, Driving Pk. Ave. 90.06, Driving Pk. Ave. 90.07, Dewey Ave. 128.08, Dewey Ave. 128.09, Dewey Ave. 128.10, Dewey Ave. 224.01, Selye Terr. 272.03, Finch Street $404.03 "$ Based on these records, PVC piping is present. PVC piping is not a suspect ACM and is rarely painted. We recommend conducting a visual inspection once excavation activities begin to verify the presence of suspect ACM's and painted surfaces to ensure these records are accurate.

Rochester District Heating

Rochester District Heating commented on requests from RE\&LS survey department. RDH reported no utilities in the area. No further review is required.

Time Warner Cable

Time Warner Cable reported utilities on one untitled record drawing. Based on the information provided, it could not be determined what these utilizes may be constructed of. We recommend conducting a visual inspection for suspect ACM's and painted surfaces once excavation activities begin.

ASBESTOS SITE INVESTIGATION

A site investigation within the project limits was conducted on April 21, 2014 to identify suspect ACM's. The following visually accessible materials were identified:

Family Dollar

1. Lay-in ceiling tiles (2)
2. Sheetrock walls and associated joint compound (5)
3. Base cove mastic (2)
4. Ceramic wall tile grout and associated mastic (4)
5. 12 " $\times 12$ " floor tiles and associated mastic (4)
6. Exterior caulks and sealants (6)
7. Stucco (3)
8. Duct caulk associated with forced air HVAC system (2)
9. Roof field and flashings (12)
() = number of samples proposed
Based on limited store access, we propose to collect approximately sixty (60) samples.

Roads and Sidewalk

1. Black, felt material present between sidewalk joints (3)
2. Black, tough, tar-like material on sidewalk joints (3)
3. Hard, brown/tan granite curb joint mortar (3)
4. Dark grey mortar associated with steel grate vaults (3)
() = number of samples proposed
We propose to collect approximately twelve (12) samples for the roads and sidewalks surrounding the Dewey/Driving Park intersection and have those samples analyzed for asbestos content.

LEAD PAINT INVESTIGATION

In addition to the asbestos inspection, a visual inventory of painted surfaces was created.

Family Dollar

The Family Dollar was reportedly constructed in 1995. No lead-based paint testing will be performed in the Family Dollar. OSHA 1926.62 applies to all construction work where an employee may be occupationally exposed to lead. Employees performing demolition operations must follow OSHA 1926.62.

Roads and Sidewalk

1. Yellow paint on posts and light pole base
2. Gray paint on light poles
3. Green paint on signal pole
4. Green paint on signal box
5. Various paints on traffic signs
6. Paint on bicycle racks

We propose to collect approximately six (6) samples on painted surfaces associated with the Dewey/Driving Park intersection and have those samples analyzed for lead paint. The employer must follow OSHA 1926.62 for worker exposure.

CONCLUSIONS AND RECOMMENDATIONS

There are sixty (60) suspect ACM's that are required to be sampled and analyzed for asbestos in the event the Family Dollar will be demolished. Although each space was not visited within the store, we have accounted for an estimated number additional samples that may be present. There are twelve (12) suspect ACM's that are required to be sampled and analyzed for asbestos prior to road construction at the Dewey/Driving Park intersection. Suspect ACM's associated with the underground utilities are expected to be present. Based on our record review we cannot fully determine what, or how many suspect ACM's will be present. Once excavation activities begin, we recommend conducting a visual inspection on all excavated areas and collecting samples of suspect ACM's where present.

Lead paint is not expected to be present at the Family Dollar store and does not require sample collection and analysis based on the construction date and building function. Lead paint may be present on roads and sidewalks when painted materials are disturbed during construction activities. The employer of the workers involved in construction activities associated with the Dewey/Driving Park Project shall follow 29 CFR 1926.62.

Proposed sample locations for suspect ACM's and lead-based paint are located on the plans in Attachment A.

ATTACHMENT A

Proposed Asbestos Sample Location Plans

Preliminary Assessment

MAP SOURCE:

		Project no.	Date:
RAVI ENGINEERING \& LAND SURVEYING, P.C. 2110 S. Clinton Avenue Rochester, New York 14618	DEWEY AVENUE AND DRIVING PARK REALIGNMENT CITY OF ROCHESTER, MONROE COUNTY, NEW YORK	40-14-035	MAY 2014
		SCALE:	Drawng no:
	PROPOSED ASBESTOS SAMPLE LOCATION PLAN	N.T.S.	1

ATTACHMENT B
 Proposed Lead Paint Sample Location Plans

Preliminary Assessment

Dewey/Driving Park Intersection

MAP SOURCE:

		Prouect no.	Date:
RAVI ENGINEERING \& LAND SURVEYING, P.C. 2110 S. Clinton Avenue Rochester, New York 14618	DEWEY AVENUE AND DRIVING PARK REALIGNMENT CITY OF ROCHESTER, MONROE COUNTY, NEW YORK	40-14-035	MAY 2014
		SCALE:	Drawng no:
	LEAD PAINT SAMPLE LOCATION PLAN	N.T.S.	2

TO: Michael T. Croce, P.E.
Bergmann Associates
28 East Main Street // 200 First Federal Plaza
Rochester, New York 14614-1909
FROM: Elizabeth C. Kircher
Ravi Engineering \& Land Surveying, P.C.
DATE: May 20, 2014
PROJECT: PIN 4755.55
Dewey / Driving Park Realignment Intersection of Dewey Avenue and Driving Park Avenue City of Rochester, Monroe County, New York
SUBJECT: HAZARDOUS WASTE/CONTAMINATED MATERIALS SCREENING

INTRODUCTION

Ravi Engineering \& Land Surveying, P.C. (RE\&LS), as a sub-consultant to Bergmann Associates, has been retained by the City of Rochester to perform a Hazardous Waste/Contaminated Materials Screening for the realignment of the intersection of Dewey Avenue and Driving Park Avenue, in the City of Rochester.

A Hazardous Material Screening was conducted for the project area in accordance with the New York State Department of Transportation’s Environmental Manual, Chapter 4.4.20.5 "Contaminated Materials and Hazardous Substances - General Methodology: Analysis and Evaluation". The objective of this screening was to identify hazardous materials that have the potential to be impacted by the proposed project. This screening is based on a review of available records and a visual inspection of the project area, conducted on April 16, 2014. The following information provides a summary of the findings of the Hazardous Waste Screening.

Historical Sanborn Map Review

Sanborn Maps are utilized as part of the Hazardous Material Screening Report since they serve as an historical reference to prior land use. Available Sanborn Maps from various years were reviewed to indicate past land usage in and around the project area.

The process used for the Sanborn Map review is to highlight all addresses whose past use could be considered as an environmental concern. Examples of how a past land usage could lead to an environmental concern is the presence of contaminated soils from a former filling station,
automotive repair shop, large manufacturing plant, chemical plant, drycleaner, etc. Based on the location of such sites with respect to the project area and the specific past land use, the need for further investigation may be eliminated or warranted.

Environmental Data Resources (EDR)

A review of local, State and Federal Environmental databases was conducted. Environmental Data Resources (EDR) Inc. was contracted to provide a comprehensive review of Federal, State and local listed data on potential hazardous waste sites in the project vicinity. A complete copy of the EDR report is available upon request. This data search was performed in accordance with ASTM E-1527-13 standards for minimum search distance. The use of the EDR resource allows for a comprehensive listing of sites of potential concern. The following table summarizes the information available through the EDR report:

Table 1: Environmental Records Review

Standard Environmental Record Sources	Minimum Search Distance: (miles)	No. of Listed Properties ${ }^{1}$
Federal CERCLIS	0.5	1
Federal CERCLIS NFRAP	0.5	1
Federal RCRA Generator	0.25	4
RCRA-Small Quantity Generators (SQG)	0.25	2
RCRA-Conditionally Exempt Small Quantity Generators (CESQG)	0.25	2
State and Tribal Equivalent CERCLIS	1	2
Vapor Reopened	1	1
State \& Tribal Landfill and/or Solid Waste Disposal (SWF/LF)	0.5	0
State \& Tribal Leaking Storage Tanks (LTANKS)	0.5	7
Local list of Registered Storage Tanks	0.5	2
State \& Tribal Registered Storage Tank List (UST)	0.25	6
Aboveground Storage Tank (AST)	0.25	0
State \& Tribal Brownfield sites	0.5	2
Additional Environmental Records		
US Brownfield sites	0.5	0
Local List of Hazardous	1	1
Waste/Contaminated Sites (DEL SHWS)		
Local List of Historically Registered Storage Tanks (HISTORICAL UST)	0.25	2
Records of Emergency Release Reports (NY SPILLS)	0.125	18
NY Historical (HIST) Spills	0.125	0
RCRA-NonGen	0.25	6
Hazardous Substance Waste Disposal Sites	0.5	1

Standard Environmental Record Sources	Minimum Search Distance: (miles)	No. of Listed Properties $^{\mathbf{1}}$
(HSWDS)		
Manifest Records	0.25	10
Drycleaners	0.25	13
US Historic Automobile Station listing	0.25	16
N		

Notes: ${ }^{1}$ some sites are listed in more than 1 record.

EDR Findings Overview

A review of local, State, and Federal environmental databases indicates that there are 97 listed properties located within a 1 mile radius of the proposed project site. Many sites were eliminated from further review due to their location in relation to the project area.

Project Site Walkover

The Hazardous Waste Screening also included a walkover of the proposed project area. The objective of the walkover is to obtain familiarity with the project area and properties located adjacent to the project limits, to note observable environmental concerns, review the characteristics of the project area, and identify areas exhibiting signs of possible environmental degradation. A walkover was completed on April 16, 2014. This site visit was limited to a street side evaluation of the project area; an interior and a detailed exterior inspection of the Family Dollar was not completed for PCB caulk or hazardous materials. Upon receipt of authorization to enter the Family Dollar structure, a site visit will be completed and the report will be revised accordingly.

The following sites present the potential for environmental concern (See Attachment 1 for site locations):

Site 1: 375 Driving Park Avenue and 835 Dewey Avenue

This site is located on the south side of Driving Park Avenue, west of Dewey Avenue.

Project Area Walkover

The site is currently a Price Rite grocery store. No visual evidence of environmental contamination was observed.

New York State Department of Environmental Conservation (NYSDEC) Spill Report Database

An incident at 375 Driving Park Avenue, identified as Spill\# 0107508, occurred on October 20, 2001 when a gas tank fell off a vehicle while in the parking lot. The spill was cleaned up by a responsible party. The spill was closed by the NYSDEC on October 23, 2001 with no further action required.

EDR US Historic Cleaners List

The site is listed as a cleaners and dyers in 1960.
Conclusion and Recommendation

The spill at this site is considered closed due to the age and quantities of this spill. Any residual petroleum contamination present is expected to be minimal.

This site poses a potential for environmental concern to the proposed project due to its history as a cleaners and dyers that may have used solvents during the years of operation. Contamination may be present.

If this site, or the adjacent right of way, will be disturbed by the proposed project, it is recommended that a subsurface investigation be conducted to determine if contaminated soils are present within the area of the proposed impact.

Site 2: 374 Driving Park Avenue

The site is located on the north side of Driving Park Avenue, west of Dewey Avenue.

Project Area Walkover

The site is currently a residential home. No visual evidence of environmental contamination was observed.

EDR US Historic Automobile Station listing

The site has been identified on the EDR US Hist Auto Stat list as an automobile repair and service facility in 2000.

Conclusion and Recommendation

This site poses a potential for environmental concern to the proposed project due to its history as an automobile repair and service station. Automobile repair and service stations house hazardous materials and potentially generate hazardous waste. There is the potential for soils adjacent to the automotive shop to be contaminated by hazardous wastes or petroleum.

If this site, or the adjacent right of way, will be disturbed by the proposed project, it is recommended that a subsurface investigation be conducted to determine if contaminated soils are present within the area of the proposed impact.

Site 3: 342 Driving Park Avenue

The site is located on the north side of Driving Park Avenue, west of Dewey Avenue.

Project Area Walkover

The site is currently a retail store parking lot. No visual evidence of environmental contamination was observed.

EDR US Historic Cleaners List

The site is listed as a cleaners and dyers in 1950, 1945, and 1940.

Conclusion and Recommendation

This site poses a potential for environmental concern to the proposed project due to its history as a cleaners and dyers that may have used solvents during the years of operation. Contamination may be present.

If this site, or the adjacent right of way, will be disturbed by the proposed project, it is recommended that a subsurface investigation be conducted to determine if contaminated soils are present within the area of the proposed impact.

Site 4: 340 Driving Park Avenue

The site is located on the north side of Driving Park Avenue, west of Dewey Avenue.

Project Area Walkover

The site is currently a retail store parking lot. No visual evidence of environmental contamination was observed.

EDR US Historic Cleaners List

The site is listed as a dry cleaner in 1985, 1982, 1975, 1970, 1965, and 1960.

Conclusion and Recommendation

This site poses a potential for environmental concern to the proposed project due to its history as a dry cleaners that may have used solvents during the years of operation. Contamination may be present.

If this site, or the adjacent right of way, will be disturbed by the proposed project, it is recommended that a subsurface investigation be conducted to determine if contaminated soils are present within the area of the proposed impact.

Site 5: Dewey Avenue and Driving Park Avenue Intersection

This site is located within the right of way at the intersection of Dewey Avenue and Driving Park Avenue.

Project Area Walkover

The site is currently the intersection of Dewey Avenue and Driving Park Avenue. No visual evidence of environmental contamination was observed.

New York State Department of Environmental Conservation (NYSDEC) Spill Report Database
An incident at the intersection of Dewey Avenue and Driving Park Avenue, identified as Spill\# 9614769, occurred on March 24, 1997 when a Regional Transit Service (RTS) bus leaked approximately 10 gallons of transmission fluid. The spill was cleaned up by a responsible party. The spill was closed by the NYSDEC on March 24, 1997 with no further action required.

Conclusion and Recommendation

The spill at this site is considered closed due to the age of this spill and quantity of transmission fluid spilled. Residual contamination if present is expected to be minimal.

No further investigation of this site is recommended at this time.

Site 6: 329 Driving Park Avenue

The site is located on the south side of Driving Park Avenue, east of Dewey Avenue.

Project Area Walkover

The site is currently a retail store. No visual evidence of environmental contamination was observed.

EDR US Historic Cleaners List

The site is listed as a "wash \& dry self-service laundry" in 1985, 1982, 1975, 1970, and 1945.

Conclusion and Recommendation

This site poses a potential for environmental concern to the proposed project due to its history as a cleaners that may have used solvents during the years of operation. Contamination may be present.

If this site, or the adjacent right of way, will be disturbed by the proposed project, it is recommended that a subsurface investigation be conducted to determine if contaminated soils are present within the area of the proposed impact.

Site 7: 320 Driving Park Avenue

The site is located on the north side of Driving Park Avenue, east of Dewey Avenue.

Project Area Walkover

The site is currently an auto repair shop. Several waste oil drums were observed. There were no stains or evidence of leaking drums.

EDR US Historic Automobile Station listing

The site has been identified on the EDR US Hist Auto Stat list as a gasoline station, automobile repair and service station in 2012, 2011, 2010, 2009, 2008, 2007, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1992, 1985, 1982, 1975, 1960, 1955, 1950, 1945, 1940, 1935, 1930, and 1926.

Conclusion and Recommendation

This site poses a potential for environmental concern to the proposed project due to its history as a gasoline station, automobile repair and service station. Gasoline stations, automobile repair and service stations house hazardous materials and potentially generate hazardous waste. There is the potential for soils adjacent to this site to be contaminated by hazardous wastes or petroleum.

If this site, or the adjacent right of way, will be disturbed by the proposed project, it is recommended that a subsurface investigation be conducted to determine if contaminated soils are present within the area of the proposed impact.

Site 8: 308 Driving Park Avenue

The site is located on the north side of Driving Park Avenue, east of Dewey Avenue.

Project Area Walkover

The site is currently a barber shop (Ronnie's Barber Shop). No visual evidence of environmental contamination was observed.

EDR US Historic Automobile Station listing
The site has been identified on the EDR US Hist Auto Stat list as an automobile garage in 1975, 1970, 1965, 1960, 1955, 1950, 1945, 1940, 1935, and 1930.

Conclusion and Recommendation

This site poses a potential for environmental concern to the proposed project due to its history as an automobile garage. Automobile garages house hazardous materials and potentially generate hazardous waste. There is the potential for soils adjacent to the automotive shop to be contaminated by hazardous wastes or petroleum.

If this site, or the adjacent right of way, will be disturbed by the proposed project, it is recommended that a subsurface investigation be conducted to determine if contaminated soils are present within the area of the proposed impact.

Site 9: 275 Driving Park Avenue

The site is located on the south side of Driving Park Avenue, east of Dewey Avenue.

Project Area Walkover

The site currently houses a community development corporation. No visual evidence of environmental contamination was observed.

EDR US Historic Cleaners List

The site is listed as a cleaners and dyers in 1960, 1955, and 1950.

Conclusion and Recommendation

This site poses a potential for environmental concern to the proposed project due to its history as a cleaners and dyers that may have used solvents during the years of operation. Contamination may be present.

If this site, or the adjacent right of way, will be disturbed by the proposed project, it is recommended that a subsurface investigation be conducted to determine if contaminated soils are present within the area of the proposed impact.

Site 10: 272 Driving Park Avenue

The site is located on the north side of Driving Park Avenue, east of Dewey Avenue.

Project Area Walkover

The site is currently a residential home. No visual evidence of environmental contamination was observed.

EDR US Historic Cleaners List

The site is listed as a cleaners and dyers in 1965.

Conclusion and Recommendation

This site poses a potential for environmental concern to the proposed project due to its history as a cleaners and dyers that may have used solvents during the years of operation. Contamination may be present.

If this site, or the adjacent right of way, will be disturbed by the proposed project, it is recommended that a subsurface investigation be conducted to determine if contaminated soils are present within the area of the proposed impact.

Site 11: 854 Dewey Avenue

The site is located on the east side of Dewey Avenue, north of Driving Park Avenue.

Project Area Walkover

The site is currently a parking lot for the auto repair shop located at 320 Driving Park Avenue (Site 7). No visual evidence of environmental contamination was observed.

Sanborn Maps

The Sanborn map from 1971 and 1950 indicate the site was a historic filling station. No gasoline tanks were noted on the maps.

EDR US Historic Automobile Station listing

374 Driving Park Avenue has been identified on the EDR US Hist Auto Stat list as a gas station (Gulf Service Station) in 1970 and 1965.

Conclusion and Recommendation

This site poses a potential for environmental concern to the proposed project due to its history as a filling station. Automotive stations house hazardous materials and potentially generate hazardous waste. There is the potential for soils adjacent to the site to be contaminated by hazardous wastes or petroleum.

If this site, or the adjacent right of way, will be disturbed by the construction it is recommended that a subsurface investigation be conducted to determine if contaminated soils are present.

Site 12: 818 Dewey Avenue

The site is located on the east side of Dewey Avenue, south of Driving Park Avenue.

Project Area Walkover

The site is currently a barber shop, Bruce's Barber Shop. No visual evidence of environmental contamination was observed.

EDR US Historic Cleaners List

The site is listed as a cleaners and dyers in 1945.
Conclusion and Recommendation
This site poses a potential for environmental concern to the proposed project due to its history as a cleaners and dyers that may have used solvents during the years of operation. Contamination may be present.

If this site, or the adjacent right of way, will be disturbed by the proposed project, it is recommended that a subsurface investigation be conducted to determine if contaminated soils are present within the area of the proposed impact.

Conclusions/Recommendations - Hazardous Waste

In conclusion, 11 sites were identified as having the potential to present an environmental concern to the proposed project. Each site is listed below with the corresponding recommendation for further work (see Attachment 1 for site locations).

Table 2-Summary of Recommendations

Site ID	Site address	Past/Current land use	Reason for concern	Recommendation(s)
Site 1:	375 Driving Park Avenue and 835 Dewey Avenue	Past: Dwelling/Store/ Historic dry cleaners Current: Grocery Store	Potential contaminated soils	Subsurface investigation
Site 2:	374 Driving Park Avenue	Past: Auto repair \& service Current: residential home	Potential contaminated soils	Subsurface investigation
Site 3	342 Driving Park Avenue	Past: Historic dyers Current: Parking lot	Potential contaminated soils	Subsurface investigation

Site ID	Site address	Past/Current land use	Reason for concern	Recommendation(s)
Site 4	340 Driving Park Avenue	Past: Historic dry cleaner Current: Parking lot	Potential contaminated soils	Subsurface investigation
Site 5	Dewey Avenue and Driving Park Avenue Intersection	Right of way	Spill File	None
Site 6	329 Driving Park Avenue	Past: Historic wash \& dry self-serve laundry Current: Retail stores	Potential contaminated soils	Subsurface investigation
Site 7	320 Driving Park Avenue	Past: Gas station/auto repair \& service Current: Auto repair shop	Potential contaminated soils	Subsurface investigation
Site 8	308 Driving Park Avenue	Past: Auto garage Current: Barber shop	Potential contaminated soils	Subsurface investigation
Site 9	275 Driving Park Avenue	Past: Historic cleaners \& dyers Current: Community Development Corporation	Potential contaminated soils	Subsurface investigation
Site 10	272 Driving Park Avenue	Past: Historic cleaners \& dyers Current: Residential home	Potential contaminated soils	Subsurface investigation

Site ID	Site address	Past/Current land use	Reason for concern	Recommendation(s)
Site 11	854 Dewey Avenue	Past: Historic filling station Current: Parking lot	Potential contaminated soils	Subsurface investigation
Site 12	818 Dewey Avenue	Past: Historic dyers Current: Barber shop	Potential contaminated soils	Subsurface investigation

As with any environmental assessment completed without subsurface environmental testing, the possibility of unknown subsurface contamination exists. Should suspect materials be encountered during the course of project execution, appropriate measures should be taken to report such contamination, determine the nature and extent of any possible hazardous materials, and for proper management of such materials.

Attachment 1: Site Location Map

ATTACHMENT 1

Site Location Map

Hazardous Waste/Contaminated Materials

Appendix C:
 Traffic Information

Traffic Count Hourly Report

ROAD \#: E920	ROAD NAME: DRIVING PARK AV	FROM: NW COR NEWBRRY	TO: PIERPONT ST	COUNTY:	Monroe
DIRECTION: Eastbound	FACTOR GROUP: 30	REC. SERIAL \#: 1763	FUNC. CLASS: 17	CITY:	ROCHESTER
STATE DIR CODE: 1	WK OF YR: 33	PLACEMENT: 20' W fo Argo Pike	NHS: no	BIN:	
DATE OF COUNT: 08/14/2008		@ REF MARKER:	JURIS: City	RR CROSSING:	
NOTES LANE 1: Week 33-Eb		ADDL DATA:	CC Stn:	HPMS SAMPLE:	: 30136420
		COUNT TYPE: VEHICLES	BATCH ID: DOT-r4		

COUNT TAKEN BY: ORG CODE: TST INITIALS: JSV

COUNT TYPE: VEHICLES
PROCESSED BY: ORG CODE: DOT INITIALS: TGB

								7	8	9	10		12	1	2	3	4	5	6	7	8	9	10	11	12	DAILY	HIGH	HIGH
DATE	DAY	AM												PM												TOTAL	COUNT	HOUR
1	F																											
2	S																											
3	S																											
4	M																											
5	T																											
6	W																											
7	T																											
8	F																											
9	S																											
10	S																											
11	M																											
12	T																											
13	W																											
14	T												152	157	165	189	236	243	178	132	110	133	88	63	59			
15	F	35	22	14	8	18	42	117	206	164	150	146	155	154	170	205	234	207	196	145	147	116	104	73	69	2897	234	15
16	S	50	25	17	10	13	22	64	42	60	86	101	112	124	132	121	158	133	114	105	107	85	91	79	48	1899	158	15
17	S	34	29	25	13	8	13	32	27	41	74	91	107	104	92	105	103	109	95	109	101	80	72	63	55	1582	109	16
18	M	28	14	8	10	17	39	121	153	142	110	110	133	148	129	161	234	184	167	133	116	92	79	64	56	2448	234	15
19	T	36	19	4	8	15	42	119	188	148	116	123	127	130	139	150	202	197	175	129	118	102	75	64	69	2495	202	15
20	W	44	20	10	7	13	43	116	172	155	123	145	142	135														

Traffic Count Hourly Report

ROAD \#: E920	ROAD NAME: DRIVING PARK AV	FROM: NW COR NEWBRRY	TO: PIERPONT ST	COUNTY:	Monroe
DIRECTION: Westbound	FACTOR GROUP: 30	REC. SERIAL \#: 1763	FUNC. CLASS: 17	CITY:	ROCHESTER
STATE DIR CODE: 2	WK OF YR: 33	PLACEMENT: 20' W fo Argo Pike	NHS: no	BIN:	
DATE OF COUNT: 08/14/2008		@ REF MARKER:	JURIS: City	RR CROSSING:	
NOTES LANE 1: Week 33-Wb		ADDL DATA:	CC Stn:	HPMS SAMPLE:	: 30136420
		COUNT TYPE: VEHICLES	BATCH ID: DOT-r4con		

COUNT TAKEN BY: ORG CODE: TST INITIALS: JSV

COUNT TYPE: VEHICLES
RROCESSED BY: ORG CODE: DOT INITIALS: TGB

ROAD \#: COUNTY NAME:	E920 Monroe	ROAD NAME: DRIVING PARK AV	YEAR: 2008 MONTH: August		STATION:	431028
REGION CODE:	4		DIRECTION	East	West	TOTAL
FROM:	NW COR NEWBRRY		DIRECTION	East	West	TOTAL
TO:	PIERPONT ST		NUMBER OF VEHICLES	2592	3132	5724
REF-MARKER:			NUMBER OF AXLES	5376	6405	11779
END MILEPOINT:	0110161	NO. OF LANES: 2	\% HEAVY VEHICLES (F4-F13)	7.33\%	6.00\%	6.60\%
FUNC-CLASS:	17	HPMS NO: 30136420	\% TRUCKS AND BUSES (F3-F13)	21.76\%	19.76\%	20.67\%
STATION NO:	1028		AXLE CORRECTION FACTOR	0.96	0.98	0.97

PROCESSED BY: ORG CODE: DOT INITIALS: TGB BATCH ID: DOT-r4contractorww34

VEHICLE CLASS		F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	TOTAL
NO. OF AXLES		2	2	2	2.5	2	3	4	3.5	5	6	5	6	8.75	
ENDING HOUR	1:00	1	31	5	0	0	0	0	0	0	0	0	0	0	37
	2:00	0	17	3	0	0	0	0	0	0	0	0	0	0	20
	3:00	0	8	1	0	0	0	0	0	0	0	0	0	0	9
	4:00	0	6	1	0	0	1	0	0	0	0	0	0	0	8
	5:00	0	10	4	0	0	0	0	0	0	0	0	0	0	14
	6:00	1	34	4	0	2	1	0	1	0	0	0	0	0	43
	7:00	2	89	17	2	3	1	0	3	0	1	0	0	0	118
	8:00	2	132	28	3	7	1	0	4	0	1	0	1	0	179
	9:00	1	114	24	3	5	1	0	2	0	1	0	0	0	151
	10:00	1	88	23	2	6	2	0	2	0	0	0	0	0	124
DIRECTION East	11:00	1	84	28	3	9	2	0	4	0	0	0	0	0	131
	12:00	2	106	21	2	6	1	0	3	0	0	0	0	0	141
	13:00	1	106	24	2	5	1	1	3	0	0	0	1	0	144
	14:00	2	103	24	4	5	2	1	4	0	0	0	0	0	145
	15:00	2	123	29	1	6	1	1	3	0	1	0	0	0	167
	16:00	2	171	32	5	2	2	1	6	1	2	0	0	0	224
	17:00	3	163	28	2	3	2	0	5	0	1	0	0	1	208
	18:00	4	136	23	2	1	1	1	5	0	0	0	0	0	173
	19:00	1	109	14	0	1	1	1	2	0	1	0	0	0	130
	20:00	1	97	10	0	0	1	0	2	0	1	0	1	0	113
	21:00	4	91	9	0	0	1	1	2	0	0	0	0	0	108
	22:00	2	70	7	0	0	1	0	1	0	0	0	0	0	81
	23:00	0	58	3	0	0	1	0	1	0	0	0	0	0	63
	24:00	1	48	12	0	0	0	0	0	0	0	0	0	0	61
TOTAL VEHICLES TOTAL AXLES		34	1994	374	31	61	24	7	53	1	9	0	3	1	2592
		68	3988	748	78	122	72	28	186	5	54	0	18	9	5376
ENDING HOUR	1:00	0	26	2	0	0	0	0	0	0	0	0	0	0	28
	2:00	0	19	2	0	0	0	0	0	0	0	0	0	0	21
	3:00	0	13	1	0	0	0	0	0	0	0	0	0	0	14
	4:00	0	11	1	0	0	0	0	0	0	0	0	0	0	12
	5:00	0	19	2	0	0	0	0	0	0	0	0	0	0	21
	6:00	1	72	10	0	0	1	0	0	0	0	0	0	0	84
	7:00	2	130	23	1	4	0	0	2	0	0	0	0	0	162
	8:00	1	126	19	3	5	0	0	2	1	0	0	0	0	157
	9:00	0	76	26	2	6	1	0	2	0	0	0	0	0	113
	10:00	0	86	26	4	9	1	0	1	0	0	0	0	0	127
	11:00	0	96	25	2	8	1	0	3	0	0	0	0	0	135
DIRECTION West	12:00	1	119	27	3	5	1	0	3	0	0	0	0	0	159
	13:00	1	159	35	2	7	1	0	3	0	0	0	1	0	209
	14:00	0	144	27	3	7	1	0	5	0	1	0	0	0	188
	15:00	1	152	34	5	9	0	1	6	0	0	0	0	0	208
	16:00	1	192	41	5	6	1	1	8	1	1	0	0	0	257
	17:00	2	218	40	2	5	2	1	5	1	1	0	1	0	278
	18:00	1	214	27	3	2	0	0	3	0	0	0	0	0	250
	19:00	1	152	14	2	4	0	0	3	0	0	0	0	0	176
	20:00	1	130	14	1	1	0	0	3	0	0	0	0	0	150
	21:00	2	124	13	0	0	0	0	1	0	0	0	0	0	140
	22:00	1	89	9	0	0	0	0	1	0	0	0	0	0	100
	23:00	2	72	9	0	0	0	0	0	0	0	0	0	0	83
	24:00	0	56	4	0	0	0	0	0	0	0	0	0	0	60
TOTAL VEHICLES TOTAL AXLES		18	2495	431	38	78	10	3	51	3	3	0	2	0	3132
		36	4990	862	95	156	30	12	178	15	18	0	12	0	6405
GRAND TOTAL VEHICLES GRAND TOTAL AXLES		52	4489	805	69	139	34	10	104	4	12	0	5	1	5724
		104	8978	1610	172	278	102	40	364	20	72	0	30	9	11781

TRAFFIC FLOW BY DIRECTION

F1. Motorcycles
F2. Autos*
F3. 2 Axle, 4-Tire Pickups, Vans, Motorhomes*
F4. Buses
55. 2 Axle, 6 -Tire Single Unit Trucks

F6. 3 Axle Single Unit Trucks
F7. 4 or More Axle Single Unit Trucks
F8. 4 or Less Axle Vehicles, One Unit is a Truck
F9. 5 Axle Double Unit Vehicles, One Unit is a Truck
F10. 6 or More Double Unit Vehicles, One Unit is a Truck
F11.5 or Less Axle Multi-Unit Trucks
F12. 6 Axle Multi-Unit Trucks
F13. 7 or More Axle Multi-Unit Trucks

* INCLUDING THOSE HAULING TRAILERS

FUNCTIONAL CLASS CODES:

RURAL	URBAN
	SYSTEM
01	11 PRINCIPAL ARTERIAL-INTERSTATE
02	12 PRINCIPAL ARTERIAL-EXPRESSWAY
02	14 PRINCIPAL ARTERIAL-OTHER
06	16 MINOR ARTERIAL
07	17 MAJOR COLLECTOR
08	17 MINOR COLLECTOR
09	19 LOCAL SYSTEM

Start date:	Thu 08/14/2008 11:00
End date:	Wed 08/20/2008 13:45
County:	Monroe
Town:	ROCHESTER
Speed limit:	30

Count duration:	147 hours
Functional class:	17
Factor group:	30
Batch ID:	DOT-r4contractorww34
Count taken by:	Org: TST Init: JSV
Processed by:	Org: DOT Init: TGB

Speeds, mph																						
Hour	$\begin{aligned} & 0.0- \\ & 20.0 \end{aligned}$	$\begin{array}{r} 20.1- \\ 25.0 \end{array}$	$\begin{array}{r} 25.1- \\ 30.0 \end{array}$	$\begin{array}{r} 30.1- \\ 35.0 \end{array}$	$\begin{array}{r} 35.1- \\ 40.0 \end{array}$	$\begin{array}{r} 40.1- \\ 45.0 \end{array}$	$\begin{array}{r} 45.1- \\ 50.0 \end{array}$	$\begin{array}{r} 50.1- \\ 55.0 \end{array}$	$\begin{array}{r} 55.1- \\ 60.0 \end{array}$	$\begin{array}{r} 60.1- \\ 65.0 \end{array}$	$\begin{array}{r} 65.1- \\ 70.0 \end{array}$	$\begin{array}{r} 70.1- \\ 75.0 \end{array}$	$\begin{array}{r} 75.1- \\ 95.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 45.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 50.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 55.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 60.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 65.0 \end{array}$	Avg	50th\%	85th\%	Total
1:00	1	4	5	20	8	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	30.1	32.3	36.5	38
2:00	2	2	6	6	2	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.0	30.0	37.6	20
3:00	0	1	3	3	1	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	29.4	30.0	34.7	8
4:00	1	1	2	2	1	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.3	30.0	39.0	8
5:00	1	1	4	4	5	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	29.4	32.6	38.6	16
6:00	2	4	7	16	9	4	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	29.8	32.6	38.8	42
7:00	3	8	24	46	28	7	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	30.7	32.6	38.2	116
8:00	8	14	41	69	42	2	1	0	0	0	0	0	0	0.6	0.0	0.0	0.0	0.0	29.4	31.9	37.2	177
9:00	6	12	39	59	30	5	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	29.4	31.6	37.1	151
10:00	4	12	36	48	18	5	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	29.2	31.0	36.3	123
11:00	10	14	40	44	18	4	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.3	30.2	35.7	130
12:00	6	11	42	51	26	4	1	0	0	0	0	0	0	0.7	0.0	0.0	0.0	0.0	29.1	31.2	36.9	141
13:00	7	16	43	54	22	2	1	0	0	0	0	0	1	1.4	0.7	0.7	0.7	0.7	28.5	30.7	36.0	146
14:00	6	14	47	55	17	3	1	0	0	0	0	0	1	1.4	0.7	0.7	0.7	0.7	28.6	30.5	35.2	144
15:00	10	22	61	53	17	2	1	0	0	0	0	0	0	0.6	0.0	0.0	0.0	0.0	27.2	29.2	34.6	166
16:00	14	28	58	90	28	4	1	0	0	0	0	0	0	0.4	0.0	0.0	0.0	0.0	27.8	30.7	35.0	223
17:00	9	21	61	81	28	4	1	0	0	1	0	1	1	1.9	1.4	1.4	1.4	1.0	28.8	30.9	35.9	208
18:00	15	20	52	58	21	3	0	0	1	0	0	0	1	1.2	1.2	1.2	0.6	0.6	26.9	29.9	35.1	171
19:00	13	13	41	48	15	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.6	29.9	34.8	132
20:00	15	13	34	40	11	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.4	29.3	34.4	114
21:00	10	15	34	37	12	1	2	0	0	0	0	0	0	1.8	0.0	0.0	0.0	0.0	26.6	29.5	34.8	111
22:00	4	5	28	31	9	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	28.4	30.5	34.9	79
23:00	4	6	14	28	9	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	28.3	31.4	35.9	63
24:00	3	7	13	24	12	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	28.9	31.6	37.1	61
Avg. Daily Total	154	264	735	967	389	63	9	0	1	1	0	1	4	0.6	0.3	0.3	0.2	0.2	28.2	30.8	36.1	2588
Percent	6.0\%	10.2\%	28.4\%	37.4\%	15.0\%	2.4\%	0.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%									
Cum. Percent	6.0\%	16.2\%	44.6\%	81.9\%	96.9\%	99.4\%	99.7\%	99.7\%	99.8\%	99.8\%	99.8\%	99.8\%	100.0\%									
Average hour	6	11	31	40	16	3	0	0	0	0	0	0	0									108

TRAFFIC FLOW BY DIRECTION

East	Avg. Speed 28.2		50th\% Speed 30.8	85th\% Speed	
West		28.0	31.4		37.3
Peak Hour Data					
Direction	Hour	Count	2-way	Hour	Count
East	16	223	A.M.	8	332
West	17	274	P.M.	17	482

Station:	431028	
Road \#:	E920 Road name: DRIVING PARK AV	
From:	NW COR NEWBRRY	
To:	PIERPONT ST	
Direction:	West	

Count duration:	147 hours
Functional class:	17
Factor group:	30
Batch ID:	DOT-r4contractorww34
Count taken by:	Org: TST Init: JSV
Processed by:	Org: DOT Init: TGB

								ds, mp														
Hour	$\begin{gathered} 0.0- \\ 20.0 \end{gathered}$	$\begin{array}{r} 20.1- \\ 25.0 \end{array}$	$\begin{array}{r} 25.1- \\ 30.0 \end{array}$	$\begin{array}{r} 30.1- \\ 35.0 \end{array}$	$\begin{array}{r} 35.1- \\ 40.0 \end{array}$	$\begin{array}{r} 40.1- \\ 45.0 \end{array}$	$\begin{array}{r} 45.1- \\ 50.0 \end{array}$	$\begin{array}{r} 50.1- \\ 55.0 \end{array}$	$\begin{array}{r} 55.1- \\ 60.0 \end{array}$	$\begin{array}{r} 60.1- \\ 65.0 \end{array}$	$\begin{array}{r} 65.1- \\ 70.0 \end{array}$	$\begin{array}{r} 70.1- \\ 75.0 \end{array}$	$\begin{array}{r} 75.1- \\ 95.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 45.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 50.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 55.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 60.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 65.0 \end{array}$	Avg	50th\%	85th\%	Total
1:00	3	1	5	9	7	3	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	28.4	32.8	39.2	28
2:00	3	1	7	7	2	0	0	1	0	0	0	0	0	4.8	4.8	0.0	0.0	0.0	25.9	29.7	34.9	21
3:00	1	1	3	4	4	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	29.1	32.6	38.7	14
4:00	1	0	2	4	4	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	29.9	33.8	39.0	12
5:00	2	0	4	6	6	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	29.1	33.4	39.2	20
6:00	5	4	20	33	17	4	1	0	0	0	0	0	0	1.2	0.0	0.0	0.0	0.0	29.3	32.0	37.8	84
7:00	16	13	34	58	32	8	2	1	0	0	0	0	0	1.8	0.6	0.0	0.0	0.0	27.8	31.7	37.9	164
8:00	18	14	36	51	28	7	0	0	0	1	0	0	0	0.6	0.6	0.6	0.6	0.0	26.8	31.0	37.3	155
9:00	12	13	22	40	20	5	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.9	31.2	37.1	112
10:00	14	13	34	44	18	3	1	0	0	0	0	0	0	0.8	0.0	0.0	0.0	0.0	26.5	30.3	35.9	127
11:00	12	13	31	48	22	6	1	0	0	0	0	0	0	0.8	0.0	0.0	0.0	0.0	27.5	31.1	37.1	133
12:00	13	17	43	54	24	6	1	0	0	0	0	0	0	0.6	0.0	0.0	0.0	0.0	27.4	30.6	36.6	158
13:00	17	19	55	76	34	6	1	0	0	0	0	0	0	0.5	0.0	0.0	0.0	0.0	27.6	30.9	36.5	208
14:00	14	16	44	70	34	6	0	0	0	1	1	0	0	1.1	1.1	1.1	1.1	0.5	28.2	31.4	37.1	186
15:00	19	12	56	74	38	6	2	1	0	0	0	0	0	1.4	0.5	0.0	0.0	0.0	27.8	31.2	37.1	208
16:00	20	16	53	106	52	6	1	0	0	0	1	1	1	1.6	1.2	1.2	1.2	1.2	28.6	31.9	37.3	257
17:00	19	12	56	105	66	12	3	0	0	0	0	1	0	1.5	0.4	0.4	0.4	0.4	29.3	32.4	38.1	274
18:00	17	13	48	97	64	11	1	0	0	0	0	0	1	0.8	0.4	0.4	0.4	0.4	29.4	32.5	38.1	252
19:00	15	14	36	64	37	6	1	1	0	0	0	0	1	1.7	1.1	0.6	0.6	0.6	28.2	31.8	37.7	175
20:00	13	10	36	54	28	3	1	0	1	0	0	0	1	2.0	1.4	1.4	0.7	0.7	28.0	31.4	37.2	147
21:00	9	16	44	53	13	3	1	0	1	0	0	0	0	1.4	0.7	0.7	0.0	0.0	27.6	30.1	34.8	140
22:00	9	6	33	36	12	3	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.2	30.3	35.1	99
23:00	6	5	23	29	16	2	2	0	0	0	0	0	0	2.4	0.0	0.0	0.0	0.0	28.5	31.3	37.4	83
24:00	4	9	16	20	9	3	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.6	30.4	36.6	61
Avg. Daily Total	262	238	741	1142	587	113	19	4	2	2	2	2	4	1.1	0.5	0.4	0.3	0.3	28.0	31.4	37.3	3118
Percent	8.4\%	7.6\%	23.8\%	36.6\%	18.8\%	3.6\%	0.6\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%	0.1\%									
Cum. Percent	8.4\%	16.0\%	39.8\%	76.4\%	95.3\%	98.9\%	99.5\%	99.6\%	99.7\%	99.7\%	99.8\%	99.9\%	100.0\%									
Average hour	11	10	31	48	24	5	1	0	0	0	0	0	0									130

Traffic Count Hourly Report

STATION: 431027	STATE DIR CODE: 1	PLACEMENT: 400 ft E of Pierpont		DATE OF COUNT

Traffic Count Hourly Report

$\begin{array}{lll}\text { PROCESSED BY: } & \text { ORG CODE: DOT INITIALS: MAB } & \text { BATCH ID: DOT-r4ww28 }\end{array}$

Start date:	Wed 07/06/2011 14:00
End date:	Wed 07/13/2011 13:45
County:	Monroe
Town:	ROCHESTER
Speed limit:	30
LION\#:	

Count duration:	168 hours
Functional class:	17
Factor group:	30
Batch ID:	DOT-r4ww28
Count taken by:	Org: TST Init: ---
Processed by:	Org: DOT Init: MAB

Station:	431027	
Road \#:	E920 \quad Road name: DRIVING PARK AV	
From:	PIERPONT ST	
To:	LAKE AVE	
Direction:	East	

Counts have been summarized into NYSDOT El standard bins

Speeds, mph

Hour	$\begin{gathered} 0.0- \\ 20.0 \end{gathered}$	$\begin{array}{r} 20.1- \\ 25.0 \end{array}$	$\begin{array}{r} 25.1- \\ 30.0 \end{array}$	$\begin{array}{r} 30.1- \\ 35.0 \end{array}$	$\begin{array}{r} 35.1- \\ 40.0 \end{array}$	$\begin{array}{r} 40.1- \\ 45.0 \end{array}$	$\begin{array}{r} 45.1- \\ 50.0 \end{array}$	$\begin{array}{r} 50.1- \\ 55.0 \end{array}$	$\begin{array}{r} 55.1- \\ 60.0 \end{array}$	$\begin{array}{r} 60.1- \\ 65.0 \end{array}$	$\begin{array}{r} 65.1- \\ 70.0 \end{array}$	$\begin{array}{r} 70.1- \\ 75.0 \end{array}$	$\begin{array}{r} 75.1- \\ 95.0 \end{array}$	$\begin{array}{r} \% \text { Exc } \\ 45.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 50.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 55.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 60.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 65.0 \end{array}$	Avg	50th\%	85th\%	Total
1:00	8	14	26	14	3	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	24.4	27.2	32.9	66
2:00	9	10	14	6	2	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	22.0	25.6	31.6	41
3:00	10	6	10	6	3	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	21.3	25.8	33.2	35
4:00	2	4	9	6	1	2	1	0	0	0	0	0	0	4.0	0.0	0.0	0.0	0.0	26.8	28.7	36.3	25
5:00	0	4	12	10	3	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	28.9	29.4	34.4	29
6:00	3	9	27	26	10	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	28.2	29.9	35.0	76
7:00	9	14	73	75	24	3	0	1	0	0	0	0	0	0.5	0.5	0.0	0.0	0.0	28.5	30.3	34.9	199
8:00	16	30	112	105	27	4	1	0	0	0	0	0	0	0.3	0.0	0.0	0.0	0.0	27.6	29.6	34.5	295
9:00	17	27	118	115	35	3	1	0	0	0	0	0	0	0.3	0.0	0.0	0.0	0.0	27.9	29.9	34.7	316
10:00	19	31	102	89	25	3	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.9	29.2	34.4	269
11:00	18	36	103	75	20	3	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.5	28.6	34.0	255
12:00	24	46	106	69	13	2	1	0	0	0	0	0	0	0.4	0.0	0.0	0.0	0.0	25.5	27.9	33.4	261
13:00	27	53	123	86	16	4	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.7	28.1	33.5	309
14:00	19	35	124	96	23	3	1	0	0	0	0	0	0	0.3	0.0	0.0	0.0	0.0	27.0	28.9	34.1	301
15:00	19	46	125	93	22	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.7	28.6	33.9	307
16:00	23	49	141	103	22	3	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.5	28.5	33.8	341
17:00	39	49	146	85	19	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.0	27.9	33.3	340
18:00	33	45	133	87	17	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.4	28.1	33.4	316
19:00	22	45	116	74	17	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.9	28.1	33.5	276
20:00	20	34	97	70	15	4	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.1	28.5	33.8	240
21:00	13	38	94	64	13	3	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.6	28.3	33.7	225
22:00	16	42	95	42	8	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.3	27.3	32.4	203
23:00	7	26	62	40	9	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.7	28.2	33.6	145
24:00	5	23	51	32	9	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.9	28.2	33.8	121
Avg. Daily Total	378	716	2019	1468	356	48	5	1	0	0	0	0	0	0.1	0.0	0.0	0.0	0.0	26.3	28.5	33.9	4991
Percent	7.6\%	14.3\%	40.5\%	29.4\%	7.1\%	1.0\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%									
Cum. Percent	7.6\%	21.9\%	62.4\%	91.8\%	98.9\%	99.9\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%									
Average hour	16	30	84	61	15	2	0	0	0	0	0	0	0									208

East	Avg. Speed 26.3		50th\% Speed	85th\% Speed	
West		25.8	28.2		33.4
Peak Hour Data					
Direction	Hour	Count	2-way	Hour	Count
East	16	341	A.M.	12	565
West	18	475	P.M.	18	791

Start date:	Wed 07/06/2011 14:00
End date:	Wed 07/13/2011 13:45
County:	Monroe
Town:	ROCHESTER
Speed limit:	30
LION\#:	

Station:	431027	
Road \#:	E920 \quad Road name: DRIVING PARK AV	
From:	PIERPONT ST	
To:	LAKE AVE	
Direction:	West	

Counts have been summarized into NYSDOT El standard bins

Speeds, mph

Hour	$\begin{gathered} 0.0- \\ 20.0 \end{gathered}$	$\begin{array}{r} 20.1- \\ 25.0 \end{array}$	$\begin{array}{r} 25.1- \\ 30.0 \end{array}$	$\begin{array}{r} 30.1- \\ 35.0 \end{array}$	$\begin{array}{r} 35.1- \\ 40.0 \end{array}$	$\begin{array}{r} 40.1- \\ 45.0 \end{array}$	$\begin{array}{r} 45.1- \\ 50.0 \end{array}$	$\begin{array}{r} 50.1- \\ 55.0 \end{array}$	$\begin{array}{r} 55.1- \\ 60.0 \end{array}$	$\begin{array}{r} 60.1- \\ 65.0 \end{array}$	$\begin{array}{r} 65.1- \\ 70.0 \end{array}$	$\begin{array}{r} 70.1- \\ 75.0 \end{array}$	$\begin{array}{r} 75.1- \\ 95.0 \end{array}$	$\begin{array}{r} \% \text { Exc } \\ 45.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 50.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 55.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 60.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 65.0 \end{array}$	Avg	50th\%	85th\%	Total
1:00	17	15	35	20	5	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	23.3	27.1	33.1	93
2:00	12	10	17	12	2	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	22.4	26.5	32.9	54
3:00	8	8	15	11	2	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	23.5	27.2	33.3	45
4:00	3	4	10	9	2	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.5	28.6	33.8	28
5:00	1	4	10	8	4	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.9	29.3	35.0	27
6:00	4	10	20	30	8	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.9	30.6	34.9	74
7:00	10	12	52	54	17	3	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.6	30.0	34.8	148
8:00	19	19	65	66	16	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.2	29.3	34.3	187
9:00	14	21	78	78	14	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.0	29.4	34.0	206
10:00	16	29	91	79	14	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.7	28.9	33.9	231
11:00	17	29	105	85	14	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.7	28.8	33.7	251
12:00	41	51	117	82	12	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	24.4	27.6	33.1	304
13:00	26	50	146	103	15	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.1	28.3	33.4	342
14:00	24	43	156	109	19	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.5	28.5	33.5	352
15:00	36	47	148	101	22	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.6	28.2	33.6	355
16:00	32	67	177	96	20	3	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.7	27.8	33.2	395
17:00	55	75	193	107	18	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	24.6	27.5	32.8	450
18:00	50	88	204	116	16	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	24.9	27.5	32.7	475
19:00	34	52	156	93	14	2	1	0	0	0	0	0	0	0.3	0.0	0.0	0.0	0.0	25.4	27.9	33.1	352
20:00	21	48	128	87	14	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.1	28.2	33.3	299
21:00	20	42	123	75	12	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.1	28.1	33.2	274
22:00	13	38	116	68	7	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.4	28.1	32.9	242
23:00	11	28	84	59	9	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.6	28.4	33.4	191
24:00	9	23	57	43	6	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.4	28.4	33.5	140
Avg. Daily Total	493	813	2303	1591	282	32	1	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.8	28.2	33.4	5515
Percent	8.9\%	14.7\%	41.8\%	28.8\%	5.1\%	0.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%									
Cum. Percent	8.9\%	23.7\%	65.4\%	94.3\%	99.4\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%									
Average hour	21	34	96	66	12	1	0	0	0	0	0	0	0									230

East	Avg. Speed 26.3		50th\% Speed	85th\% Speed	
West		25.8	28.2		33.4
Peak Hour Data					
Direction	Hour	Count	2-way	Hour	Count
East	16	341	A.M.	12	565
West	18	475	P.M.	18	791

Traffic Count Hourly Report

ROAD \#:	E710	ROAD NAME: DEWEY AVE
DIRECTION:	Northbound	FACTOR GROUP: 30
STATE DIR CODE: 1	WK OF YR:	28

FROM: FELIX ST
REC. SERIAL \#: 2551
PLACEMENT: 800' north of felix st @ REF MARKER:
ADDL DATA:
COUNT TYPE: AXLE PAIRS

TO: DRIVING PK AVE
FUNC. CLASS: 16
NHS: no
JURIS: City
CC Stn:
BATCH ID: DOT-DOTr4ww29

COUNTY:

Monroe

CITY: ROCHESTER LION\#:
BIN:
RR CROSSING:
HPMS SAMPLE:

COUNT TAKEN BY: ORG CODE: DOT INITIALS: NJA

		$\begin{gathered} 12 \\ \text { TO } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { TO } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ \text { TO } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ \text { TO } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ \text { TO } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \text { TO } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ \text { TO } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \text { TO } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ \text { TO } \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ \text { TO } \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & \text { TO } \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 \\ & \text { TO } \\ & 12 \\ & \hline \end{aligned}$	$\begin{gathered} 12 \\ \text { TO } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { TO } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ \text { TO } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ \text { TO } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ \text { TO } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \text { TO } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ \text { TO } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \text { TO } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ \text { TO } \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ \text { TO } \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & \text { TO } \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 \\ & \text { TO } \\ & 12 \\ & \hline \end{aligned}$	DAIL	DAILY HIGH	$\begin{aligned} & \text { DAILY } \\ & \text { HIGH } \end{aligned}$
DATE	DAY						AM												PM							TOTAL	COUNT	HOUR
1	F																											
2	S																											
3	S																											
4	M																											
5	T																											
6	W																											
7	T																											
8	F																											
9	S																											
10	S																											
11	M																											
12	T										201	204	293	318	274	305	362	340	400	286	231	219	196	179	109			
13	W	71	47	37	30	20	57	93	163	196	230	214	265	317	303	304	365	366	352	295	209	215	186	146	115	4596	366	16
14	T	72	38	30	24	15	53	99	174	188	200	266	269	291	323	343	339	377	377	301	241	232	233	187	125	4797	377	16
15	F	83	61	58	24	24	46	89	148	211																		

ROAD \#: E710	ROAD NAME: DEWEY AVE	FROM: FELIX ST	TO: DRIVING PK AVE	COUNTY:	Monroe
STATION: 432025	STATE DIR CODE: 1	PLACEMENT: 800' north of felix st		DATE OF COUNT:	07/12/2011

Traffic Count Hourly Report

ROAD \#:	E710	ROAD NAME: DEWEY AVE	
DIRECTION:	Southbound	FACTOR GROUP:	30
STATE DIR CODE:		WK OF YR:	28
DATE OF COUNT: 0	07/12/2011		
NOTES LANE 1: sb	travel lane		
COUNT TAKEN BY:	: ORG CODE	E: DOT INITIALS: NJA	

FROM: FELIX ST
REC. SERIAL \#: 2551
PLACEMENT: 800' north of felix st @ REF MARKER:
ADDL DATA:
COUNT TYPE: AXLE PAIRS

TO: DRIVING PK AVE
FUNC. CLASS: 16
NHS: no
JURIS: City
CC Stn:
BATCH ID: DOT-DOTr4ww29

COUNTY:

Monroe

CITY: ROCHESTER LION\#:
BIN:
RR CROSSING:
HPMS SAMPLE:

		$\begin{gathered} 12 \\ \text { TO } \\ 1 \end{gathered}$	$\begin{gathered} 1 \\ \text { TO } \\ 2 \end{gathered}$	$\begin{gathered} 2 \\ \text { TO } \\ 3 \end{gathered}$	$\begin{gathered} 3 \\ \text { TO } \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ \text { TO } \\ 5 \end{gathered}$	$\begin{gathered} 5 \\ \text { TO } \\ 6 \end{gathered}$	$\begin{gathered} 6 \\ \text { TO } \\ 7 \end{gathered}$	$\begin{gathered} 7 \\ \text { TO } \\ 8 \end{gathered}$	$\begin{gathered} 8 \\ \text { TO } \\ 9 \end{gathered}$	$\begin{gathered} 9 \\ \text { TO } \\ 10 \end{gathered}$	$\begin{aligned} & 10 \\ & \text { TO } \\ & 11 \end{aligned}$	$\begin{aligned} & 11 \\ & \text { TO } \\ & 12 \end{aligned}$	$\begin{gathered} 12 \\ \text { TO } \\ 1 \end{gathered}$	$\begin{gathered} 1 \\ \text { TO } \\ 2 \end{gathered}$	$\begin{gathered} 2 \\ \text { TO } \\ 3 \end{gathered}$	$\begin{gathered} 3 \\ \text { TO } \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ \text { TO } \\ 5 \end{gathered}$	$\begin{gathered} 5 \\ \text { TO } \\ 6 \end{gathered}$	$\begin{gathered} 6 \\ \text { TO } \\ 7 \end{gathered}$	$\begin{gathered} 7 \\ \text { TO } \\ 8 \end{gathered}$	$\begin{gathered} 8 \\ \text { TO } \\ 9 \end{gathered}$	$\begin{gathered} 9 \\ \text { TO } \\ 10 \end{gathered}$	$\begin{aligned} & 10 \\ & \text { TO } \\ & 11 \end{aligned}$	$\begin{aligned} & 11 \\ & \text { TO } \\ & 12 \end{aligned}$	DAILY	DAILY HIGH	DAILY HIGH
DATE	DAY						AM												PM							TOTAL	COUNT	HOUR
1	F																											
2	S																											
3	S																											
4	M																											
5	T																											
6	W																											
7	T																											
8	F																											
9	S																											
10	S																											
11	M																											
12	T										272	241	296	296	281	318	282	310	237	279	240	240	211	156	102			
13	W	83	45	38	17	24	49	154	324	260	241	234	268	275	306	274	289	306	234	263	255	234	189	143	121	4626	324	7
14	T	67	45	34	14	18	46	139	287	293	238	254	299	295	310	298	307	342	287	317	247	241	216	183	132	4909	342	16
15	F	76	63	54	23	22	50	149	291	264																		

ROAD \#: E710	ROAD NAME: DEWEY AVE	FROM: FELIX ST	TO: DRIVING PK AVE	COUNTY:	Monroe
STATION: 432025	STATE DIR CODE: 2	PLACEMENT: 800' north of felix st		DATE OF COUNT:	07/12/2011

Traffic Count Hourly Report

Traffic Count Hourly Report

ROAD \#: E710	ROAD NAME: DEWEY AVE	FROM: DRIVING PK AVE	TO: RIDGEWAY AVE	COUNTY:	Monroe
STATION: 434049	STATE DIR CODE: 2	PLACEMENT: 50' N of Seneca Pkwy.		DATE OF COUNT:	11/30/2011

ROAD \#: COUNTY NAME:	E710 Monroe		AD NAM	DEWE				$\begin{aligned} & \text { AR: } 2 \\ & \text { TH: } \end{aligned}$	mber				ATION:		049
REGION CODE: 4	4						TION				North		South		TOTAL
FROM:	DRIVING P RIDGEWA						R O	HICLE			7078		7589		14667
REF-MARKER:							R	ES			14247		15294		14667
END MILEPOINT:	0110210		NO. OF	NES:	4		VY	ES	13)		3.43\%		3.99\%		3.72\%
FUNC-CLASS: 16	16			S NO:			CKS	BUS	3-F13)		11.16\%		12.54\%		11.88\%
STATION NO: 40	4049			ION\#:			COR	ON F	OR		0.99		0.99		0.99
COUNT TAKEN BY: OR	ORG CODE	T INIT	LS: GNL												
PROCESSED BY: OR	ORG CODE	OT INITIA	ALS: MAB		H ID:	R4W									
VEHICL	LE CLASS	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	TOTAL
NO. O	OF AXLES	2	2	2	2.5	2	3	4	3.5	5	6	5	6	8.75	
ENDING HOUR	1:00	0	72	3	0	0	0	0	0	0	0	0	0	0	75
	2:00	0	47	3	0	0	0	0	0	0	0	0	0	0	50
	3:00	0	34	1	0	0	0	0	0	0	0	0	0	0	35
	4:00	1	18	2	0	0	0	0	0	0	0	0	0	0	21
	5:00	1	25	3	0	1	2	0	0	0	0	0	0	0	32
	6:00	0	55	4	2	1	0	0	0	0	0	0	0	0	62
	7:00	1	120	15	2	6	0	0	1	0	0	0	0	0	145
	8:00	3	304	41	6	16	1	0	2	0	0	0	0	0	373
	9:00	4	240	27	3	11	1	0	2	0	0	0	0	0	288
	10:00	6	279	31	2	10	1	0	3	0	0	0	0	0	332
DIRECTION	111:00	6	295	37	4	4	1	0	1	0	0	0	0	0	348
North	12:00	5	326	39	1	4	1	0	2	0	0	0	0	0	378
	13:00	5	349	37	4	8	1	0	2	1	0	0	0	0	407
	14:00	4	361	33	4	8	0	0	1	0	0	0	0	0	411
	15:00	8	435	48	9	29	1	0	4	0	0	0	0	0	534
	16:00	7	549	62	10	16	1	0	3	0	0	0	0	0	648
	17:00	10	554	45	5	15	0	0	3	0	0	0	0	0	632
	18:00	10	614	32	3	6	1	0	2	0	0	0	0	0	668
	19:00	8	437	29	1	2	0	0	2	0	0	0	0	0	479
	20:00	6	318	21	0	1	0	0	1	0	0	0	0	0	347
	21:00	4	267	13	0	1	0	0	1	0	0	0	0	0	286
	22:00	3	222	12	0	2	0	0	1	0	0	0	0	0	240
	23:00	2	153	6	0	1	0	0	1	0	0	0	0	0	163
	24:00	2	118	3	0	0	0	0	1	0	0	0	0	0	124
TOTAL V	VEHICLES	96	6192	547	56	142	11	0	33	1	0	0	0	0	7078
TOTA	AL AXLES	192	12384	1094	140	284	33	0	116	5	0	0	0	0	14247
	1:00	0	79	6	0	1	0	0	1	0	0	0	0	0	87
ENDING HOUR	2:00	0	40	2	0	0	0	0	0	0	0	0	0	0	42
	3:00	0	34	2	0	1	0	0	0	0	0	0	0	0	37
	4:00	0	22	1	0	0	0	0	0	0	0	0	0	0	23
	5:00	0	28	4	0	0	0	0	0	0	0	0	0	0	32
	6:00	0	72	10	2	2	0	0	1	0	0	0	0	0	87
	7:00	0	197	27	11	9	1	0	3	0	0	0	0	0	248
	8:00	1	636	76	19	33	1	0	6	0	1	1	0	0	774
	9:00	1	390	51	12	23	1	0	2	1	0	0	0	0	481
	10:00	1	310	41	9	15	1	0	2	0	0	0	0	0	379
	11:00	0	288	41	3	7	1	0	2	0	0	0	0	0	342
DIRECTION	- 12:00	0	327	42	2	6	1	0	1	0	0	0	0	0	379
South	13:00	1	383	41	2	8	1	0	2	0	0	0	0	0	438
	14:00	4	373	44	4	8	0	0	2	0	0	0	0	0	435
	15:00	4	433	47	10	15	1	0	2	0	0	0	0	0	512
	16:00	2	492	47	7	11	0	0	1	0	0	0	0	0	560
	17:00	3	486	42	8	12	0	0	1	0	0	0	0	0	552
	18:00	1	464	33	5	3	0	0	2	0	0	0	0	0	508
	19:00	0	444	32	3	5	0	0	1	0	0	0	0	0	485
	20:00	1	306	18	0	2	0	0	1	0	0	0	0	0	328
	21:00	0	284	14	0	0	0	0	1	0	0	0	0	0	299
	22:00	0	239	16	0	1	0	0	1	0	0	0	0	0	257
	23:00	0	163	8	0	0	0	0	0	0	0	0	0	0	171
	24:00	0	128	4	0	0	0	0	1	0	0	0	0	0	133
TOTAL V	VEHICLES	19	6618	649	97	162	8	0	33	1	1	1	0	0	7589
TOTA	AL AXLES	38	13236	1298	242	324	24	0	116	5	6	5	0	0	15294
GRAND TOTAL V	VEHICLES	115	12810	1196	153	304	19	0	66	2	1	1	0	0	14667
GRAND TOTA	AL AXLES	230	25620	2392	382	608	57	0	231	10	6	5	0	0	29541

F1. Motorcycles
2. Autos*

F3. 2 Axle, 4-Tire Pickups, Vans, Motorhomes*
F4. Buses
F5. 2 Axle, 6-Tire Single Unit Trucks
F6. 3 Axle Single Unit Trucks
F7. 4 or More Axle Single Unit Trucks
F8. 4 or Less Axle Vehicles, One Unit is a Truck
F9. 5 Axle Double Unit Vehicles, One Unit is a Truck
F10. 6 or More Double Unit Vehicles, One Unit is a Truck
F11.5 or Less Axle Multi-Unit Trucks
F12. 6 Axle Multi-Unit Trucks
F13. 7 or More Axle Multi-Unit Trucks

* INCLUDING THOSE HAULING TRAILERS

FUNCTIONAL CLASS CODES:

RURAL	URBAN
01	11 PRINCIPAL ARTERIAL-INTERSTATE
02	12 PRINCIPAL ARTERIAL-EXPRESSWAY
02	14 PRINCPAL ARTERIAL-OTHER
06	16 MINOR ARTERIAL
07	17 MAOR COLLECTOR
08	17 MINOR COLLECTOR
09	19 LOCAL SYSTEM

Start date:	Wed 11/30/2011 15:00
End date:	Wed 12/07/2011 13:45
County:	Monroe
Town:	ROCHESTER
Speed limit:	30
LON\#:	

Date: 01/12/2012

Station:	434049
Road \#:	E710 Road name: DEWEY AVE
From:	DRIVING PK AVE
To:	RIDGEWAY AVE
Direction:	North
Lanes: 1,2	
Counts have been summarized into NYSDOT El stan	

Counts have been summarized into NYSDOT El standard bins
Speeds, mph

Count duration:	167 hours
Functional class:	16
Factor group:	30
Batch ID:	DOT-R4WW49a
Count taken by:	Org: TST Init: GNL
Processed by:	Org: DOT Init: MAB

Speeds, mph																						
Hour	$\begin{aligned} & 0.0- \\ & 20.0 \end{aligned}$	$\begin{array}{r} 20.1- \\ 25.0 \end{array}$	$\begin{array}{r} 25.1- \\ 30.0 \end{array}$	$\begin{array}{r} 30.1- \\ 35.0 \end{array}$	$\begin{array}{r} 35.1- \\ 40.0 \end{array}$	$\begin{array}{r} 40.1- \\ 45.0 \end{array}$	$\begin{array}{r} 45.1- \\ 50.0 \end{array}$	$\begin{array}{r} 50.1- \\ 55.0 \end{array}$	$\begin{array}{r} 55.1- \\ 60.0 \end{array}$	$\begin{array}{r} 60.1- \\ 65.0 \end{array}$	$\begin{array}{r} 65.1- \\ 70.0 \end{array}$	$\begin{array}{r} 70.1- \\ 75.0 \end{array}$	$\begin{array}{r} 75.1- \\ 95.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 45.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 50.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 55.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 60.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 65.0 \end{array}$	Avg	50th\%	85th\%	Total
1:00	4	2	18	35	15	1	1	0	0	0	0	0	0	1.3	0.0	0.0	0.0	0.0	29.6	32.0	36.9	76
2:00	2	1	18	22	7	1	1	0	0	0	0	0	0	1.9	0.0	0.0	0.0	0.0	29.6	31.2	35.9	52
3:00	2	1	8	16	7	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	29.7	32.2	37.6	36
4:00	1	1	5	9	4	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	29.6	32.0	37.4	21
5:00	4	1	7	12	6	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.2	31.7	37.7	32
6:00	5	4	12	24	13	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	28.3	31.9	37.4	60
7:00	13	11	43	52	21	4	1	0	0	0	0	0	0	0.7	0.0	0.0	0.0	0.0	27.3	30.6	36.1	145
8:00	49	92	142	72	16	3	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	23.9	26.7	32.5	374
9:00	40	40	99	78	26	5	1	0	0	0	0	0	0	0.3	0.0	0.0	0.0	0.0	24.9	28.3	34.3	289
10:00	43	43	105	98	37	6	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.3	28.9	34.7	332
11:00	43	40	115	112	32	5	1	0	0	0	0	0	0	0.3	0.0	0.0	0.0	0.0	25.5	29.0	34.4	348
12:00	40	47	125	129	32	5	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.9	29.1	34.3	378
13:00	48	53	141	125	32	5	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.4	28.6	34.1	404
14:00	40	50	145	126	42	6	2	1	0	0	0	0	0	0.7	0.2	0.0	0.0	0.0	26.3	29.0	34.6	412
15:00	92	103	171	120	45	4	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	23.6	27.2	33.7	535
16:00	137	139	191	145	29	5	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	22.5	26.3	32.9	646
17:00	120	126	202	144	37	3	1	0	0	0	0	0	0	0.2	0.0	0.0	0.0	0.0	23.1	26.8	33.2	633
18:00	130	137	223	143	33	3	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	22.8	26.6	32.8	669
19:00	56	76	182	131	32	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.0	28.0	33.6	479
20:00	30	31	122	126	30	7	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.8	29.6	34.5	346
21:00	28	27	89	109	28	5	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.6	30.0	34.6	286
22:00	16	21	83	88	26	5	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.6	30.0	34.8	239
23:00	14	12	48	66	22	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.4	30.7	35.0	164
24:00	9	4	39	51	19	4	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	28.4	31.1	36.1	126
Avg. Daily Total	966	1062	2333	2033	591	88	8	1	0	0	0	0	0	0.1	0.0	0.0	0.0	0.0	24.8	28.3	34.1	7082
Percent 1	3.6\%	15.0\%	32.9\%	28.7\%	8.3\%	1.2\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%									
Cum. Percent 13	3.6\%	28.6\%	61.6\%	90.3\%	98.6\%	99.9\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%									
Average hour	40	44	97	85	25	4	0	0	0	0	0	0	0									295

North	Avg. Speed 24.8		50th\% Speed 28.3	85th\% Speed	
South		25.6	28.7		34.5
Peak Hour Data					
Direction	Hour	Count	2-way	Hour	Count
North	18	669	A.M.	8	1147
South	8	773	P.M.	16	1206

Start date:	Wed 11/30/2011 15:00
End date:	Wed 12/07/2011 13:45
County:	Monroe
Town:	ROCHESTER
Speed limit:	30
LON\#:	

Date: 01/12/2012

Station:	434049
Road \#:	E710 Road name: DEWEY AVE
From:	DRIVING PK AVE
To:	RIDGEWAY AVE
Direction:	South
Lanes: 1,2	
Counts have been summarized into NYSDOT El stan	

Counts have been summarized into NYSDOT El standard bins
Speeds, mph

Hour	$\begin{aligned} & 0.0- \\ & 20.0 \end{aligned}$	$\begin{array}{r} 20.1- \\ 25.0 \end{array}$	$\begin{array}{r} 25.1- \\ 30.0 \end{array}$	$\begin{array}{r} 30.1- \\ 35.0 \end{array}$	$\begin{array}{r} 35.1- \\ 40.0 \end{array}$	$\begin{array}{r} 40.1- \\ 45.0 \end{array}$	$\begin{array}{r} 45.1- \\ 50.0 \end{array}$	$\begin{array}{r} 50.1- \\ 55.0 \end{array}$	$\begin{array}{r} 55.1- \\ 60.0 \end{array}$	$\begin{array}{r} 60.1- \\ 65.0 \end{array}$	$\begin{array}{r} 65.1- \\ 70.0 \end{array}$	$\begin{array}{r} 70.1- \\ 75.0 \end{array}$	$\begin{array}{r} 75.1- \\ 95.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 45.0 \end{array}$	$\begin{array}{r} \% \text { Exc } \\ 50.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 55.0 \end{array}$	$\begin{array}{r} \% \text { Exc } \\ 60.0 \end{array}$	$\begin{array}{r} \text { \% Exc } \\ 65.0 \end{array}$	Avg	50th\%	85th\%	Total
1:00	8	6	19	39	12	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.5	31.3	35.5	86
2:00	3	2	12	17	7	2	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	28.5	31.4	36.9	43
3:00	2	2	12	14	6	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	28.4	30.8	35.6	36
4:00	2	2	8	8	4	1	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.6	30.4	36.6	25
5:00	3	5	10	9	4	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	26.0	28.8	34.7	31
6:00	4	7	22	36	12	5	2	0	0	0	0	0	0	2.3	0.0	0.0	0.0	0.0	29.3	31.6	37.5	88
7:00	13	29	72	81	43	9	2	1	0	0	0	0	0	1.2	0.4	0.0	0.0	0.0	28.4	30.7	37.1	250
8:00	95	190	320	131	34	3	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	24.0	26.6	32.0	773
9:00	33	73	168	136	56	12	1	0	0	0	0	0	0	0.2	0.0	0.0	0.0	0.0	26.9	29.0	34.9	479
10:00	21	37	128	134	47	8	1	0	0	0	0	0	0	0.3	0.0	0.0	0.0	0.0	27.9	30.1	35.0	376
11:00	28	37	110	115	42	9	1	0	0	0	0	0	0	0.3	0.0	0.0	0.0	0.0	27.1	29.9	35.1	342
12:00	30	45	116	127	48	11	3	0	0	0	0	0	0	0.8	0.0	0.0	0.0	0.0	27.2	30.0	35.6	380
13:00	31	54	131	156	52	12	2	0	0	0	0	0	0	0.5	0.0	0.0	0.0	0.0	27.4	30.1	35.1	438
14:00	57	47	129	139	57	7	1	0	0	0	0	0	0	0.2	0.0	0.0	0.0	0.0	25.6	29.5	35.0	437
15:00	93	68	179	127	40	4	1	0	0	0	0	0	0	0.2	0.0	0.0	0.0	0.0	23.7	27.7	33.8	512
16:00	106	82	202	133	32	4	1	0	0	0	0	0	0	0.2	0.0	0.0	0.0	0.0	23.3	27.3	33.3	560
17:00	124	76	182	135	30	2	1	0	0	0	0	0	0	0.2	0.0	0.0	0.0	0.0	22.6	27.1	33.2	550
18:00	76	70	184	137	36	4	1	0	0	0	0	0	0	0.2	0.0	0.0	0.0	0.0	24.4	28.0	33.8	508
19:00	53	71	178	139	38	6	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	25.5	28.4	34.0	485
20:00	30	36	112	110	34	6	1	0	0	0	0	0	0	0.3	0.0	0.0	0.0	0.0	26.6	29.4	34.7	329
21:00	24	32	102	102	33	5	1	0	0	0	0	0	0	0.3	0.0	0.0	0.0	0.0	27.0	29.6	34.8	299
22:00	16	28	94	88	27	6	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	27.5	29.6	34.7	259
23:00	6	19	56	65	21	3	1	0	0	0	0	0	0	0.6	0.0	0.0	0.0	0.0	28.6	30.4	35.0	171
24:00	9	9	35	52	23	5	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	28.4	31.3	36.8	133
Avg. Daily Total	867	1027	2581	2230	738	126	20	1	0	0	0	0	0	0.3	0.0	0.0	0.0	0.0	25.6	28.7	34.5	7590
Percent 1	1.4\%	13.5\%	34.0\%	29.4\%	9.7\%	1.7\%	0.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%									
Cum. Percent 1	1.4\%	25.0\%	59.0\%	88.3\%	98.1\%	99.7\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%									
Average hour	36	43	108	93	31	5	1	0	0	0	0	0	0									316

North	Avg. Speed		50th\% Speed	85th\% Speed	
South		25.6	28.7		34.1
					34.5
Peak Hour Data					
Direction	Hour	Count	2-way	Hour	Count
North	18	669	A.M.	8	1147
South	8	773	P.M.	16	1206

Bergmann Associates
 200 First Federal Plaza
 28 East Main Street
 Rochester, NY 14614

Dewey Ave/Driving Park Ave Intersection PIN 4755.55 Turning Movement Counts

File Name : 14-03-26 Dewey West \& Driving Park
Site Code : 0
Start Date : 3/26/2014
Page No : 1

Groups Printed- Cars - Trucks - Buses

	Driving Park Avenue From East				Dewey Avenue From South				Driving Park Avenue From West						
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds	App. Total	Exclu. Total	Inclu. Total	Int. Total
07:00 AM	34	44	0	78	36	3	0	39	9	27	0	36	0	153	153
07:15 AM	43	66	0	109	44	5	3	49	20	48	0	68	3	226	229
07:30 AM	32	58	1	90	49	0	1	49	15	34	2	49	4	188	192
07:45 AM	49	83	0	132	61	5	0	66	25	44	2	69	2	267	269
Total	158	251	1	409	190	13	4	203	69	153	4	222	9	834	843
08:00 AM	46	61	0	107	59	10	1	69	12	33	1	45	2	221	223
08:15 AM	36	59	0	95	40	8	2	48	16	37	2	53	4	196	200
08:30 AM	34	70	0	104	43	2	0	45	12	25	3	37	3	186	189
08:45 AM	27	54	2	81	54	7	0	61	16	31	0	47	2	189	191
Total	143	244	2	387	196	27	3	223	56	126	6	182	11	792	803

*** BREAK ***

03:30 PM	57	69	4	126	89	7	6	96	15	39	3	54	13	276	289
03:45 PM	73	99	2	172	105	13	2	118	16	44	5	60	9	350	359
Total	130	168	6	298	194	20	8	214	31	83	8	114	22	626	648
04:00 PM	68	77	3	145	97	15	2	112	9	54	7	63	12	320	332
04:15 PM	66	67	2	133	91	20	6	111	15	40	8	55	16	299	315
04:30 PM	67	64	2	131	113	8	8	121	14	48	3	62	13	314	327
04:45 PM	80	63	7	143	104	10	5	114	11	54	5	65	17	322	339
Total	281	271	14	552	405	53	21	458	49	196	23	245	58	1255	1313
05:00 PM	58	84	1	142	102	14	6	116	15	55	7	70	14	328	342
05:15 PM	50	61	0	111	107	12	3	119	17	58	6	75	9	305	314
05:30 PM	71	68	3	139	107	14	9	121	9	45	3	54	15	314	329
05:45 PM	60	63	5	123	78	14	4	92	8	38	4	46	13	261	274
Total	239	276	9	515	394	54	22	448	49	196	20	245	51	1208	1259
Grand Total	951	1210	32	2161	1379	167	58	1546	254	754	61	1008	151	4715	4866
Apprch \%	44	56			89.2	10.8			25.2	74.8					
Total \%	20.2	25.7		45.8	29.2	3.5		32.8	5.4	16		21.4	3.1	96.9	
Cars	833	1103		1968	1258	155		1471	239	695		995	0	0	4434
\% Cars	87.6	91.2	100	89.7	91.2	92.8	100	91.7	94.1	92.2	100	93.1	0	0	91.1
Trucks	14	14		28	17	3		20	5	8		13	0	0	61
\% Trucks	1.5	1.2	0	1.3	1.2	1.8	0	1.2	2	1.1	0	1.2	0	0	1.3
Buses	104	93		197	104	9		113	10	51		61	0	0	371
\% Buses	10.9	7.7	0	9	7.5	5.4	0	7	3.9	6.8	0	5.7	0	0	7.6

Bergmann Associates

200 First Federal Plaza

28 East Main Street

Rochester, NY 14614

Dewey Ave/Driving Park Ave Intersection
PIN 4755.55
Turning Movement Counts

File Name : 14-03-26 Dewey West \& Driving Park
Site Code : 0
Start Date : 3/26/2014
Page No : 2

	Driving Park Avenue From East			Dewey Avenue From South			Driving Park Avenue From West			
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1										
Peak Hour for Entire Intersection Begins at 07:15 AM										
07:15 AM	43	66	109	44	5	49	20	48	68	226
07:30 AM	32	58	90	49	0	49	15	34	49	188
07:45 AM	49	83	132	61	5	66	25	44	69	267
08:00 AM	46	61	107	59	10	69	12	33	45	221
Total Volume	170	268	438	213	20	233	72	159	231	902
\% App. Total	38.8	61.2		91.4	8.6		31.2	68.8		
PHF	. 867	. 807	. 830	. 873	. 500	. 844	. 720	. 828	. 837	. 845
Cars	148	238	386	185	20	205	66	135	201	792
\% Cars	87.1	88.8	88.1	86.9	100	88.0	91.7	84.9	87.0	87.8
Trucks	2	0	2	1	0	1	1	0	1	4
\% Trucks	1.2	0	0.5	0.5	0	0.4	1.4	0	0.4	0.4
Buses	20	30	50	27	0	27	5	24	29	106
\% Buses	11.8	11.2	11.4	12.7	0	11.6	6.9	15.1	12.6	11.8

Bergmann Associates

200 First Federal Plaza

28 East Main Street

Rochester, NY 14614

Dewey Ave/Driving Park Ave Intersection
PIN 4755.55
Turning Movement Counts

File Name : 14-03-26 Dewey West \& Driving Park
Site Code : 0
Start Date : 3/26/2014
Page No : 3

Peak Hour Analysis From 04:45 PM to 05:30 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:45 PM

04:45 PM	80									
04:45 PM $05: 00 \mathrm{PM}$	80	63	143 142	104	10	114	11	54	65	322
05:00 PM	58	84	142	102	14	116	15	55	70	328
05:15 PM	50	61	111	107	12	119	17	58	75	305
05:30 PM	71	68	139	107	14	121	9	45	54	314
Total Volume	259	276	535	420	50	470	52	212	264	1269
\% App. Total	48.4	51.6		89.4	10.6		19.7	80.3		
PHF	. 809	. 821	. 935	. 981	. 893	. 971	. 765	. 914	. 880	. 967
Cars	225	260	485	402	47	449	52	207	259	1193
\% Cars	86.9	94.2	90.7	95.7	94.0	95.5	100	97.6	98.1	94.0
Trucks	4	5	9	1	0	1	0	1	1	11
\% Trucks	1.5	1.8	1.7	0.2	0	0.2	0	0.5	0.4	0.9
Buses	30	11	41	17	3	20	0	4	4	65
\% Buses	11.6	4.0	7.7	4.0	6.0	4.3	0	1.9	1.5	5.1

Bergmann Associates

200 First Federal Plaza
28 East Main Street
Rochester, NY 14614

Dewey Ave/Driving Park Ave Intersection
PIN 4755.55
Turning Movement Counts

File Name : 14-03-26 Dewey West \& Driving Park
Site Code : 0
Start Date : 3/26/2014
Page No : 4

Bergmann Associates
 200 First Federal Plaza
 28 East Main Street
 Rochester, NY 14614

Dewey Ave/Driving Park Ave Intersection PIN 4755.55 Turning Movement Counts

File Name : 14-03-26 Dewey East \& Driving Park
Site Code : 0
Start Date : 3/26/2014
Page No :1

Groups Printed- Cars - Trucks - Buses

	Dewey Avenue From North					Driving Park Avenue From East					BroezelStreetFrom South		Driving Park Avenue From West							
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Exclu. Total	Inclu. Total	Int. Total
07:00 AM	44	12	26	1	82	20	37	4	2	61	0	0	1	18	40	0	59	3	202	205
07:15 AM	72	8	37	2	117	12	37	5	0	54	0	0	2	44	50	0	96	2	267	269
07:30 AM	65	15	52	3	132	16	29	3	2	48	0	0	0	28	57	0	85	5	265	270
07:45 AM	90	12	64	0	166	18	49	9	1	76	0	0	0	36	69	1	105	2	347	349
Total	271	47	179	6	497	66	152	21	5	239	0	0	3	126	216	1	345	12	1081	1093
08:00 AM	65	10	36	1	111	15	48	2	1	65	0	0	2	38	49	0	89	2	265	267
08:15 AM	69	9	52	1	130	18	24	2	3	44	1	0	0	35	48	0	83	5	257	262
08:30 AM	68	6	48	1	122	19	37	4	1	60	0	0	0	24	45	0	69	2	251	253
08:45 AM	54	10	41	0	105	18	31	6	0	55	1	0	0	29	59	0	88	1	248	249
Total	256	35	177	3	468	70	140	14	5	224	2	0	2	126	201	0	329	10	1021	1031

*** BREAK ***

03:30 PM	71	8	28	1	107	48	54	7	1	109	9	0	1	37	86	0	124	11	340	351
03:45 PM	106	9	31	1	146	36	60	11	4	107	7	0	2	44	94	0	140	12	393	405
Total	177	17	59	2	253	84	114	18	5	216	16	0	3	81	180	0	264	23	733	756
04:00 PM	89	8	35	9	132	27	56	12	7	95	5	0	4	45	90	1	139	22	366	388
04:15 PM	62	7	20	1	89	25	66	6	2	97	18	0	2	41	68	1	111	22	297	319
04:30 PM	80	6	30	0	116	34	56	7	0	97	9	0	3	50	87	3	140	12	353	365
04:45 PM	83	8	28	4	119	32	52	5	6	89	2	0	1	42	102	1	145	13	353	366
Total	314	29	113	14	456	118	230	30	15	378	34	0	10	178	347	6	535	69	1369	1438
05:00 PM	84	5	27	7	116	44	54	8	3	106	3	0	2	39	107	0	148	13	370	383
05:15 PM	70	9	32	2	111	46	57	8	0	111	5	0	2	39	106	0	147	7	369	376
05:30 PM	78	8	22	6	108	45	57	4	3	106	12	0	4	44	92	2	140	23	354	377
05:45 PM	72	2	21	4	95	42	52	5	2	99	12	0	2	28	84	1	114	19	308	327
Total	304	24	102	19	430	177	220	25	8	422	32	0	10	150	389	3	549	62	1401	1463
Grand Total	1322	152	630	44	2104	515	856	108	38	1479	84	0	28	661	1333	10	2022	176	5605	5781
Apprch \%	62.8	7.2	29.9			34.8	57.9	7.3					1.4	32.7	65.9					
Total \%	23.6	2.7	11.2		37.5	9.2	15.3	1.9		26.4		0	0.5	11.8	23.8		36.1	3	97	
Cars	1197	146	599		1985	484	743	96		1361		84	25	605	1213		1853	0	0	5283
\% Cars	90.5	96.1	95.1	97.7	92.4	94	86.8	88.9	100	89.7	100	100	89.3	91.5	91	100	91.2	0	0	91.4
Trucks	17	0	1		19	3	15	0		18		0	0	5	15		20	0	0	57
\% Trucks	1.3	0	0.2	2.3	0.9	0.6	1.8	0	0	1.2	0	0	0	0.8	1.1	0	,	0	0	1
Buses	108	6	30		144	28	98	12		138		0	3	51	105		159	0	0	441
\% Buses	8.2	3.9	4.8	0	6.7	5.4	11.4	11.1	0	9.1	0	0	10.7	7.7	7.9	0	7.8	0	0	7.6

Bergmann Associates

200 First Federal Plaza

28 East Main Street

Rochester, NY 14614

Dewey Ave/Driving Park Ave Intersection
PIN 4755.55
Turning Movement Counts

File Name : 14-03-26 Dewey East \& Driving Park
Site Code : 0
Start Date : 3/26/2014
Page No :2

	Dewey Avenue From North				Driving Park Avenue From East				From South App. Total	Driving Park Avenue From West				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total		Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1														
Peak Hour for Enti	Interse	n Beg	at 07:	5 AM										
07:15 AM	72	8	37	117	12	37	5	54	0	2	44	50	96	267
07:30 AM	65	15	52	132	16	29	3	48	0	0	28	57	85	265
07:45 AM	90	12	64	166	18	49	9	76	0	0	36	69	105	347
08:00 AM	65	10	36	111	15	48	2	65	0	2	38	49	89	265
Total Volume	292	45	189	526	61	163	19	243	0	4	146	225	375	1144
\% App. Total	55.5	8.6	35.9		25.1	67.1	7.8			1.1	38.9	60		
PHF	. 811	. 750	. 738	. 792	. 847	. 832	. 528	. 799	. 000	. 500	. 830	. 815	. 893	. 824
Cars	259	43	181	483	56	136	14	206	0	2	126	189	317	1006
\% Cars	88.7	95.6	95.8	91.8	91.8	83.4	73.7	84.8	0	50.0	86.3	84.0	84.5	87.9
Trucks	2	0	0	2	0	1	0	1	0	0	0	2	2	5
\% Trucks	0.7	0	0	0.4	0	0.6	0	0.4	0	0	0	0.9	0.5	0.4
Buses	31	2	8	41	5	26	5	36	0	2	20	34	56	133
\% Buses	10.6	4.4	4.2	7.8	8.2	16.0	26.3	14.8	0	50.0	13.7	15.1	14.9	11.6

Bergmann Associates

200 First Federal Plaza

28 East Main Street

Rochester, NY 14614

Dewey Ave/Driving Park Ave Intersection
PIN 4755.55
Turning Movement Counts

File Name : 14-03-26 Dewey East \& Driving Park
Site Code : 0
Start Date : 3/26/2014
Page No : 3

Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:45 PM

Bergmann Associates

200 First Federal Plaza
28 East Main Street
Rochester, NY 14614

Dewey Ave/Driving Park Ave Intersection
PIN 4755.55
Turning Movement Counts

File Name : 14-03-26 Dewey East \& Driving Park
Site Code : 0
Start Date : 3/26/2014
Page No : 4

Bergmann Associates
 200 First Federal Plaza
 28 East Main Street
 Rochester, NY 14614

Dewey Ave/Driving Park Ave Intersection
PIN 4755.55
Turning Movement Counts

File Name : 14-03-26 Dewey \& Selye
Site Code : 0
Start Date : 3/26/2014
Page No : 1

Groups Printed- Cars - Trucks - Buses

	Dewey Avenue From North					Selye Terrace From East					Dewey Avenue From South					Selye Terrace From West							
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Exclu, Total	Inclu. Total	Int. Total
07:00 AM	6	66	3	3	75	2	1	0	1	3	2	56	0	0	58	2	3	1	3	6	7	142	149
07:15 AM	10	108	4	0	122	3	0	0	1	3	2	66	3	0	71	8	2	0	9	10	10	206	216
07:30 AM	5	133	8	4	146	1	0	1	2	2	1	70	1	0	72	1	2	3	0	6	6	226	232
07:45 AM	5	154	9	0	168	2	1	0	1	3	3	84	0	0	87	3	1	1	3	5	4	263	267
Total	26	461	24	7	511	8	2	1	5	11	8	276	4	0	288	14	8	5	15	27	27	837	864
08:00 AM	3	102	2	2	107	4	2	2	0	8	3	60	0	0	63	1	0	0	0	1	2	179	181
08:15 AM	3	119	2	3	124	3	1	3	2	7	1	69	0	0	70	3	0	2	4	5	9	206	215
08:30 AM	2	113	3	3	118	3	2	1	0	6	1	59	2	0	62	3	2	2	0	7	3	193	196
08:45 AM	6	81	7	3	94	2	1	1	0	4	2	75	0	0	77	4	2	0	4	6	7	181	188
Total	14	415	14	11	443	12	6	7	2	25	7	263	2	0	272	11	4	4	8	19	21	759	780

*** BREAK ***

03:30 PM	12	126	4	9	142	2	1	3	2	6	1	135	2	0	138	3	2	5	3	10	14	296	310
03:45 PM	5	158	4	4	167	6	3	2	2	11	2	134	0	0	136	1	0	1	6	2	12	316	328
Total	17	284	8	13	309	8	4	5	4	17	3	269	2	0	274	4	2	6	9	12	26	612	638
04:00 PM	8	139	6	5	153	3	1	1	2	5	0	120	4	0	124	0	0	2	6	2	13	284	297
04:15 PM	7	109	6	1	122	7	0	1	3	8	5	97	0	0	102	,	3	4	5	9	9	241	250
04:30 PM	4	117	3	2	124	3	4	4	5	11	1	124	2	0	127	3	1	2	1	6	8	268	276
04:45 PM	3	127	5	2	135	5	2	1	8	8	2	133	0	0	135	0	1	1	5	2	15	280	295
Total	22	492	20	10	534	18	7	7	18	32	8	474	6	0	488	5	5	9	17	19	45	1073	1118
05:00 PM	2	118	4	0	124	4	3	0	1	7	2	140	3	0	145	1	1	2	6	4	7	280	287
05:15 PM	3	107	9	1	119	6	1	1	1	8	4	149	3	0	156	2	0	5	2	7	4	290	294
05:30 PM	7	108	4	2	119	4	3	2	3	9	1	135	2	0	138	2	0	6	0	8	5	274	279
05:45 PM	5	101	3	6	109	1	1	1	2	3	4	121	1	0	126	1	1	2	1	4	9	242	251
Total	17	434	20	9	471	15	8	4	7	27	11	545	9	0	565	6	2	15	9	23	25	1086	1111
Grand Total	96	2086	86	50	2268	61	27	24	36	112	37	1827	23	0	1887	40	21	39	58	100	144	4367	4511
Apprch \%	4.2	92	3.8			54.5	24.1	21.4			2	96.8	1.2			40	21	39					
Total \%	2.2	47.8	2		51.9	1.4	0.6	0.5		2.6	0.8	41.8	0.5		43.2	0.9	0.5	0.9		2.3	3.2	96.8	
Cars	90	1994	82		2216	53	26	23		138	35	1738	21		1794	39	19	39		155	0	0	4303
\% Cars	93.8	95.6	95.3	100	95.6	86.9	96.3	95.8	100	93.2	94.6	95.1	91.3	0	95.1	97.5	90.5	100	100	98.1	0	0	95.4
Trucks	0	21	0		21	1	0	0		.	0	21	0		21	0	0	0		0	0	0	43
\% Trucks	0	1	0	0	0.9	1.6	0	0	0	0.7	0	1.1	0	0	1.1	0	0	0	0	0	0	0	1
Buses	6	71	4		81	7	1	1		9	2	68	2		72	.	2	0		3	0	0	165
\% Buses	6.2	3.4	4.7	0	3.5	11.5	3.7	4.2	0	6.1	5.4	3.7	8.7	0	3.8	2.5	9.5	0	0	1.9	0	0	3.7

Bergmann Associates
 200 First Federal Plaza
 28 East Main Street
 Rochester, NY 14614

Dewey Ave/Driving Park Ave Intersection
PIN 4755.55
Turning Movement Counts

File Name : 14-03-26 Dewey \& Selye
Site Code : 0
Start Date : 3/26/2014
Page No :2

	Dewey Avenue From North				Selye Terrace From East				Dewey Avenue From South				Selye Terrace From West				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1																	
Peak Hour for E	tire Int	section	Begins	at 07:15													
07:15 AM	10	108	4	122	3	0	0	3	2	66	3	71	8	2	0	10	206
07:30 AM	5	133	8	146	1	0	1	2	1	70	1	72	1	2	3	6	226
07:45 AM	5	154	9	168	2	1	0	3	3	84	0	87	3	1	1	5	263
08:00 AM	3	102	2	107	4	2	2	8	3	60	0	63	1	0	0	1	179
Total Volume	23	497	23	543	10	3	3	16	9	280	4	293	13	5	4	22	874
\% App. Total	4.2	91.5	4.2		62.5	18.8	18.8		3.1	95.6	1.4		59.1	22.7	18.2		
PHF	. 575	. 807	. 639	. 808	. 625	. 375	. 375	. 500	. 750	. 833	. 333	. 842	. 406	. 625	. 333	. 550	. 831
Cars	23	476	22	521	6	3	3	12	9	262	3	274	13	4	4	21	828
\% Cars	100	95.8	95.7	95.9	60.0	100	100	75.0	100	93.6	75.0	93.5	100	80.0	100	95.5	94.7
Trucks	0	3	0	3	1	0	0	1	0	2	0	2	0	0	0	0	6
\% Trucks	0	0.6	0	0.6	10.0	0	0	6.3	0	0.7	0	0.7	0	0	0	0	0.7
Buses	0	18	1	19	3	0	0	3	0	16	1	17	0	1	0	1	40
\% Buses	0	3.6	4.3	3.5	30.0	0	0	18.8	0	5.7	25.0	5.8	0	20.0	0	4.5	4.6

Bergmann Associates

200 First Federal Plaza
28 East Main Street
Rochester, NY 14614

Dewey Ave/Driving Park Ave Intersection
PIN 4755.55
Turning Movement Counts

File Name : 14-03-26 Dewey \& Selye
Site Code : 0
Start Date : 3/26/2014
Page No : 3

Peak Hour Analysis From 04:45 PM to 05:30 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:45 PM

k Hour for	In	rsectio		04:4	5												
04:45 PM	3	127	5	135	5	2	1	8	2	133	0	135	0	1	1	2	280
05:00 PM	2	118	4	124	4	3	0	7	2	140	3	145	1	1	2	4	280
05:15 PM	3	107	9	119	6	1		8	4	149	3	156	2	0	5	7	290
05:30 PM	7	108	4	119	4	3	2	9	1	135	2	138	2	0	6	8	274
Total Volume	15	460	22	497	19	9	4	32	9	557	8	574	5	2	14	21	1124
\% App. Total	3	92.6	4.4		59.4	28.1	12.5		1.6	97	1.4		23.8	9.5	66.7		
PHF	. 536	. 906	. 611	. 920	. 792	. 750	. 500	. 889	. 563	. 935	. 667	. 920	. 625	500	. 583	. 656	. 969
Cars	15	439	22	476	19	8	4	31	9	540	8	557	5	2	14	21	1085
\% Cars	100	95.4	100	95.8	100	88.9	100	96.9	100	96.9	100	97.0	100	100	100	100	96.5
Trucks	0	8	0	8	0	0	0	0	0	4	0	4	0	0	0	0	12
\% Trucks	0	1.7	0	1.6	0	0	0	0	0	0.7	0	0.7	0	0	0	0	1.1
Buses	0	13	0	13	0	1	0	1	0	13	0	13	0	0	0	0	27
\% Buses	0	2.8	0	2.6	0	11.1	0	3.1	0	2.3	0	2.3	0	0	0	0	2.4

Bergmann Associates

200 First Federal Plaza
28 East Main Street
Rochester, NY 14614

Dewey Ave/Driving Park Ave Intersection
PIN 4755.55
Turning Movement Counts

File Name : 14-03-26 Dewey \& Selye
Site Code : 0
Start Date : 3/26/2014
Page No : 4

LEGEND:

City of Rochester

Department of
Environmental Services
Dewey Ave / Driving Park Ave
Intersection Realignment Project
P.I.N. 4755.55

Exhibit 2.3.1.6. (1) - 1
2014 Existing
Peak Hour Turning Movements

SHEET NO.	SCALE	DATE	B Berg mann
1	No Scale	$04 / 14$	Basociates

ID Numbe	Case Numbe	Date	Location if Intersection	sec	rsection Na	Severity	Light	Character	Surf Cond.	Weather	Impact	Factort	Comments
10	33539972	8132010	EB on Driving Park 200' of Dewey Ave	D	Price Rite	0 Property Damage Only	1 Daylight	Straight and Level	1 Dry	1 Clear	Rear End	eaction to Other Uninvolved Veh	quickly V1 struck V2, Stop cause by car turning into parking lot
30	33767127	21012011	SB on Dewey at Driving Park (Parking Lot)	D	Family Dollar	0 Property Damage Only	1 Daylight	1 Straight and Level	$1{ }^{\text {D }}$ ry	${ }^{1}$ Clear	Right Angle	Driver InatentionDISistraction	SB V2 struck by V1 coming out of parking lot
32	33770304		Dewey	D	Family Dollar	1 lijury	1 Daylight	1 Straight and Level	2 Wet	2 Cloudy	Rear End	Following to closely	NB V2 Stopped struck by NB V1
51	${ }^{33961798}$	7/1822011	Dewey 100' Nof Driving Park	D	Family Dollar	1 Non-Reportable	1 Daylight	1 Straight and Level	2 Wet	2 Cloudy	Right Angle	Failure to Y Yeld R Rightot-way	EB V1 exiting Family Dollar turning left on Dewey struck
61	34041185	72011	Driving Park at PriceRite	D	Price Rite	Iniury	Dayight	1 Straight and Level	1 Dry	1 Clear	Left T	View Obstructed / Limited	WB V1 turn left in front of V2. V1 attempting to enter
66	34098089	11/1612011	Dewey $100^{\prime} \mathrm{N}$ of Driving Park	D	Family Dollar	-1 Non-Reporable	4 Dark-Road Lighted	1 Straight and Level	1 Dry	1 Clear	Right Angle		SB V1 struck V2 exiting parking lot
69	34116688	12112011	Dewey 30° N of Driving Park	D	Family Dollar	-1 Non-Reportable	1 Daylight	1 Straight and Level	1 Dry	1 Clear	Right Angle	Failure to Yield Right-o-way	V2 struck by V1 coming out of parking lo
${ }^{73}$	34145659	${ }^{12123212011}$	Diving Park 50° E of Finch Street	D	Price Rite	0 Property Damage Only	4 Dark-Road Lighted	1 Straight and Level	1 Dry	1 Clear	Right Angle	View Obstructed/Limited	WB V1 struck by V2 exting parking lot
108	343688182	$7 / 1612012$	Diving Park at Dewey	D	Family Dollar	0 Property Damage Only	1 Daylight	1 Straight and Level	1 Dry	1 Clear	Right Angle	Failure to Yield Right-of-way	SB V2 struck by V1 exiting parking lot
${ }_{1}^{16}$	${ }_{3}^{33401062}$	3/25/2010	Dewey Ave 500' Nof Divivin Park	$\stackrel{N}{N}$		$\frac{1}{1 \text { Injury }}$	$\frac{1 \text { Daylight }}{1 \text { Dayight }}$	1 Striaht and Level	$1{ }^{1}$ Dry	$\frac{2 \text { cloudy }}{1 \text { Clear }}$	$\underset{\text { Rear End }}{\substack{\text { Sideswipe }}}$	Following to clisely	V1 stuck stopped SB V2 which struck SB
25	${ }^{33708246}$	${ }^{12662010}$	WB on Driving Park at Dewey	N		1 Injury	1 Daylight	1 Straight and Level	Snowl/	${ }^{4}$ Snow	Rear End	Following to closely	WB V2 hit brakes WB V1 struck V2
29	33731623	1/12/2011	Dewey at Selye	N	Selye	1 Non-Reportable	1 Daylight	Straight	4 Snow		Rear	Pavement Slippery	SB V2 struck by V1
34	33777340	221712011	NB on Dewey 200 to f Lexington	N		Property Damage Only	3 Dusk	Straight and Level	1 Dry	${ }_{1}^{1}$ Clear	Rear End	ver Inattentionolistraction	fop for traticic, V2 was stopping. V1 tailed to stop hititing
36	33883784	3/8/2011	Driving Park 15' 'rom Dewey	N		0 Property Damage Only	aylight	1 Straight and Level	1 Dry	1 Clear	Rear End	Following to closely	d "suddenly" or emerg veh
39	${ }^{338843760}$	4/15/2011	SB Dewey 100 'trom Driving Park	N			1 Daylight	1 Straight and Level	1 Dry	${ }^{1} \mathrm{Cl}$ Cear	Right Angle	Ilure to Yield R Right-of-w	going striaght V1 exting parking lot struck V2
${ }_{46}^{46}$	33922094 33920874	${ }^{6 / 2222011} 5$	Divivig Park 20 Feet E of Finch	N		-1 Non-Reporable	1 Daylight	1 Straight and Level	$\frac{1}{10}$	$\frac{2 \text { cloudy }}{1 \text { Claar }}$	Obiect	Obstruction Debris	EB V1 was struck by tree branch
48	33930874	533120011	Dewey 250' Sof orving Park	N		1 lnjury	1 Daylight	Straight and Level	1 Dry	${ }_{1}^{1}$ Clear	Pedestrian	Passing or Lane Usage Improper	NB V1 passed RTS Bus stuck pedesstrian
55 56	34021063 34026882	${ }^{9 / 1822011} 9$		N		${ }_{\text {O Property Damage Only }}^{1 / 1 \text { Non-Reporatale }}$	$\frac{4 \text { Dark-Road Lighted }}{1 \text { Daylight }}$	1 Straight and Level	$\frac{1 \text { Dry }}{1 \text { Dry }}$	${ }_{1}^{1} 1$ Clear ${ }^{\text {Clar }}$	Overraking Right Angle	Driver InatentionDisistraction	WB V1 struck parked V2
68	34113961	${ }^{11 / 27 / 2011}$	Driving Park 200° E of Dewey	N		0 Property Damage Only	4 Dak-Road Lighted	1 Straight and Level	1 Dry	1 Clear	Sideswipe	Passing or Lane Usage Improper	EBV2 sidesswiped by V1
72	${ }^{34143133}$	1212012011	Driving Park 50' W of Dewey	N		${ }^{-1}$ Non-Reportable	3 Dusk	1 Straight and Level	1 Dry	1 Clear	Overtaking	Driver Inattention / Distraction	WB V2 struck by V1
75	34151276	12123212011	Diviving Park 50° E off Finch Street	N		0 Property Damage Only	4 Dark-Road Lighted	Straight and Level	$2 \mathrm{Wet}^{\text {et }}$	3 Rain	Overtaking	Passing or Lane Usage Improper	WB V1 struck parked V2
85	34225874	38812012	Driving Park $100^{\prime} \mathrm{W}$ of Dewey	N			3 Dusk	Straight and Level	2 Wet	${ }^{3}$ Rain			EB V1 struck pedestrian that ran out from between parked C
102	34321379	5/31/2012	Dewey Avenue 55° North of Diving Park	N		1 Non-Reportable	1 Dayight	Straight and Level	1 Dry	${ }_{1}^{1}$ Clear	Rear End	Driver Inatention/ Distraction	NB V3 rearended V2 which rearended
${ }_{113}$	34366838 3443982	${ }^{771512012} 9$	Diving Park 50. Wof Dewey	N		0 Property Damage only	4 Dark-Road Lighted	mioht and	I Dry	Ciar	Rear End	Driver Inatention / Distraction	
117	${ }^{33457142}$	10/22012	Dewey $100{ }^{\prime}$ N of of Diving Park	N		trary	1 Daylight	1 Straight and Level	2Wet	2 Cloudy		Passing or Lane Usagel Improer	
134	34681335	226612013	Dewey 150' Nof Driving Park	N		-1 Non-Reporabale	1 Daylight	1 Straight and Level	1 Dry	${ }_{1}$ Clear	Rear End	Driver I Iattention/ D Distraction	V_{2} stopoed and was struck by SB
${ }^{137}$	NR2975763	6/3/2010	Driving Park 40' of Finch	N		-1 Non-Reportable	4 Dak-Road Lighted	1 Straight and Level	2 Wet	3 Rain	Sideswipe	Passing or Lane Usage Improper	WB Parked V2 sideswiped by passing V1
139	NR3106927	$3 / 42011$	Dewey at Lexington	N		-1 Non-Reportable	1 Daylight	1 Straight and Level	1 Dry	2 Cloudy	Rear End	Following too Closely	
${ }^{3}$	${ }^{33413273}$	45512010	WB on Diviving Park at Dewey	Y	Dewey/Driving	1 Ijury	1 Daylight	1 Straight and Level	1 Dry	${ }_{1}^{1}$ Clear	Rear End	Following to closely	WB V1 turning right stopped abrutly due to Ped WB V2 turning right struck
4	33437579	$5 / 312010$	WB on Driving Park at Finch	Y	Finch	0 Property Damage Only	1 Daylight	1 Straight and Level	1 Dry	${ }_{1} 1$ Clear	Rear End	Following to closely	$V 2$ stopped behind uninvolved veh in front turining left WB $V 1$ vailed to stop struck
${ }_{14}^{11}$	33540593 3352450	${ }^{7 / 2882010} 8$	WB on Divivin Park at Finch	r	Finch	0 Property Damage Only	1 Daylight	1 Straight and Level	$1{ }^{1} \mathrm{Dry}$	${ }_{1}^{1 \text { Clear }}$	Rear End	Driver InatentionDisitraction	WB V2 stopped quickl V1 struck V2
${ }_{14}^{18}$	${ }^{33552450} 3$	${ }^{8173122010}$	WB on Din Dewey atar Selve Tery	Y	$\frac{\text { Dewey }{ }^{\text {Soriving }} \text { Selve }}{\text { S }}$	${ }_{0}{ }^{\text {a }}$ Property Diury Damage Only	1 Daylight	1 Straight and Level Level	$1{ }^{\text {cory }}$	${ }^{2}$ Clioudy	${ }_{\text {Peigestranl }}$		WB V V turning lett on Dewey striking pedestrian
27	33709176	12123/2010	WB on Diviving Park at Dewey	Y	Dewey Diviving	${ }^{-1}$ Non-Reportable	4 Dark-Road Lighted	Straight and Level	1 Dry	${ }^{1}$ Clear	Rear E	Following to closely	WB V2 stopped for trafic V1 rearended V2
	16228	282010	NB on Dewey at Selye Terr	Y		0 Property Damage Only	Dark-Road	raight and Level	2 Wet	2 Cloudy	Right Angle	Failure to Yield Right of Way	SB V2 struck by V1
31	33769234	12124/2010	Dewey at Selye	Y	Selye	0 Property Damage Only	4 Dark-Road Lighted	1 Straight and Level	2 Wet	0 Other	Right A		
33	33770480	1/442011	EB Divivg Park at Dewey	Y	Dewey/Driving	0 Property Damage Only	1 Daylight	1 Straight and Level	2 Wet	1 Clear	Rear End	Driver InatentionDISistraction	EB V1 stopped struck by EB V2
49	${ }^{339550760}$	${ }^{61822011}$	Driving Park 20' ${ }^{\circ}$ of Dewey	Y	Dewey/Driving	1 1niury	1 Daylight	1 Straight and Level	$1{ }^{\text {D }}$ ry	${ }_{1}^{1 \text { Clear }}$	Sidesswipe	Passing or Lane Usage Improper	V2 Stopped in No Standing Zone V1 went around struck ??
50	33954786	7/142011	Driving Park at Dewey	Y	DeweylDriving	1 1 niury	1 Daylight	1 Straight and Level	1 Dry	1 Clear	Pedestrian	Driver InatentionDistraction	WB Pedestrian crossing Dewey - struck by V turning right onto Driw
58 59	34037759 34037265	$1013 / 2011$ $103 / 2011$	Diving Park at Dewey	r	DeweyDiviving		4 Darar-Road Lighted	1 Straight and Level	$1{ }^{1} \mathrm{Dry}$	${ }^{1}{ }^{\text {Cliarar }}$	Right Angle	Passing or Lane Usage Improe	
60	34037420	9/282011	Driving Park at Broezel St.	Y	Brozel	-1 Non-Reportable	4 Dark-Road Lighted	1 Straight and Level	2 Wet	3 Rain	Right Angle	Backing Unsaiely	WB V2 a ti light V1 backing out of sidestreet struck V2
63	34056288	10111/2011	Dewey at Driving Park	Y	ewey ${ }^{\text {Drivin }}$	-1 Non-Reportable	1 Daylight	Straight and	1 Dry		Rear End	View Obstructed /Limited	SB V2 stopped V1 rearended
64	34071834	9/19/2011	Dewey at Selye			1 Iniury	1 Daylight	Straight an	1 Dry	${ }_{1}$ Clear	Right Angle		EB V1 turning onto Dewey struck V
76	34156464	1/2/2012	Dewey 5^{\prime} N of Selye		Selye	-1 Non-Reporable	1 Daylight	Straigh and Level	1 Dry	${ }_{1}{ }^{\text {Cliaar }}$	Right Angle	Driver Inattention / Distraction	NB V2 struck by V1
81	34198580	28812012	Driving Park at Broezel St.	Y	Brozel	-1 Non-Reportable	ylight	1 Straight and Level	1 Dry	1 Clear	Overtaking	Passing or Lane Usage Improper	WB V2 stopped then decided to turn lett V1 merged out to turn left stricking V2
${ }_{83}^{86}$	34212070 3220355	${ }^{2 / 21 / 2012}$	Dewey at Diving Park	Y	Dewey ${ }^{\text {diving }}$	1 niury	4 Dark-Road Lighted	1 Straight and Level	$1{ }^{1} \mathrm{Dry}$	${ }^{1 \text { Clear }}$	${ }_{\text {Pedestrian }}$	Driver Inattentionjisitraction	WB V1 turning left on Dewey stiking pedestrian
89	${ }_{3}{ }^{342545596}$	$4{ }^{4 / 32012}$	$\frac{\text { Diving Park a doweybiving Park }}{\text { Driving Park at Dewey }}$	Y	Deweybiving	$\frac{-1 \text { Non-Reporatale }}{-1 \text { Neporable }}$	1 1 Daylight	1 Straight and Level	$1{ }^{\text {d }}$ Dry	1 Clear	Left Turn	Diver Inatention Oistraction	Opposite Direction - WB V1 turning let with green arrow V1/ stricking EB V2
93	34266939	1/1912012	Dewey at Driving Park	Y	Dewey ${ }^{\text {diving }}$	0 Property Damage Only	4 Dark-Road Lighted	Straight and Level	4 Snowlce	4 Snow	Left Turn		V1 turring onto Dewey struck by V2
99	34297176	5/312012	Driving Park at Dewey	Y	Dewey/Driving	0 Property Damage Only	1 Daylight	1 Straight and Level	1 Dry	2 Cloudy	Overaking	Unsafe Lane Changing	merging into traftic from median struck
$\begin{array}{r}100 \\ \hline 109\end{array}$	${ }^{34306608}$	5/15/2012	Dewey at Selye Terr	Y	Selye	-1 Non-Reporatale	1 Daylight	1 Striaght and Level	1 Dry	1 Clear	Rear End	Accelerator Defective	$\frac{\text { SB V1 stopped rearended by }}{\text { SB }}$ V2
112	${ }_{34414456}$	826612012	Drivign Park 100^{\prime} W of Dewey	Y	Dewey ${ }^{\text {Soriving }}$	-1 Non-Reporable	1 Daylight	1 Straight and Level	1 Dry	${ }^{1}$ Clear	Right Angle	Driver Inataention D Disistraction	EB V2 struck by V1 exiexting parking lot
114	34441784	9/3/2012	Dewey at Dewey Ave Driving Park	Y	Dewey Driving	-1 Non-Reportable	1 Daylight	Straight and Level	2 Wet	${ }^{2}$ Cloudy	Left Turn	Other Vehicular	EB V1 struck by V2 turring left
115	34443499	9/1512012	Dewey at Dewey Ave Diviving Park	Y	Dewey Diviving	0 Property Damage Only	1 Daylight	1 Straight and Level	1 Dry	2 Cloudy	Right Turn	View Obstructed /Limited	
116	34447878	9/1/2012	Dewey at Diving Park		Dewey Driving	-1 Non-Reporatale	1 Dayl	Straight and Level	1 Dry	${ }_{1} 1$ Clear	Rear End	Driver Inattention / Distraction	SB V2 rearended by SB V1
${ }^{118}$	3445623 3475275	${ }^{812012012}$	Driving Park at Dewey	Y	Dewey Sioriving	1 Injury	I Daylight	1 Straight and Level	I Dry	T Clear	Right Angle		WBV struck E V2
${ }_{126}$	${ }_{34561817}$	${ }_{12 / 282012}$	Divewey a selye	Y	Selye	In inury	1 Daylight	1 Straight and Level		${ }_{\text {3 }}$ Clear	$\frac{\text { Right Angle }}{\text { Rear End }}$	Driver Inatention/Distraction	
127	34561885	12422012	Driving Park at Finch	Y		1 lijury	1 Daylight	1 Straight and Level	1 Dry	2 Cloudy	Rear End	Following to closely	WB V2 struck WB V1
129	34581280	1211712012	Dewey at Selye	Y	Selye	Non-Reportable	1 Daylight	1 Straight and Level	1 Dry	2 Cloudy	Rear End	ver Inattention / Distraction	SB V2 struck by SB V1

Intersection	Approach	Movement	2038 No-Build				2038 No-Build - EB Blocked Lane				2038 Alternative 4			
			Delay (sec/veh)	LOS	Turning Movement Volumes	Total Delay (hr)	Delay (sec/veh)	LOS	Turning Movement Volumes	Total Delay (hr)	$\begin{gathered} \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	LOS	Turning Movement Volumes	Total Delay (hr)
Dewey Avenue and Driving Park Avenue (WEST)	Eastbound	Thru	28.8	C	215	1.72	29.3	C	215	1.75				
		Right	8.2	A	92	0.21	8.2	A	92	0.21				
		Approach	22.6	C			23.0	C						
	Westbound	Left	19.4	B	348	1.88	19.3	B	348	1.87				
		Thru	8.4	A	298	0.70	8.4	A	298	0.70				
		Approach	14.3	B			14.3	B						
	Northbound	Left	20.5	C	26	0.15	20.5	C	26	0.15				
		Right	9.8	A	271	0.74	11.4	B	271	0.86				
		Approach	10.7	B			10.5	B						
	Overall		15.5	B		5.39	15.7	B		5.53				
Dewey Avenue and Driving Park Avenue / Broezel Street (EAST)	Eastbound	Left	17.3	B	286	1.37								
		Left/Thru/Right					41.1	D	486	5.55				
		Thru/Right	8.4	A	200	0.47								
		Approach	13.6	B			41.1	D						
	Westbound	Left/Thru	36.0	D	299	2.99	37.5	D	299	3.11				
		Right	7.4	A	87	0.18	7.4	A	87	0.18				
		Approach	29.5	C			30.7	C						
	Southbound	Left/Thru	55.0	E	289	4.42	55.0	E	289	4.42				
		Right	11.5	B	371	1.19	11.5	B	371	1.19				
		Approach	30.6	C			30.6	C						
	Overall		24.9	C		10.61	34.0	C		14.44				
Dewey Avenue and Driving Park Avenue	Eastbound	Left									26.1	C	56	0.41
		Thru/Right									26.2	C	251	1.83
		Approach									26.2	C		
	Westbound	Left									24.2	C	33	0.22
		Thru									28.3	C	242	1.90
		Right									0.9	A	87	0.02
		Approach									21.3	C		
	Northbound	Left									41.0	D	26	0.30
		Thru/Right									34.3	C	271	2.58
		Approach									34.9	C		
	Southbound	Left									19.1	B	289	1.53
		Thru/Right									20.3	C	371	2.09
		Approach									19.8	B		
	Overall										24.1	C		10.88
Driving Park Avenue and Broezel Street	Westbound	Left/Thru									5	A	386	0.54
		Approach												0.54
AM Peak Hour Total						16.00				19.97				11.42

PM Peak Hour

Notes:

1. Approach level of service assumed due to lack of available data from Synchro. Vehicle delay is approximated from SimTraffic microsimulation and HCS analysis

PEDESTRIAN FACILITY DESIGN

Exhibit 18-1 Pedestrian Generator Checklist

P.I.N.: 4755.55

Project Location: Dewey Avenue - Driving Park Avenue Intersection Realignment Project, City of Rochester

PEDESTRIAN GENERATOR CHECKLIST

Note: The term "generator" in this document refers to both p3destrian generators (where pedestrians originate) and destinations (where pedestrians travel to).
A check of "yes" indicates a potential need to accommodate pedestrians and coordination with the Regional Bicycle and Pedestrian Coordinator is necessary during project scoping. Answers to the following questions should be checked with the local municipality to ensure accuracy.

1.	Is there an existing or planned sidewalk, trail, or pedestrian-crossing facility?	YES \boxtimes NO \square
2.	Are there bus stops, transit stations or depots/terminals located in or within 800 m of the project area?	YES \boxtimes NO \square
3.	Is there more than occasional pedestrian activity? Evidence of pedestrian activity may include a worn path.	YES \boxtimes NO \square
4.Are there existing or approved plans for generators of pedestrian activity in or within 800 m of the project that promote or have the potential to promote pedestrian traffic in the project area, such as schools, parks, playgrounds, places of employment, places of worship, post offices, municipal buildings, restaurants, shopping centers, or other commercial areas, or shared-use paths?	YES \boxtimes NO \square	
5.	Are there existing or approved plans for seasonal generators of pedestrian activity in or within 800 m of the project that promote or have the potential to promote pedestrian traffic in the project area, such as ski resorts, state parks, camps, amusement parks?	YES \square NO \boxtimes
6.	Is the project located in a residential area within 800 m of existing or planned pedestrian generators such as those listed in 4 above?	YES \boxtimes NO \square
7.	From record plans, were pedestrian facilities removed during a previous highway reconstruction project?	YES \square NO \boxtimes
8.	Did a study of secondary impacts indicate that the project promotes or is likely to promote commercial and/or residential development within the intended life cycle of the project?	YES \square NO \boxtimes
9.	Does the community's comprehensive plan call for development of pedestrian facilities in the area?	YES \boxtimes NO \square
	Based on the ability of students to walk and bicycle to school, would the project benefit from engineering measures under the Safe-Routes-To-School program? Eligible infrastructure-related improvements must be within a 3.2 km radius of the project.	YES \boxtimes NO \square
10 \square		

Note: This checklist should be revisited due to a project delay or if site conditions or local planning changes during the project development process.

Comments: 800 m equates to approximately $1 / 2$ mile, 3.2 km equates to approximately 2 miles 2 - Numerous RTS bus stops within / adjacent to the project limits
6 - Residental neighborhoods and apartment buildings located within / adjacent to the project limits
8 - Corridor is already "built out" with commercial / residental development

Regional Bicycle and Pedestrian Coordinator: Bruce Cunningham (Bicycle Issues) (518)-272-4831, or Jon Harman (Pedestrian Issues) (585)-272-3358

Project Designer: Michael T. Croce, P.E., Bergmann Associates

Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	$ø 3$	$\emptyset 4$	$ø 6$
Lane Configurations	4	「	${ }^{*}$	4	${ }^{1}$	「			
Volume (vph)	159	72	274	176	20	213			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width (ft)	11	11	11	11	11	11			
Storage Length (ft)		75	75		200	0			
Storage Lanes		1	1		1	1			
Taper Length (ft)			25		25				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt		0.850				0.850			
Flt Protected			0.950		0.950				
Satd. Flow (prot)	1733	1473	1646	1733	1646	1473			
Flt Permitted			0.535		0.950				
Satd. Flow (perm)	1733	1473	927	1733	1646	1473			
Right Turn on Red		Yes				No			
Satd. Flow (RTOR)		87							
Link Speed (mph)	30			30	30				
Link Distance (ft)	465			180	541				
Travel Time (s)	10.6			4.1	12.3				
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83			
Heavy Vehicles (\%)	6\%	6\%	6\%	6\%	6\%	6\%			
Adj. Flow (vph)	192	87	330	212	24	257			
Shared Lane Traffic (\%)									
Lane Group Flow (vph)	192	87	330	212	24	257			
Enter Blocked Intersection	No	No	No	No	No	No			
Lane Alignment	Left	Right	Left	Left	Left	Right			
Median Width(ft)	11			11	11				
Link Offset(ft)	0			0	0				
Crosswalk Width(ft)	16			16	16				
Two way Left Turn Lane									
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed (mph)		9	15		15	9			
Number of Detectors	2	2	1	0	2	2			
Detector Template									
Leading Detector (ft)	26	26	50	0	26	26			
Trailing Detector (ft)	0	0	0	0	0	0			
Detector 1 Position(ft)	20	20	0	19	0	0			
Detector 1 Size(ft)	6	6	50	0	6	6			
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			
Detector 1 Channel									
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 2 Position(ft)	0	0			20	20			
Detector 2 Size(ft)	6	6			6	6			
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			
Detector 2 Channel									
Detector 2 Extend (s)	0.0	0.0			0.0	0.0			
Turn Type	NA	Perm	custom	NA	Prot	pt+ov			
Protected Phases	2		7	67	8	78	3	4	6

Intersection Summary

Area Type:
Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 3 (3\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.79
Intersection Signal Delay: 13.8
Intersection LOS: B
Intersection Capacity Utilization 48.5\%
ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 1101: Dewey (South) \& Driving Park

EBT	EBR	WBL	WBT	NBL	NBR		
Lane Group	192	87	330	212	24	257	
Lane Group Flow (vph)	0.36	0.18	0.59	0.24	0.03	0.28	
v/c Ratio	26.4	6.7	15.0	8.1	17.6	8.8	
Control Delay	0.0	0.0	0.3	0.6	0.0	0.0	
Queue Delay	26.4	6.7	15.3	8.7	17.6	8.8	
Total Delay	84	0	70	43	8	61	
Queue Length 50th (ft)	129	28	77	51	23	90	
Queue Length 95th (ft)	385			100	461		
Internal Link Dist (ft)		75	75		200		
Turn Bay Length (ft)	539	487	763	1097	694	916	
Base Capacity (vph)	0	0	109	564	0	0	
Starvation Cap Reductn	0	0	0	0	0	46	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0.36	0.18	0.50	0.40	0.03	0.30	
Reduced v/c Ratio							

[^1]| | 4 | \rightarrow | | 7 | 4 | | 4 | \dagger | | , | \downarrow | \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 4 | | | 4 | 「 | | | | | \uparrow | 「 |
| Volume (vph) | 225 | 143 | 4 | 19 | 158 | 68 | 0 | 0 | 0 | 183 | 45 | 292 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 11 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 11 | 12 | 11 |
| Storage Length (ft) | 75 | | 0 | 0 | | 75 | 0 | | 0 | 0 | | 275 |
| Storage Lanes | 1 | | 0 | 0 | | 1 | 0 | | 0 | 0 | | 1 |
| Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt | | 0.996 | | | | 0.850 | | | | | | 0.850 |
| Flt Protected | 0.950 | | | | 0.995 | | | | | | 0.961 | |
| Satd. Flow (prot) | 1646 | 1726 | 0 | 0 | 1724 | 1473 | 0 | 0 | 0 | 0 | 1723 | 1473 |
| Flt Permitted | 0.504 | | | | 0.959 | | | | | | 0.961 | |
| Satd. Flow (perm) | 873 | 1726 | 0 | 0 | 1662 | 1473 | 0 | 0 | 0 | 0 | 1723 | 1473 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | No |
| Satd. Flow (RTOR) | | 3 | | | | 97 | | | | | | |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 180 | | | 931 | | | 272 | | | 664 | |
| Travel Time (s) | | 4.1 | | | 21.2 | | | 6.2 | | | 15.1 | |
| Peak Hour Factor | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% |
| Adj. Flow (vph) | 271 | 172 | 5 | 23 | 190 | 82 | 0 | 0 | 0 | 220 | 54 | 352 |
| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| Lane Group Flow (vph) | 271 | 177 | 0 | 0 | 213 | 82 | 0 | 0 | 0 | 0 | 274 | 352 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(ft) | | 11 | | | 8 | | | 0 | | | 12 | |
| Link Offset(ft) | | 0 | | | 0 | | | 30 | | | 0 | |
| Crosswalk Width(ft) | | 16 | | | 16 | | | 16 | | | 16 | |
| Two way Left Turn Lane | | | | | | | | | | | Yes | |
| Headway Factor | 1.04 | 1.04 | 1.00 | 1.00 | 1.04 | 1.04 | 1.00 | 1.00 | 1.00 | 1.04 | 1.00 | 1.04 |
| Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 |
| Number of Detectors | 1 | 0 | | 1 | 1 | 1 | | | | 1 | 1 | 0 |
| Detector Template | | | | Left | | | | | | | | |
| Leading Detector (ft) | 50 | 0 | | 20 | 40 | 40 | | | | 40 | 40 | 0 |
| Trailing Detector (ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Position(ft) | 0 | 19 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Size(ft) | 50 | 0 | | 20 | 40 | 40 | | | | 40 | 40 | 25 |
| Detector 1 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ |
| Detector 1 Channel | | | | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Queue (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Delay (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Turn Type | custom | NA | | Perm | NA | Perm | | | | Split | NA | pt+ov |
| Protected Phases | 4 | 24 | | | 6 | | | | | 3 | 3 | 34 |
| Permitted Phases | 2 | | | 6 | | 6 | | | | | | |
| Detector Phase | 4 | 24 | | 6 | 6 | 6 | | | | 3 | 3 | 34 |
| Switch Phase | | | | | | | | | | | | |
| Minimum Initial (s) | 8.0 | | | 12.0 | 12.0 | 12.0 | | | | 8.0 | 8.0 | |
| Minimum Split (s) | 25.0 | | | 31.0 | 31.0 | 31.0 | | | | 25.0 | 25.0 | |

Lane Group $\quad ø 2 \quad \varnothing 7 \quad ø 8$
Lanefonfigurations
Volume (vph)
Ideal Flow (vphpl)
Lane Width (ft)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Frt
Flt Protected
Satd. Flow (prot)
FIt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Peak Hour Factor
Heavy Vehicles (\%)
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft$)$
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Turn Type
Protected Phases
Permitted Phases
Detector Phase
Switch Phase
Minimum Initial (s)

	$\stackrel{ }{*}$							4	7	\checkmark	$\frac{1}{7}$	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	30.0			31.0	31.0	31.0				29.0	29.0	
Total Split (\%)	33.3\%			34.4\%	34.4\%	34.4\%				32.2\%	32.2\%	
Maximum Green (s)	24.5			25.0	25.0	25.0				23.5	23.5	
Yellow Time (s)	3.5			4.0	4.0	4.0				3.5	3.5	
All-Red Time (s)	2.0			2.0	2.0	2.0				2.0	2.0	
Lost Time Adjust (s)	-2.5				-3.0	-1.0					0.0	
Total Lost Time (s)	3.0				3.0	5.0					5.5	
Lead/Lag	Lag									Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0			3.0	3.0	3.0				2.0	2.0	
Recall Mode	None			C-Max	C-Max	C-Max				None	None	
Walk Time (s)	7.0			9.0	9.0	9.0				7.0	7.0	
Flash Dont Walk (s)	12.0			15.0	15.0	15.0				12.0	12.0	
Pedestrian Calls (\#/hr)	0			0	0	0				0	0	
Act Efftt Green (s)	60.3	63.3			28.0	26.0					18.2	56.0
Actuated g/C Ratio	0.67	0.70			0.31	0.29					0.20	0.62
v/c Ratio	0.31	0.15			0.41	0.17					0.79	0.38
Control Delay	8.1	6.7			27.5	4.9					49.9	10.0
Queue Delay	0.6	0.8			0.1	0.0					0.0	0.0
Total Delay	8.7	7.5			27.6	4.9					49.9	10.0
LOS	A	A			C	A					D	A
Approach Delay		8.2			21.3						27.4	
Approach LOS		A			C						C	

Intersection Summary

Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 3 (3\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.79
Intersection Signal Delay: 19.8
Intersection LOS: B
Intersection Capacity Utilization 46.2\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 1102: Driving Park \& Dewey (North)

Lane Group	$ø 2$	$\varnothing 7$	$\varnothing 8$
Total Split (s)	31.0	29.0	30.0
Total Split (\%)	34%	32%	33%
Maximum Green (s)	25.0	23.5	24.5
Yellow Time (s)	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?	3.0	2.0	3.0
Vehicle Extension (s)	C-Max	None	Max
Recall Mode	9.0	8.0	7.0
Walk Time (s)	15.0	12.0	12.0
Flash Dont Walk (s)	0	0	0
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			

	4	\rightarrow	\leftarrow	4	\downarrow	\checkmark
Lane Group	EBL	EBT	WBT	WBR	SBT	SBR
Lane Group Flow (vph)	271	177	213	82	274	352
v/c Ratio	0.31	0.15	0.41	0.17	0.79	0.38
Control Delay	8.1	6.7	27.5	4.9	49.9	10.0
Queue Delay	0.6	0.8	0.1	0.0	0.0	0.0
Total Delay	8.7	7.5	27.6	4.9	49.9	10.0
Queue Length 50th (tt)	61	38	95	0	148	90
Queue Length 95th (ft)	94	63	144	20	198	128
Internal Link Dist (tt)		100	851		584	
Turn Bay Length (tt)	75			75		275
Base Capacity (vph)	862	1214	517	494	449	913
Starvation Cap Reductn	293	790	0	0	0	0
Spillback Cap Reductn	0	0	14	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.48	0.42	0.42	0.17	0.61	0.39

Intersection Summary

Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	$ø 3$	$\emptyset 4$	$ø 6$
Lane Configurations	4	「	${ }^{*}$	4	${ }^{1}$	「			
Volume (vph)	159	72	274	176	20	213			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width (ft)	11	11	11	11	11	11			
Storage Length (ft)		75	75		200	0			
Storage Lanes		1	1		1	1			
Taper Length (ft)			25		25				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt		0.850				0.850			
Flt Protected			0.950		0.950				
Satd. Flow (prot)	1733	1473	1646	1733	1646	1473			
Flt Permitted			0.535		0.950				
Satd. Flow (perm)	1733	1473	927	1733	1646	1473			
Right Turn on Red		Yes				No			
Satd. Flow (RTOR)		87							
Link Speed (mph)	30			30	30				
Link Distance (ft)	465			180	541				
Travel Time (s)	10.6			4.1	12.3				
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83			
Heavy Vehicles (\%)	6\%	6\%	6\%	6\%	6\%	6\%			
Adj. Flow (vph)	192	87	330	212	24	257			
Shared Lane Traffic (\%)									
Lane Group Flow (vph)	192	87	330	212	24	257			
Enter Blocked Intersection	No	No	No	No	No	No			
Lane Alignment	Left	Right	Left	Left	Left	Right			
Median Width(ft)	11			11	11				
Link Offset(ft)	0			0	0				
Crosswalk Width(ft)	16			16	16				
Two way Left Turn Lane									
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed (mph)		9	15		15	9			
Number of Detectors	2	2	1	0	2	2			
Detector Template									
Leading Detector (ft)	26	26	50	0	26	26			
Trailing Detector (ft)	0	0	0	0	0	0			
Detector 1 Position(ft)	20	20	0	19	0	0			
Detector 1 Size(ft)	6	6	50	0	6	6			
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			
Detector 1 Channel									
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 2 Position(ft)	0	0			20	20			
Detector 2 Size(ft)	6	6			6	6			
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			
Detector 2 Channel									
Detector 2 Extend (s)	0.0	0.0			0.0	0.0			
Turn Type	NA	Perm	custom	NA	Prot	pt+ov			
Protected Phases	2		7	67	8	78	3	4	6

Intersection Summary

Area Type:
Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: $3(3 \%)$, Referenced to phase 2:EBT and $6:$ WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.79
Intersection Signal Delay: 13.8
Intersection LOS: B
Intersection Capacity Utilization 48.5\%
ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 1101: Dewey (South) \& Driving Park

EBT	EBR	WBL	WBT	NBL	NBR		
Lane Group	192	87	330	212	24	257	
Lane Group Flow (vph)	0.36	0.18	0.59	0.24	0.03	0.28	
v/c Ratio	26.4	6.7	14.9	8.1	17.6	8.8	
Control Delay	0.0	0.0	0.3	0.6	0.0	0.2	
Queue Delay	26.4	6.7	15.2	8.7	17.6	9.0	
Total Delay	84	0	70	43	8	61	
Queue Length 50th (ft)	129	28	78	51	23	90	
Queue Length 95th (ft)	385			100	461		
Internal Link Dist (ft)		75	75		200		
Turn Bay Length (ft)	539	487	763	1097	694	916	
Base Capacity (vph)	0	0	109	564	0	0	
Starvation Cap Reductn	0	0	0	0	0	229	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0.36	0.18	0.50	0.40	0.03	0.37	
Reduced v/c Ratio							

[^2]| | \rangle | | | | | | | \dagger | | | \downarrow | \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | \uparrow | | | \uparrow | ${ }^{7}$ | | | | | \uparrow | 「 |
| Volume (vph) | 225 | 143 | 4 | 19 | 158 | 68 | 0 | 0 | 0 | 183 | 45 | 292 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (tt) | 11 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 11 | 12 | 11 |
| Storage Length (t) | 75 | | 0 | 0 | | 75 | 0 | | 0 | 0 | | 275 |
| Storage Lanes | 0 | | 0 | 0 | | 1 | 0 | | 0 | 0 | | 1 |
| Taper Length (tt) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Fit | | 0.998 | | | | 0.850 | | | | | | 0.850 |
| Flt Protected | | 0.971 | | | 0.995 | | | | | | 0.961 | |
| Satd. Flow (prot) | 0 | 1679 | 0 | 0 | 1724 | 1473 | 0 | 0 | 0 | 0 | 1723 | 1473 |
| Flt Permitted | | 0.568 | | | 0.930 | | | | | | 0.961 | |
| Satd. Flow (perm) | 0 | 982 | 0 | 0 | 1611 | 1473 | 0 | 0 | 0 | 0 | 1723 | 1473 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | No |
| Satd. Flow (RTOR) | | 1 | | | | 97 | | | | | | |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (tt) | | 180 | | | 931 | | | 272 | | | 664 | |
| Travel Time (s) | | 4.1 | | | 21.2 | | | 6.2 | | | 15.1 | |
| Peak Hour Factor | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% |
| Adj. Flow (vph) | 271 | 172 | 5 | 23 | 190 | 82 | 0 | 0 | 0 | 220 | 54 | 352 |
| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| Lane Group Flow (vph) | 0 | 448 | 0 | 0 | 213 | 82 | 0 | 0 | 0 | 0 | 274 | 352 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(tt) | | 11 | | | 8 | | | 0 | | | 12 | |
| Link Offset(tt) | | 0 | | | 0 | | | 30 | | | 0 | |
| Crosswalk Width(t) | | 16 | | | 16 | | | 16 | | | 16 | |
| Two way Left Turn Lane | | | | | | | | | | | Yes | |
| Headway Factor | 1.04 | 1.04 | 1.00 | 1.00 | 1.04 | 1.04 | 1.00 | 1.00 | 1.00 | 1.04 | 1.00 | 1.04 |
| Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 |
| Number of Detectors | 1 | 1 | | 1 | 1 | 1 | | | | 1 | 1 | 0 |
| Detector Template | | | | Left | | | | | | | | |
| Leading Detector (tt) | 50 | 50 | | 20 | 40 | 40 | | | | 40 | 40 | 0 |
| Trailing Detector (ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Position(ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Size(ft) | 50 | 50 | | 20 | 40 | 40 | | | | 40 | 40 | 25 |
| Detector 1 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | $\mathrm{Cl}+\mathrm{Ex}$ | Cl+Ex | $\mathrm{Cl}+\mathrm{Ex}$ | | | | Cl+Ex | Cl+Ex | Cl+Ex |
| Detector 1 Channel | | | | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Queue (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Delay (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Turn Type | custom | NA | | Perm | NA | Perm | | | | Split | NA | pt+ov |
| Protected Phases | 4 | 24 | | | 6 | | | | | 3 | 3 | 34 |
| Permitted Phases | 2 | | | 6 | | 6 | | | | | | |
| Detector Phase | 4 | 24 | | 6 | 6 | 6 | | | | 3 | 3 | 34 |
| Switch Phase | | | | | | | | | | | | |
| Minimum Initial (s) | 8.0 | | | 12.0 | 12.0 | 12.0 | | | | 8.0 | 8.0 | |
| Minimum Split (s) | 25.0 | | | 31.0 | 31.0 | 31.0 | | | | 25.0 | 25.0 | |

Lane Group ø2 ¢7 ø8				
Lane**onfigurations				
Volume (vph)				
Ideal Flow (vphpl)				
Lane Width (tt)				
Storage Length (tt)				
Storage Lanes				
Taper Length (tt)				
Lane Util. Factor				
Frt				
Flt Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (mph)				
Link Distance (tt)				
Travel Time (s)				
Peak Hour Factor				
Heavy Vehicles (\%)				
Adj. Flow (vph)				
Shared Lane Traffic (\%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(tt)				
Link Offset(ft)				
Crosswalk Width(tt)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (mph)				
Number of Detectors				
Detector Template				
Leading Detector (tt)				
Trailing Detector (ft)				
Detector 1 Position(t)				
Detector 1 Size(ft)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Turn Type				
Protected Phases	2	7	8	
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	12.0	8.0	16.0	
Minimum Split (s)	31.0	29.0	25.0	
5/28/2014 2014 Existing Bergmann Associates	EB P	d Ca		Synchro 8 Repor Page 5

	4						-	\uparrow	7	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	30.0			31.0	31.0	31.0				29.0	29.0	
Total Split (\%)	33.3\%			34.4\%	34.4\%	34.4\%				32.2\%	32.2\%	
Maximum Green (s)	24.5			25.0	25.0	25.0				23.5	23.5	
Yellow Time (s)	3.5			4.0	4.0	4.0				3.5	3.5	
All-Red Time (s)	2.0			2.0	2.0	2.0				2.0	2.0	
Lost Time Adjust (s)					-3.0	-1.0					0.0	
Total Lost Time (s)					3.0	5.0					5.5	
Lead/Lag	Lag									Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0			3.0	3.0	3.0				2.0	2.0	
Recall Mode	None			C-Max	C-Max	C-Max				None	None	
Walk Time (s)	7.0			9.0	9.0	9.0				7.0	7.0	
Flash Dont Walk (s)	12.0			15.0	15.0	15.0				12.0	12.0	
Pedestrian Calls (\#/hr)	0			0	0	0				0	0	
Act Efftt Green (s)		60.3			28.0	26.0					18.2	56.0
Actuated g/C Ratio		0.67			0.31	0.29					0.20	0.62
v/c Ratio		0.49			0.43	0.17					0.79	0.38
Control Delay		10.7			27.8	4.9					49.9	10.0
Queue Delay		0.8			0.1	0.0					0.0	0.0
Total Delay		11.5			27.9	4.9					49.9	10.0
LOS		B			C	A					D	A
Approach Delay		11.5			21.5						27.4	
Approach LOS		B			C						C	

Intersection Summary

Area Type:
 Other

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 3 (3\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.79
Intersection Signal Delay: 20.9
Intersection LOS: C
Intersection Capacity Utilization 54.0\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 1102: Driving Park \& Dewey (North)

Lane Group	$ø 2$	$\varnothing 7$	$\varnothing 8$
Total Split (s)	31.0	29.0	30.0
Total Split (\%)	34%	32%	33%
Maximum Green (s)	25.0	23.5	24.5
Yellow Time (s)	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?	3.0	2.0	3.0
Vehicle Extension (s)	C-Max	None	Max
Recall Mode	9.0	8.0	7.0
Walk Time (s)	15.0	12.0	12.0
Flash Dont Walk (s)	0	0	0
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			

[^3]

Splits and Phases: 1101: Dewey (South) \& Driving Park

EBT	EBR	WBL	WBT	NBL	NBR		
Lane Group	213	55	294	276	53	423	
Lane Group Flow (vph)	0.40	0.12	0.45	0.28	0.09	0.46	
v/c Ratio	29.9	8.9	9.4	6.0	25.0	11.6	
Control Delay	0.0	0.0	0.3	0.5	0.0	0.5	
Queue Delay	29.9	8.9	9.7	6.5	25.0	12.1	
Total Delay	106	1	50	46	22	128	
Queue Length 50th (ft)	172	30	53	49	57	196	
Queue Length 95th (ft)	172						
Internal Link Dist (ft)	385			100	461		
Turn Bay Length (ft)		75	75		200		
Base Capacity (vph)	537	464	891	1247	595	927	
Starvation Cap Reductn	0	0	209	596	0	0	
Spillback Cap Reductn	0	0	0	0	0	193	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.40	0.12	0.43	0.42	0.09	0.58	

[^4]| | 4 | \rightarrow | \checkmark | 7 | | 4 | 4 | 4 | \% | | \ddagger | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{*}$ | 4 | | | 4 | 7 | | | | | \uparrow | 「 |
| Volume (vph) | 407 | 182 | 9 | 25 | 220 | 167 | 0 | 0 | 0 | 118 | 30 | 315 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 11 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 11 | 12 | 11 |
| Storage Length (ft) | 75 | | 0 | 0 | | 75 | 0 | | 0 | 0 | | 275 |
| Storage Lanes | 1 | | 0 | 0 | | 1 | 0 | | 0 | 0 | | 1 |
| Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt | | 0.993 | | | | 0.850 | | | | | | 0.850 |
| Flt Protected | 0.950 | | | | 0.995 | | | | | | 0.962 | |
| Satd. Flow (prot) | 1646 | 1721 | 0 | 0 | 1724 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Flt Permitted | 0.427 | | | | 0.955 | | | | | | 0.962 | |
| Satd. Flow (perm) | 740 | 1721 | 0 | 0 | 1655 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | No |
| Satd. Flow (RTOR) | | 7 | | | | 147 | | | | | | |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 180 | | | 931 | | | 272 | | | 664 | |
| Travel Time (s) | | 4.1 | | | 21.2 | | | 6.2 | | | 15.1 | |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% |
| Adj. Flow (vph) | 433 | 194 | 10 | 27 | 234 | 178 | 0 | 0 | 0 | 126 | 32 | 335 |
| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| Lane Group Flow (vph) | 433 | 204 | 0 | 0 | 261 | 178 | 0 | 0 | 0 | 0 | 158 | 335 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(ft) | | 11 | | | 8 | | | 0 | | | 12 | |
| Link Offset(ft) | | 0 | | | 0 | | | 30 | | | 0 | |
| Crosswalk Width(ft) | | 16 | | | 16 | | | 16 | | | 16 | |
| Two way Left Turn Lane | | | | | | | | | | | Yes | |
| Headway Factor | 1.04 | 1.04 | 1.00 | 1.00 | 1.04 | 1.04 | 1.00 | 1.00 | 1.00 | 1.04 | 1.00 | 1.04 |
| Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 |
| Number of Detectors | 1 | 0 | | 1 | 1 | 1 | | | | 1 | 1 | 0 |
| Detector Template | | | | Left | | | | | | | | |
| Leading Detector (ft) | 50 | 0 | | 20 | 40 | 40 | | | | 40 | 40 | 0 |
| Trailing Detector (ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Position(ft) | 0 | 19 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Size(ft) | 50 | 0 | | 20 | 40 | 40 | | | | 40 | 40 | 25 |
| Detector 1 Type | Cl+Ex | $\mathrm{Cl}+\mathrm{Ex}$ | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ |
| Detector 1 Channel | | | | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Queue (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Delay (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Turn Type | custom | NA | | Perm | NA | Perm | | | | Split | NA | pt+ov |
| Protected Phases | 4 | 24 | | | 6 | | | | | 3 | 3 | 34 |
| Permitted Phases | 2 | | | 6 | | 6 | | | | | | |
| Detector Phase | 4 | 24 | | 6 | 6 | 6 | | | | 3 | 3 | 34 |
| Switch Phase | | | | | | | | | | | | |
| Minimum Initial (s) | 8.0 | | | 12.0 | 12.0 | 12.0 | | | | 8.0 | 8.0 | |
| Minimum Split (s) | 25.0 | | | 31.0 | 31.0 | 31.0 | | | | 25.0 | 25.0 | |

Lane Group $\quad ø 2 \quad \varnothing 7 \quad ø 8$
Lanefonfigurations
Volume (vph)
Ideal Flow (vphpl)
Lane Width (ft)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Frt
Flt Protected
Satd. Flow (prot)
FIt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Peak Hour Factor
Heavy Vehicles (\%)
Adj. Flow (vph)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft$)$
Detector 1 Position(ft)
Detector 1 Size(ft)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Turn Type
Protected Phases
Permitted Phases
Detector Phase
Switch Phase
Minimum Initial (s)

	4							\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	41.0			34.0	34.0	34.0				25.0	25.0	
Total Split (\%)	41.0\%			34.0\%	34.0\%	34.0\%				25.0\%	25.0\%	
Maximum Green (s)	35.5			28.0	28.0	28.0				19.5	19.5	
Yellow Time (s)	3.5			4.0	4.0	4.0				3.5	3.5	
All-Red Time (s)	2.0			2.0	2.0	2.0				2.0	2.0	
Lost Time Adjust (s)	-2.5				-3.0	-1.0					0.0	
Total Lost Time (s)	3.0				3.0	5.0					5.5	
Lead/Lag	Lag									Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0			3.0	3.0	3.0				2.0	2.0	
Recall Mode	None			C-Max	C-Max	C-Max				None	None	
Walk Time (s)	7.0			9.0	9.0	9.0				7.0	7.0	
Flash Dont Walk (s)	12.0			15.0	15.0	15.0				12.0	12.0	
Pedestrian Calls (\#/hr)	0			0	0	0				0	0	
Act Efftt Green (s)	73.3	76.3			31.0	29.0					15.2	63.0
Actuated g/C Ratio	0.73	0.76			0.31	0.29					0.15	0.63
v/c Ratio	0.47	0.16			0.51	0.34					0.61	0.36
Control Delay	8.6	4.8			32.5	9.0					49.0	10.2
Queue Delay	0.8	0.9			0.0	0.0					0.0	0.0
Total Delay	9.4	5.7			32.5	9.0					49.0	10.2
LOS	A	A			C	A					D	B
Approach Delay		8.2			23.0						22.7	
Approach LOS		A			C						C	

Intersection Summary

Area Type: Other
Cycle Length: 100
Actuated Cycle Length: 100
Offset: 0 (0\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.61
Intersection Signal Delay: 16.9
Intersection LOS: B
Intersection Capacity Utilization 54.9\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 1102: Driving Park \& Dewey (North)

Lane Group	$ø 2$	$\varnothing 7$	$\varnothing 8$
Total Split (s)	34.0	41.0	25.0
Total Split (\%)	34%	41%	25%
Maximum Green (s)	28.0	35.5	19.5
Yellow Time (s)	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?	3.0	2.0	3.0
Vehicle Extension (s)	C-Max	None	Max
Recall Mode	9.0	8.0	7.0
Walk Time (s)	15.0	12.0	12.0
Flash Dont Walk (s)	0	0	0
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			

[^5]| Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | $ø 3$ | $\varnothing 4$ | $ø 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 4 | 「 | ${ }^{4}$ | 4 | ${ }^{7}$ | 「 | | | |
| Volume (vph) | 200 | 52 | 276 | 259 | 50 | 398 | | | |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | |
| Lane Width (ft) | 11 | 11 | 11 | 11 | 11 | 11 | | | |
| Storage Length (ft) | | 75 | 75 | | 200 | 0 | | | |
| Storage Lanes | | 1 | 1 | | 1 | 1 | | | |
| Taper Length (ft) | | | 25 | | 25 | | | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | |
| Frt | | 0.850 | | | | 0.850 | | | |
| Flt Protected | | | 0.950 | | 0.950 | | | | |
| Satd. Flow (prot) | 1733 | 1473 | 1646 | 1733 | 1646 | 1473 | | | |
| Flt Permitted | | | 0.496 | | 0.950 | | | | |
| Satd. Flow (perm) | 1733 | 1473 | 859 | 1733 | 1646 | 1473 | | | |
| Right Turn on Red | | Yes | | | | No | | | |
| Satd. Flow (RTOR) | | 52 | | | | | | | |
| Link Speed (mph) | 30 | | | 30 | 30 | | | | |
| Link Distance (ft) | 465 | | | 180 | 541 | | | | |
| Travel Time (s) | 10.6 | | | 4.1 | 12.3 | | | | |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | | | |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | | | |
| Adj. Flow (vph) | 213 | 55 | 294 | 276 | 53 | 423 | | | |
| Shared Lane Traffic (\%) | | | | | | | | | |
| Lane Group Flow (vph) | 213 | 55 | 294 | 276 | 53 | 423 | | | |
| Enter Blocked Intersection | No | No | No | No | No | No | | | |
| Lane Alignment | Left | Right | Left | Left | Left | Right | | | |
| Median Width(ft) | 11 | | | 11 | 11 | | | | |
| Link Offset(ft) | 0 | | | 0 | 0 | | | | |
| Crosswalk Width(ft) | 16 | | | 16 | 16 | | | | |
| Two way Left Turn Lane | | | | | | | | | |
| Headway Factor | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | | | |
| Turning Speed (mph) | | 9 | 15 | | 15 | 9 | | | |
| Number of Detectors | 2 | 2 | 1 | 0 | 2 | 2 | | | |
| Detector Template | | | | | | | | | |
| Leading Detector (ft) | 26 | 26 | 50 | 0 | 26 | 26 | | | |
| Trailing Detector (ft) | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| Detector 1 Position(ft) | 20 | 20 | 0 | 19 | 0 | 0 | | | |
| Detector 1 Size(ft) | 6 | 6 | 50 | 0 | 6 | 6 | | | |
| Detector 1 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | |
| Detector 1 Channel | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 1 Queue (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 1 Delay (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 2 Position(ft) | 0 | 0 | | | 20 | 20 | | | |
| Detector 2 Size(ft) | 6 | 6 | | | 6 | 6 | | | |
| Detector 2 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | |
| Detector 2 Channel | | | | | | | | | |
| Detector 2 Extend (s) | 0.0 | 0.0 | | | 0.0 | 0.0 | | | |
| Turn Type | NA | Perm | custom | NA | Prot | pt+ov | | | |
| Protected Phases | 2 | | 7 | 67 | 8 | 78 | 3 | 4 | 6 |

Splits and Phases: 1101: Dewey (South) \& Driving Park

EBT	EBR	WBL	WBT	NBL	NBR		
Lane Group	213	55	294	276	53	423	
Lane Group Flow (vph)	0.40	0.12	0.45	0.28	0.09	0.46	
v/c Ratio	29.9	8.9	9.2	6.0	25.0	11.6	
Control Delay	0.0	0.0	0.3	0.5	0.0	0.9	
Queue Delay	29.9	8.9	9.5	6.5	25.0	12.5	
Total Delay	106	1	51	46	22	128	
Queue Length 50th (ft)	172	30	53	49	57	196	
Queue Length 95th (ft)	385			100	461		
Internal Link Dist (ft)	385						
Turn Bay Length (ft)		75	75		200		
Base Capacity (vph)	537	464	891	1247	595	927	
Starvation Cap Reductn	0	0	214	606	0	0	
Spillback Cap Reductn	0	0	0	0	0	258	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.40	0.12	0.43	0.43	0.09	0.63	

[^6]| | $\stackrel{ }{*}$ | | | | | | 4 | \uparrow | p | | \downarrow | \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | \uparrow | | | 个 | F | | | | | \uparrow | F |
| Volume (vph) | 407 | 182 | 9 | 25 | 220 | 167 | 0 | 0 | 0 | 118 | 30 | 315 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (t) | 11 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 11 | 12 | 11 |
| Storage Length (tt) | 75 | | 0 | 0 | | 75 | 0 | | 0 | 0 | | 275 |
| Storage Lanes | 0 | | 0 | 0 | | 1 | 0 | | 0 | 0 | | 1 |
| Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Utill. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt | | 0.998 | | | | 0.850 | | | | | | 0.850 |
| Flt Protected | | 0.967 | | | 0.995 | | | | | | 0.962 | |
| Satd. Flow (prot) | 0 | 1672 | 0 | 0 | 1724 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Flt Permitted | | 0.464 | | | 0.905 | | | | | | 0.962 | |
| Satd. Flow (perm) | 0 | 802 | 0 | 0 | 1568 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | No |
| Satd. Flow (RTOR) | | 2 | | | | 147 | | | | | | |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 180 | | | 931 | | | 272 | | | 664 | |
| Travel Time (s) | | 4.1 | | | 21.2 | | | 6.2 | | | 15.1 | |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% |
| Adj. Flow (vph) | 433 | 194 | 10 | 27 | 234 | 178 | 0 | 0 | 0 | 126 | 32 | 335 |
| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| Lane Group Flow (vph) | 0 | 637 | 0 | 0 | 261 | 178 | 0 | 0 | 0 | 0 | 158 | 335 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(t) | | 11 | | | 8 | | | 0 | | | 12 | |
| Link Offset(tt) | | 0 | | | 0 | | | 30 | | | 0 | |
| Crosswalk Width(tt) | | 16 | | | 16 | | | 16 | | | 16 | |
| Two way Left Turn Lane | | | | | | | | | | | Yes | |
| Headway Factor | 1.04 | 1.04 | 1.00 | 1.00 | 1.04 | 1.04 | 1.00 | 1.00 | 1.00 | 1.04 | 1.00 | 1.04 |
| Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 |
| Number of Detectors | 1 | 1 | | 1 | 1 | 1 | | | | 1 | 1 | 0 |
| Detector Template | | | | Left | | | | | | | | |
| Leading Detector (tt) | 50 | 50 | | 20 | 40 | 40 | | | | 40 | 40 | 0 |
| Trailing Detector (ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Position(ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Size(ft) | 50 | 50 | | 20 | 40 | 40 | | | | 40 | 40 | 25 |
| Detector 1 Type | Cl+Ex | $\mathrm{Cl}+\mathrm{Ex}$ | | Cl+Ex | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | | Cl+Ex | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ |
| Detector 1 Channel | | | | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Queue (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Delay (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Turn Type | custom | NA | | Perm | NA | Perm | | | | Split | NA | $\mathrm{pt}+0 \mathrm{~V}$ |
| Protected Phases | 4 | 24 | | | 6 | | | | | 3 | 3 | 34 |
| Permitted Phases | 2 | | | 6 | | 6 | | | | | | |
| Detector Phase | 4 | 24 | | 6 | 6 | - | | | | 3 | 3 | 34 |
| Switch Phase | | | | | | | | | | | | |
| Minimum Initial (s) | 8.0 | | | 12.0 | 12.0 | 12.0 | | | | 8.0 | 8.0 | |
| Minimum Split (s) | 25.0 | | | 31.0 | 31.0 | 31.0 | | | | 25.0 | 25.0 | |

Lane Group	$\emptyset 2$	¢7	$\varnothing 8$	
Lane Configurations				
Volume (vph)				
Ideal Flow (vphpl)				
Lane Width (tt)				
Storage Length (tt)				
Storage Lanes				
Taper Length (tt)				
Lane Util. Factor				
Frt				
Flt Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (mph)				
Link Distance (tt)				
Travel Time (s)				
Peak Hour Factor				
Heavy Vehicles (\%)				
Adj. Flow (vph)				
Shared Lane Traffic (\%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(tt)				
Link Offset(ft)				
Crosswalk Width(tt)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (mph)				
Number of Detectors				
Detector Template				
Leading Detector (tt)				
Trailing Detector (ft)				
Detector 1 Position(t)				
Detector 1 Size(ft)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Turn Type				
Protected Phases	2	7	8	
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	12.0	8.0	16.0	
Minimum Split (s)	31.0	29.0	25.0	
7/10/2014 2014 Existing PM - EB Blocked Bergmann Associates				Synchro 8 Repor Page 5

	\rangle							4			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	41.0			34.0	34.0	34.0				25.0	25.0	
Total Split (\%)	41.0\%			34.0\%	34.0\%	34.0\%				25.0\%	25.0\%	
Maximum Green (s)	35.5			28.0	28.0	28.0				19.5	19.5	
Yellow Time (s)	3.5			4.0	4.0	4.0				3.5	3.5	
All-Red Time (s)	2.0			2.0	2.0	2.0				2.0	2.0	
Lost Time Adjust (s)					-3.0	-1.0					0.0	
Total Lost Time (s)					3.0	5.0					5.5	
Lead/Lag	Lag									Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0			3.0	3.0	3.0				2.0	2.0	
Recall Mode	None			C-Max	C-Max	C-Max				None	None	
Walk Time (s)	7.0			9.0	9.0	9.0				7.0	7.0	
Flash Dont Walk (s)	12.0			15.0	15.0	15.0				12.0	12.0	
Pedestrian Calls (\#/hr)	0			0	0	0				0	0	
Act Effct Green (s)		73.3			31.0	29.0					15.2	63.0
Actuated g/C Ratio		0.73			0.31	0.29					0.15	0.63
v/c Ratio		0.67			0.54	0.34					0.61	0.36
Control Delay		13.9			33.5	9.0					49.0	10.2
Queue Delay		0.8			0.0	0.0					0.0	0.0
Total Delay		14.7			33.5	9.0					49.0	10.2
LOS		B			C	A					D	B
Approach Delay		14.7			23.6						22.7	
Approach LOS		B			C						C	

Intersection Summary

Area Type:
 Other

Cycle Length: 100
Actuated Cycle Length: 100
Offset: $0(0 \%)$, Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.67
Intersection Signal Delay: 19.7
Intersection LOS: B
Intersection Capacity Utilization 65.0\% ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 1102: Driving Park \& Dewey (North)

Lane Group	$ø 2$	$\varnothing 7$	$\varnothing 8$
Total Split (s)	34.0	41.0	25.0
Total Split (\%)	34%	41%	25%
Maximum Green (s)	28.0	35.5	19.5
Yellow Time (s)	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?	3.0	2.0	3.0
Vehicle Extension (s)	C-Max	None	Max
Recall Mode	9.0	8.0	7.0
Walk Time (s)	15.0	12.0	12.0
Flash Dont Walk (s)	0	0	0
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			

	\rightarrow	4	4		\downarrow
Lane Group	EBT	WBT	WBR	SBT	SBR
Lane Group Flow (vph)	637	261	178	158	335
v/c Ratio	0.67	0.54	0.34	0.61	0.36
Control Delay	13.9	33.5	9.0	49.0	10.2
Queue Delay	0.8	0.0	0.0	0.0	0.0
Total Delay	14.7	33.5	9.0	49.0	10.2
Queue Length 50th (ft)	196	137	14	95	93
Queue Length 95th (ft)	332	218	66	154	146
Internal Link Dist (tt)	100	851		584	
Turn Bay Length (t)			75		275
Base Capacity (vph)	957	486	531	336	923
Starvation Cap Reductn	112	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.75	0.54	0.34	0.47	0.36

[^7]| Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | $ø 3$ | $\emptyset 4$ | $ø 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 4 | 「 | ${ }^{*}$ | 4 | ${ }^{*}$ | 「 | | | |
| Volume (vph) | 176 | 75 | 285 | 244 | 21 | 222 | | | |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | |
| Lane Width (ft) | 11 | 11 | 11 | 11 | 11 | 11 | | | |
| Storage Length (ft) | | 75 | 75 | | 200 | 0 | | | |
| Storage Lanes | | 1 | 1 | | 1 | 1 | | | |
| Taper Length (ft) | | | 25 | | 25 | | | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | |
| Frt | | 0.850 | | | | 0.850 | | | |
| Flt Protected | | | 0.950 | | 0.950 | | | | |
| Satd. Flow (prot) | 1733 | 1473 | 1646 | 1733 | 1646 | 1473 | | | |
| Flt Permitted | | | 0.505 | | 0.950 | | | | |
| Satd. Flow (perm) | 1733 | 1473 | 875 | 1733 | 1646 | 1473 | | | |
| Right Turn on Red | | Yes | | | | No | | | |
| Satd. Flow (RTOR) | | 90 | | | | | | | |
| Link Speed (mph) | 30 | | | 30 | 30 | | | | |
| Link Distance (ft) | 465 | | | 180 | 541 | | | | |
| Travel Time (s) | 10.6 | | | 4.1 | 12.3 | | | | |
| Peak Hour Factor | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | | | |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | | | |
| Adj. Flow (vph) | 212 | 90 | 343 | 294 | 25 | 267 | | | |
| Shared Lane Traffic (\%) | | | | | | | | | |
| Lane Group Flow (vph) | 212 | 90 | 343 | 294 | 25 | 267 | | | |
| Enter Blocked Intersection | No | No | No | No | No | No | | | |
| Lane Alignment | Left | Right | Left | Left | Left | Right | | | |
| Median Width(ft) | 11 | | | 11 | 11 | | | | |
| Link Offset(ft) | 0 | | | 0 | 0 | | | | |
| Crosswalk Width(ft) | 16 | | | 16 | 16 | | | | |
| Two way Left Turn Lane | | | | | | | | | |
| Headway Factor | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | | | |
| Turning Speed (mph) | | 9 | 15 | | 15 | 9 | | | |
| Number of Detectors | 2 | 2 | 1 | 0 | 2 | 2 | | | |
| Detector Template | | | | | | | | | |
| Leading Detector (ft) | 26 | 26 | 50 | 0 | 26 | 26 | | | |
| Trailing Detector (ft) | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| Detector 1 Position(ft) | 20 | 20 | 0 | 19 | 0 | 0 | | | |
| Detector 1 Size(ft) | 6 | 6 | 50 | 0 | 6 | 6 | | | |
| Detector 1 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | |
| Detector 1 Channel | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 1 Queue (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 1 Delay (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 2 Position(ft) | 0 | 0 | | | 20 | 20 | | | |
| Detector 2 Size(ft) | 6 | 6 | | | 6 | 6 | | | |
| Detector 2 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | |
| Detector 2 Channel | | | | | | | | | |
| Detector 2 Extend (s) | 0.0 | 0.0 | | | 0.0 | 0.0 | | | |
| Turn Type | NA | Perm | custom | NA | Prot | pt+ov | | | |
| Protected Phases | 2 | | 7 | 67 | 8 | 78 | 3 | 4 | 6 |

Intersection Summary

Area Type:
Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 3 (3\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.80
Intersection Signal Delay: 13.6
Intersection LOS: B
Intersection Capacity Utilization 49.1\%
ICU Level of Service A
Analysis Period (min) 15

EBT	EBR	WBL	WBT	NBL	NBR		
Lane Group	212	90	343	294	25	267	
Lane Group Flow (vph)	0.39	0.18	0.62	0.33	0.04	0.29	
v/c Ratio	27.0	6.5	14.6	7.6	18.0	8.9	
Control Delay	0.0	0.0	0.4	0.7	0.0	0.0	
Queue Delay	27.0	6.5	15.0	8.3	18.0	8.9	
Total Delay	94	0	59	49	8	64	
Queue Length 50th (tt)	142	28	70	60	24	94	
Queue Length 95th (ft)	385			100	461		
Internal Link Dist (ft)		75	75		200		
Turn Bay Length (tt)	539	489	747	1097	685	916	
Base Capacity (vph)	0	0	106	504	0	0	
Starvation Cap Reductn	0	0	0	0	0	49	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0.39	0.18	0.54	0.50	0.04	0.31	
Reduced v/c Ratio							

[^8]| | 4 | \rightarrow | | 7 | 4 | | 4 | \dagger | | | \downarrow | \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{1}$ | 4 | | | 4 | 「 | | | | | \uparrow | 「 |
| Volume (vph) | 234 | 160 | 4 | 20 | 225 | 71 | 0 | 0 | 0 | 190 | 47 | 304 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 11 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 11 | 12 | 11 |
| Storage Length (ft) | 75 | | 0 | 0 | | 75 | 0 | | 0 | 0 | | 275 |
| Storage Lanes | 1 | | 0 | 0 | | 1 | 0 | | 0 | 0 | | 1 |
| Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt | | 0.996 | | | | 0.850 | | | | | | 0.850 |
| Flt Protected | 0.950 | | | | 0.996 | | | | | | 0.962 | |
| Satd. Flow (prot) | 1646 | 1726 | 0 | 0 | 1726 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Flt Permitted | 0.387 | | | | 0.966 | | | | | | 0.962 | |
| Satd. Flow (perm) | 671 | 1726 | 0 | 0 | 1674 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | No |
| Satd. Flow (RTOR) | | 3 | | | | 97 | | | | | | |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 180 | | | 931 | | | 272 | | | 664 | |
| Travel Time (s) | | 4.1 | | | 21.2 | | | 6.2 | | | 15.1 | |
| Peak Hour Factor | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% |
| Adj. Flow (vph) | 282 | 193 | 5 | 24 | 271 | 86 | 0 | 0 | 0 | 229 | 57 | 366 |
| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| Lane Group Flow (vph) | 282 | 198 | 0 | 0 | 295 | 86 | 0 | 0 | 0 | 0 | 286 | 366 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(ft) | | 11 | | | 8 | | | 0 | | | 12 | |
| Link Offset(ft) | | 0 | | | 0 | | | 30 | | | 0 | |
| Crosswalk Width(ft) | | 16 | | | 16 | | | 16 | | | 16 | |
| Two way Left Turn Lane | | | | | | | | | | | Yes | |
| Headway Factor | 1.04 | 1.04 | 1.00 | 1.00 | 1.04 | 1.04 | 1.00 | 1.00 | 1.00 | 1.04 | 1.00 | 1.04 |
| Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 |
| Number of Detectors | 1 | 0 | | 1 | 1 | 1 | | | | 1 | 1 | 0 |
| Detector Template | | | | Left | | | | | | | | |
| Leading Detector (ft) | 50 | 0 | | 20 | 40 | 40 | | | | 40 | 40 | 0 |
| Trailing Detector (ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Position(ft) | 0 | 19 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Size(ft) | 50 | 0 | | 20 | 40 | 40 | | | | 40 | 40 | 25 |
| Detector 1 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ |
| Detector 1 Channel | | | | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Queue (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Delay (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Turn Type | custom | NA | | Perm | NA | Perm | | | | Split | NA | pt+ov |
| Protected Phases | 4 | 24 | | | 6 | | | | | 3 | 3 | 34 |
| Permitted Phases | 2 | | | 6 | | 6 | | | | | | |
| Detector Phase | 4 | 24 | | 6 | 6 | 6 | | | | 3 | 3 | 34 |
| Switch Phase | | | | | | | | | | | | |
| Minimum Initial (s) | 8.0 | | | 12.0 | 12.0 | 12.0 | | | | 8.0 | 8.0 | |
| Minimum Split (s) | 25.0 | | | 31.0 | 31.0 | 31.0 | | | | 25.0 | 25.0 | |

	4							\uparrow	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	30.0			31.0	31.0	31.0				29.0	29.0	
Total Split (\%)	33.3\%			34.4\%	34.4\%	34.4\%				32.2\%	32.2\%	
Maximum Green (s)	24.5			25.0	25.0	25.0				23.5	23.5	
Yellow Time (s)	3.5			4.0	4.0	4.0				3.5	3.5	
All-Red Time (s)	2.0			2.0	2.0	2.0				2.0	2.0	
Lost Time Adjust (s)	-2.5				-3.0	-1.0					0.0	
Total Lost Time (s)	3.0				3.0	5.0					5.5	
Lead/Lag	Lag									Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0			3.0	3.0	3.0				2.0	2.0	
Recall Mode	None			C-Max	C-Max	C-Max				None	None	
Walk Time (s)	7.0			9.0	9.0	9.0				7.0	7.0	
Flash Dont Walk (s)	12.0			15.0	15.0	15.0				12.0	12.0	
Pedestrian Calls (\#/hr)	0			0	0	0				0	0	
Act Efftt Green (s)	59.8	62.8			28.0	26.0					18.7	56.0
Actuated g/C Ratio	0.66	0.70			0.31	0.29					0.21	0.62
v/c Ratio	0.36	0.16			0.57	0.17					0.80	0.40
Control Delay	9.1	6.7			31.1	5.4					50.4	10.2
Queue Delay	0.8	0.8			0.1	0.0					0.0	0.0
Total Delay	9.9	7.6			31.1	5.4					50.4	10.2
LOS	A	A			C	A					D	B
Approach Delay		9.0			25.3						27.8	
Approach LOS		A			C						C	

Intersection Summary

Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 3 (3\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.80
Intersection Signal Delay: 21.2
Intersection LOS: C
Intersection Capacity Utilization 50.2\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 1102: Driving Park \& Dewey (North)

Lane Group	$ø 2$	$\varnothing 7$	$\varnothing 8$
Total Split (s)	31.0	29.0	30.0
Total Split (\%)	34%	32%	33%
Maximum Green (s)	25.0	23.5	24.5
Yellow Time (s)	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?	3.0	2.0	3.0
Vehicle Extension (s)	C-Max	None	Max
Recall Mode	9.0	8.0	7.0
Walk Time (s)	15.0	12.0	12.0
Flash Dont Walk (s)	0	0	0
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			

	4	\rightarrow	\leftarrow	4	\downarrow	\checkmark
Lane Group	EBL	EBT	WBT	WBR	SBT	SBR
Lane Group Flow (vph)	282	198	295	86	286	366
v/c Ratio	0.36	0.16	0.57	0.17	0.80	0.40
Control Delay	9.1	6.7	31.1	5.4	50.4	10.2
Queue Delay	0.8	0.8	0.1	0.0	0.0	0.0
Total Delay	9.9	7.6	31.1	5.4	50.4	10.2
Queue Length 50th (tt)	63	42	139	0	154	95
Queue Length 95th (ft)	95	68	200	23	207	134
Internal Link Dist (tt)		100	851		584	
Turn Bay Length (tt)	75			75		275
Base Capacity (vph)	791	1206	520	494	450	911
Starvation Cap Reductn	268	755	0	0	0	0
Spillback Cap Reductn	0	0	6	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.54	0.44	0.57	0.17	0.64	0.40

[^9]| Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | $ø 3$ | $\emptyset 4$ | $ø 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 4 | 「 | ${ }^{*}$ | 4 | ${ }^{*}$ | 「 | | | |
| Volume (vph) | 176 | 75 | 285 | 244 | 21 | 222 | | | |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | |
| Lane Width (ft) | 11 | 11 | 11 | 11 | 11 | 11 | | | |
| Storage Length (ft) | | 75 | 75 | | 200 | 0 | | | |
| Storage Lanes | | 1 | 1 | | 1 | 1 | | | |
| Taper Length (ft) | | | 25 | | 25 | | | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | |
| Frt | | 0.850 | | | | 0.850 | | | |
| Flt Protected | | | 0.950 | | 0.950 | | | | |
| Satd. Flow (prot) | 1733 | 1473 | 1646 | 1733 | 1646 | 1473 | | | |
| Flt Permitted | | | 0.505 | | 0.950 | | | | |
| Satd. Flow (perm) | 1733 | 1473 | 875 | 1733 | 1646 | 1473 | | | |
| Right Turn on Red | | Yes | | | | No | | | |
| Satd. Flow (RTOR) | | 90 | | | | | | | |
| Link Speed (mph) | 30 | | | 30 | 30 | | | | |
| Link Distance (ft) | 465 | | | 180 | 541 | | | | |
| Travel Time (s) | 10.6 | | | 4.1 | 12.3 | | | | |
| Peak Hour Factor | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | | | |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | | | |
| Adj. Flow (vph) | 212 | 90 | 343 | 294 | 25 | 267 | | | |
| Shared Lane Traffic (\%) | | | | | | | | | |
| Lane Group Flow (vph) | 212 | 90 | 343 | 294 | 25 | 267 | | | |
| Enter Blocked Intersection | No | No | No | No | No | No | | | |
| Lane Alignment | Left | Right | Left | Left | Left | Right | | | |
| Median Width(ft) | 11 | | | 11 | 11 | | | | |
| Link Offset(ft) | 0 | | | 0 | 0 | | | | |
| Crosswalk Width(ft) | 16 | | | 16 | 16 | | | | |
| Two way Left Turn Lane | | | | | | | | | |
| Headway Factor | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | | | |
| Turning Speed (mph) | | 9 | 15 | | 15 | 9 | | | |
| Number of Detectors | 2 | 2 | 1 | 0 | 2 | 2 | | | |
| Detector Template | | | | | | | | | |
| Leading Detector (ft) | 26 | 26 | 50 | 0 | 26 | 26 | | | |
| Trailing Detector (ft) | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| Detector 1 Position(ft) | 20 | 20 | 0 | 19 | 0 | 0 | | | |
| Detector 1 Size(ft) | 6 | 6 | 50 | 0 | 6 | 6 | | | |
| Detector 1 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | |
| Detector 1 Channel | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 1 Queue (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 1 Delay (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 2 Position(ft) | 0 | 0 | | | 20 | 20 | | | |
| Detector 2 Size(ft) | 6 | 6 | | | 6 | 6 | | | |
| Detector 2 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | |
| Detector 2 Channel | | | | | | | | | |
| Detector 2 Extend (s) | 0.0 | 0.0 | | | 0.0 | 0.0 | | | |
| Turn Type | NA | Perm | custom | NA | Prot | pt+ov | | | |
| Protected Phases | 2 | | 7 | 67 | 8 | 78 | 3 | 4 | 6 |

Splits and Phases: 1101: Dewey (South) \& Driving Park

[^10]| | 4 | | | | | | | \uparrow | | | \downarrow | \checkmark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | \uparrow | | | 个 | 7 | | | | | $\hat{\uparrow}$ | F |
| Volume (vph) | 234 | 160 | 4 | 20 | 225 | 71 | 0 | 0 | 0 | 190 | 47 | 304 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (t) | 11 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 11 | 12 | 11 |
| Storage Length (t) | 75 | | 0 | 0 | | 75 | 0 | | 0 | 0 | | 275 |
| Storage Lanes | 0 | | 0 | 0 | | 1 | 0 | | 0 | 0 | | 1 |
| Taper Length (t) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Utill. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt | | 0.999 | | | | 0.850 | | | | | | 0.850 |
| FIt Protected | | 0.971 | | | 0.996 | | | | | | 0.962 | |
| Satd. Flow (prot) | 0 | 1681 | 0 | 0 | 1726 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Flt Permitted | | 0.445 | | | 0.942 | | | | | | 0.962 | |
| Satd. Flow (perm) | 0 | 770 | 0 | 0 | 1632 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | No |
| Satd. Flow (RTOR) | | 1 | | | | 97 | | | | | | |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 180 | | | 931 | | | 272 | | | 664 | |
| Travel Time (s) | | 4.1 | | | 21.2 | | | 6.2 | | | 15.1 | |
| Peak Hour Factor | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% |
| Adj. Flow (vph) | 282 | 193 | 5 | 24 | 271 | 86 | 0 | 0 | 0 | 229 | 57 | 366 |
| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| Lane Group Flow (vph) | 0 | 480 | 0 | 0 | 295 | 86 | 0 | 0 | 0 | 0 | 286 | 366 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(t) | | 11 | | | 8 | | | 0 | | | 12 | |
| Link Offset(tt) | | 0 | | | 0 | | | 30 | | | 0 | |
| Crosswalk Width(tt) | | 16 | | | 16 | | | 16 | | | 16 | |
| Two way Left Turn Lane | | | | | | | | | | | Yes | |
| Headway Factor | 1.04 | 1.04 | 1.00 | 1.00 | 1.04 | 1.04 | 1.00 | 1.00 | 1.00 | 1.04 | 1.00 | 1.04 |
| Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 |
| Number of Detectors | 1 | 1 | | 1 | 1 | 1 | | | | 1 | 1 | 0 |
| Detector Template | | | | Left | | | | | | | | |
| Leading Detector (tt) | 50 | 50 | | 20 | 40 | 40 | | | | 40 | 40 | 0 |
| Trailing Detector (ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Position(ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Size(ft) | 50 | 50 | | 20 | 40 | 40 | | | | 40 | 40 | 25 |
| Detector 1 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | | Cl+Ex | $\mathrm{Cl}+\mathrm{Ex}$ | Cl+Ex |
| Detector 1 Channel | | | | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Queue (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Delay (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Turn Type | custom | NA | | Perm | NA | Perm | | | | Split | NA | pt+ov |
| Protected Phases | 4 | 24 | | | 6 | | | | | 3 | 3 | 34 |
| Permitted Phases | 2 | | | 6 | | 6 | | | | | | |
| Detector Phase | 4 | 24 | | 6 | 6 | 6 | | | | 3 | 3 | 34 |
| Switch Phase | | | | | | | | | | | | |
| Minimum Initial (s) | 8.0 | | | 12.0 | 12.0 | 12.0 | | | | 8.0 | 8.0 | |
| Minimum Split (s) | 25.0 | | | 31.0 | 31.0 | 31.0 | | | | 25.0 | 25.0 | |

Lane Group	$ø 2$	$\varnothing 7$	$\emptyset 8$	
Lane Configurations				
Volume (vph)				
Ideal Flow (vphpl)				
Lane Width (ft)				
Storage Length (ft)				
Storage Lanes				
Taper Length (ft)				
Lane Util. Factor				
Frt				
Flt Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (mph)				
Link Distance (ft)				
Travel Time (s)				
Peak Hour Factor				
Heavy Vehicles (\%)				
Adj. Flow (vph)				
Shared Lane Traffic (\%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(ft)				
Link Offset(ft)				
Crosswalk Width(ft)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (mph)				
Number of Detectors				
Detector Template				
Leading Detector (ft)				
Trailing Detector (ft)				
Detector 1 Position(ft)				
Detector 1 Size(ft)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Turn Type				
Protected Phases	2	7	8	
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	12.0	8.0	16.0	
Minimum Split (s)	31.0	29.0	25.0	
5/28/2014 2018 No-Build AM - EB Parked Cars				Synchro 8 Report Page 5

	4					4		\uparrow		,	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	30.0			31.0	31.0	31.0				29.0	29.0	
Total Split (\%)	33.3\%			34.4\%	34.4\%	34.4\%				32.2\%	32.2\%	
Maximum Green (s)	24.5			25.0	25.0	25.0				23.5	23.5	
Yellow Time (s)	3.5			4.0	4.0	4.0				3.5	3.5	
All-Red Time (s)	2.0			2.0	2.0	2.0				2.0	2.0	
Lost Time Adjust (s)					-3.0	-1.0					0.0	
Total Lost Time (s)					3.0	5.0					5.5	
Lead/Lag	Lag									Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0			3.0	3.0	3.0				2.0	2.0	
Recall Mode	None			C-Max	C-Max	C-Max				None	None	
Walk Time (s)	7.0			9.0	9.0	9.0				7.0	7.0	
Flash Dont Walk (s)	12.0			15.0	15.0	15.0				12.0	12.0	
Pedestrian Calls (\#/hr)	0			0	0	0				0	0	
Act Effct Green (s)		59.8			28.0	26.0					18.7	56.0
Actuated g/C Ratio		0.66			0.31	0.29					0.21	0.62
v/c Ratio		0.58			0.58	0.17					0.80	0.40
Control Delay		15.0			31.6	5.4					50.4	10.2
Queue Delay		1.7			0.0	0.0					0.0	0.0
Total Delay		16.7			31.6	5.4					50.4	10.2
LOS		B			C	A					D	B
Approach Delay		16.7			25.7						27.8	
Approach LOS		B			C						C	

Intersection Summary

Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 3 (3\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.80
Intersection Signal Delay: 23.8 Intersection LOS: C
Intersection Capacity Utilization 58.8\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 1102: Driving Park \& Dewey (North)

Lane Group	$ø 2$	$\varnothing 7$	$\varnothing 8$
Total Split (s)	31.0	29.0	30.0
Total Split (\%)	34%	32%	33%
Maximum Green (s)	25.0	23.5	24.5
Yellow Time (s)	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?	3.0	2.0	3.0
Vehicle Extension (s)	C-Max	None	Max
Recall Mode	9.0	8.0	7.0
Walk Time (s)	15.0	12.0	12.0
Flash Dont Walk (s)	0	0	0
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			

[^11]| Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | $ø 3$ | $\varnothing 4$ | $ø 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 4 | 「 | ${ }^{4}$ | 4 | ${ }^{1}$ | 「 | | | |
| Volume (vph) | 254 | 54 | 287 | 282 | 52 | 414 | | | |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | |
| Lane Width (ft) | 11 | 11 | 11 | 11 | 11 | 11 | | | |
| Storage Length (ft) | | 75 | 75 | | 200 | 0 | | | |
| Storage Lanes | | 1 | 1 | | 1 | 1 | | | |
| Taper Length (ft) | | | 25 | | 25 | | | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | |
| Frt | | 0.850 | | | | 0.850 | | | |
| Flt Protected | | | 0.950 | | 0.950 | | | | |
| Satd. Flow (prot) | 1733 | 1473 | 1646 | 1733 | 1646 | 1473 | | | |
| Flt Permitted | | | 0.415 | | 0.950 | | | | |
| Satd. Flow (perm) | 1733 | 1473 | 719 | 1733 | 1646 | 1473 | | | |
| Right Turn on Red | | Yes | | | | No | | | |
| Satd. Flow (RTOR) | | 43 | | | | | | | |
| Link Speed (mph) | 30 | | | 30 | 30 | | | | |
| Link Distance (ft) | 465 | | | 180 | 541 | | | | |
| Travel Time (s) | 10.6 | | | 4.1 | 12.3 | | | | |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | | | |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | | | |
| Adj. Flow (vph) | 270 | 57 | 305 | 300 | 55 | 440 | | | |
| Shared Lane Traffic (\%) | | | | | | | | | |
| Lane Group Flow (vph) | 270 | 57 | 305 | 300 | 55 | 440 | | | |
| Enter Blocked Intersection | No | No | No | No | No | No | | | |
| Lane Alignment | Left | Right | Left | Left | Left | Right | | | |
| Median Width(ft) | 11 | | | 11 | 11 | | | | |
| Link Offset(ft) | 0 | | | 0 | 0 | | | | |
| Crosswalk Width(ft) | 16 | | | 16 | 16 | | | | |
| Two way Left Turn Lane | | | | | | | | | |
| Headway Factor | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | | | |
| Turning Speed (mph) | | 9 | 15 | | 15 | 9 | | | |
| Number of Detectors | 2 | 2 | 1 | 0 | 2 | 2 | | | |
| Detector Template | | | | | | | | | |
| Leading Detector (ft) | 26 | 26 | 50 | 0 | 26 | 26 | | | |
| Trailing Detector (ft) | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| Detector 1 Position(ft) | 20 | 20 | 0 | 19 | 0 | 0 | | | |
| Detector 1 Size(ft) | 6 | 6 | 50 | 0 | 6 | 6 | | | |
| Detector 1 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | |
| Detector 1 Channel | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 1 Queue (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 1 Delay (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 2 Position(ft) | 0 | 0 | | | 20 | 20 | | | |
| Detector 2 Size(ft) | 6 | 6 | | | 6 | 6 | | | |
| Detector 2 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | |
| Detector 2 Channel | | | | | | | | | |
| Detector 2 Extend (s) | 0.0 | 0.0 | | | 0.0 | 0.0 | | | |
| Turn Type | NA | Perm | custom | NA | Prot | pt+ov | | | |
| Protected Phases | 2 | | 7 | 67 | 8 | 78 | 3 | 4 | 6 |

Splits and Phases: 1101: Dewey (South) \& Driving Park

	EBT	EBR	WBL	WBT	NBL	NBR
Lane Group	270	57	305	300	55	440
Lane Group Flow (vph)	0.50	0.12	0.48	0.29	0.09	0.47
V/c Ratio	32.2	11.9	10.8	5.7	25.9	11.9
Control Delay	0.0	0.0	0.4	0.6	0.0	0.6
Queue Delay	32.2	11.9	11.2	6.3	25.9	12.5
Total Delay	140	6	50	49	23	135
Queue Length 50th (ft)	220	36	50	49	60	207
Queee Length 95th (ft)	385			100	461	
Internal Link Dist (ft)		75	75		200	
Turn Bay Length (ft)	537	457	848	1247	580	926
Base Capacity (vph)	0	0	205	597	0	0
Starvation Cap Reductn	0	0	0	0	0	207
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0.50	0.12	0.47	0.46	0.09	0.61

[^12]| | 4 | \rightarrow | | 7 | 4 | 4 | 4 | \dagger | | , | \dagger | \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 4 | | | 4 | F | | | | | \uparrow | 7 |
| Volume (vph) | 424 | 235 | 9 | 26 | 241 | 174 | 0 | 0 | 0 | 123 | 31 | 328 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 11 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 11 | 12 | 11 |
| Storage Length (ft) | 75 | | 0 | 0 | | 75 | 0 | | 0 | 0 | | 275 |
| Storage Lanes | 1 | | 0 | 0 | | 1 | 0 | | 0 | 0 | | 1 |
| Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt | | 0.994 | | | | 0.850 | | | | | | 0.850 |
| Flt Protected | 0.950 | | | | 0.995 | | | | | | 0.962 | |
| Satd. Flow (prot) | 1646 | 1722 | 0 | 0 | 1724 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Flt Permitted | 0.395 | | | | 0.951 | | | | | | 0.962 | |
| Satd. Flow (perm) | 684 | 1722 | 0 | 0 | 1648 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | No |
| Satd. Flow (RTOR) | | 5 | | | | 147 | | | | | | |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 180 | | | 931 | | | 272 | | | 664 | |
| Travel Time (s) | | 4.1 | | | 21.2 | | | 6.2 | | | 15.1 | |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% |
| Adj. Flow (vph) | 451 | 250 | 10 | 28 | 256 | 185 | 0 | 0 | 0 | 131 | 33 | 349 |
| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| Lane Group Flow (vph) | 451 | 260 | 0 | 0 | 284 | 185 | 0 | 0 | 0 | 0 | 164 | 349 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(ft) | | 11 | | | 8 | | | 0 | | | 12 | |
| Link Offset(ft) | | 0 | | | 0 | | | 30 | | | 0 | |
| Crosswalk Width(ft) | | 16 | | | 16 | | | 16 | | | 16 | |
| Two way Left Turn Lane | | | | | | | | | | | Yes | |
| Headway Factor | 1.04 | 1.04 | 1.00 | 1.00 | 1.04 | 1.04 | 1.00 | 1.00 | 1.00 | 1.04 | 1.00 | 1.04 |
| Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 |
| Number of Detectors | 1 | 0 | | 1 | 1 | 1 | | | | 1 | 1 | 0 |
| Detector Template | | | | Left | | | | | | | | |
| Leading Detector (ft) | 50 | 0 | | 20 | 40 | 40 | | | | 40 | 40 | 0 |
| Trailing Detector (ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Position(ft) | 0 | 19 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Size(ft) | 50 | 0 | | 20 | 40 | 40 | | | | 40 | 40 | 25 |
| Detector 1 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | $\mathrm{Cl}+\mathrm{Ex}$ | Cl+Ex | $\mathrm{Cl}+\mathrm{Ex}$ | | | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ |
| Detector 1 Channel | | | | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Queue (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Delay (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Turn Type | custom | NA | | Perm | NA | Perm | | | | Split | NA | pt+ov |
| Protected Phases | 4 | 24 | | | 6 | | | | | 3 | 3 | 34 |
| Permitted Phases | 2 | | | 6 | | 6 | | | | | | |
| Detector Phase | 4 | 24 | | 6 | 6 | 6 | | | | 3 | 3 | 34 |
| Switch Phase | | | | | | | | | | | | |
| Minimum Initial (s) | 8.0 | | | 12.0 | 12.0 | 12.0 | | | | 8.0 | 8.0 | |
| Minimum Split (s) | 25.0 | | | 31.0 | 31.0 | 31.0 | | | | 25.0 | 25.0 | |

Lane Group	$\varnothing 2$	67	$\varnothing 8$	
Lane Configurations				
Volume (vph)				
Ideal Flow (vphpl)				
Lane Width (tt)				
Storage Length (tt)				
Storage Lanes				
Taper Length (tt)				
Lane Utili. Factor				
Frt				
Flt Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (mph)				
Link Distance (tt)				
Travel Time (s)				
Peak Hour Factor				
Heavy Vehicles (\%)				
Adj. Flow (vph)				
Shared Lane Traffic (\%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(tt)				
Link Offset(tt)				
Crosswalk Width(tt)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (mph)				
Number of Detectors				
Detector Template				
Leading Detector (tt)				
Trailing Detector (ft)				
Detector 1 Position(ft)				
Detector 1 Size(ft)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Turn Type				
Protected Phases	2	7	8	
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	12.0	8.0	16.0	
Minimum Split (s)	31.0	29.0	25.0	
7/10/2014 2018 No-Build PM Bergmann Associates				Synchro 8 Report Page 5

	4							\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	41.0			34.0	34.0	34.0				25.0	25.0	
Total Split (\%)	41.0\%			34.0\%	34.0\%	34.0\%				25.0\%	25.0\%	
Maximum Green (s)	35.5			28.0	28.0	28.0				19.5	19.5	
Yellow Time (s)	3.5			4.0	4.0	4.0				3.5	3.5	
All-Red Time (s)	2.0			2.0	2.0	2.0				2.0	2.0	
Lost Time Adjust (s)	-2.5				-3.0	-1.0					0.0	
Total Lost Time (s)	3.0				3.0	5.0					5.5	
Lead/Lag	Lag									Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0			3.0	3.0	3.0				2.0	2.0	
Recall Mode	None			C-Max	C-Max	C-Max				None	None	
Walk Time (s)	7.0			9.0	9.0	9.0				7.0	7.0	
Flash Dont Walk (s)	12.0			15.0	15.0	15.0				12.0	12.0	
Pedestrian Calls (\#/hr)	0			0	0	0				0	0	
Act Efftt Green (s)	72.9	75.9			31.0	29.0					15.6	63.0
Actuated g/C Ratio	0.73	0.76			0.31	0.29					0.16	0.63
v/c Ratio	0.50	0.20			0.56	0.35					0.61	0.38
Control Delay	9.9	4.9			33.8	9.6					48.8	10.4
Queue Delay	1.1	0.9			0.0	0.0					0.0	0.0
Total Delay	11.0	5.8			33.8	9.6					48.8	10.4
LOS	B	A			C	A					D	B
Approach Delay		9.1			24.2						22.7	
Approach LOS		A			C						C	

Intersection Summary

Area Type:
 Other

Cycle Length: 100
Actuated Cycle Length: 100
Offset: 0 (0\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.61
Intersection Signal Delay: 17.4
Intersection Capacity Utilization 57.3\%
Analysis Period (min) 15
Splits and Phases: 1102: Driving Park \& Dewey (North)

Lane Group	$ø 2$	$\varnothing 7$	$\varnothing 8$
Total Split (s)	34.0	41.0	25.0
Total Split (\%)	34%	41%	25%
Maximum Green (s)	28.0	35.5	19.5
Yellow Time (s)	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?	3.0	2.0	3.0
Vehicle Extension (s)	C-Max	None	Max
Recall Mode	9.0	8.0	7.0
Walk Time (s)	15.0	12.0	12.0
Flash Dont Walk (s)	0	0	0
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			

[^13]

Splits and Phases: 1101: Dewey (South) \& Driving Park

EBT	EBR	WBL	WBT	NBL	NBR		
Lane Group	270	57	305	300	55	440	
Lane Group Flow (vph)	0.50	0.12	0.48	0.29	0.09	0.47	
v/c Ratio	32.2	11.9	10.6	5.7	25.9	11.9	
Control Delay	0.5	0.0	0.4	0.6	0.0	1.4	
Queue Delay	32.7	11.9	11.0	6.3	25.9	13.3	
Total Delay	140	6	50	49	23	135	
Queue Length 50th (ft)	220	36	50	49	60	207	
Queue Length 95th (ft)	385			100	461		
Internal Link Dist (ft)		75	75		200		
Turn Bay Length (ft)	537	457	848	1247	580	926	
Base Capacity (vph)	0	0	206	607	0	0	
Starvation Cap Reductn	68	0	0	0	0	292	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0.58	0.12	0.48	0.47	0.09	0.69	
Reduced v/c Ratio							

[^14]| | \rangle | | | | | | | | | | \downarrow | \checkmark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | \uparrow | | | \uparrow | 「 | | | | | \uparrow | F |
| Volume (vph) | 424 | 235 | 9 | 26 | 241 | 174 | 0 | 0 | 0 | 123 | 31 | 328 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (tt) | 11 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 11 | 12 | 11 |
| Storage Length (ft) | 75 | | 0 | 0 | | 75 | 0 | | 0 | 0 | | 275 |
| Storage Lanes | 0 | | 0 | 0 | | 1 | 0 | | 0 | 0 | | 1 |
| Taper Length (t) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Utill. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Fit | | 0.998 | | | | 0.850 | | | | | | 0.850 |
| Flt Protected | | 0.969 | | | 0.995 | | | | | | 0.962 | |
| Satd. Flow (prot) | 0 | 1676 | 0 | 0 | 1724 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Flt Permitted | | 0.441 | | | 0.899 | | | | | | 0.962 | |
| Satd. Flow (perm) | 0 | 763 | 0 | 0 | 1558 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | No |
| Satd. Flow (RTOR) | | 2 | | | | 147 | | | | | | |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 180 | | | 931 | | | 272 | | | 664 | |
| Travel Time (s) | | 4.1 | | | 21.2 | | | 6.2 | | | 15.1 | |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% |
| Adj. Flow (vph) | 451 | 250 | 10 | 28 | 256 | 185 | 0 | 0 | 0 | 131 | 33 | 349 |
| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| Lane Group Flow (vph) | 0 | 711 | 0 | 0 | 284 | 185 | 0 | 0 | 0 | 0 | 164 | 349 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(t) | | 11 | | | 8 | | | 0 | | | 12 | |
| Link Offset(tt) | | 0 | | | 0 | | | 30 | | | 0 | |
| Crosswalk Width(tt) | | 16 | | | 16 | | | 16 | | | 16 | |
| Two way Left Turn Lane | | | | | | | | | | | Yes | |
| Headway Factor | 1.04 | 1.04 | 1.00 | 1.00 | 1.04 | 1.04 | 1.00 | 1.00 | 1.00 | 1.04 | 1.00 | 1.04 |
| Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 |
| Number of Detectors | 1 | 1 | | 1 | 1 | 1 | | | | 1 | 1 | 0 |
| Detector Template | | | | Left | | | | | | | | |
| Leading Detector (tt) | 50 | 50 | | 20 | 40 | 40 | | | | 40 | 40 | 0 |
| Trailing Detector (ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Position(tt) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Size(tt) | 50 | 50 | | 20 | 40 | 40 | | | | 40 | 40 | 25 |
| Detector 1 Type | Cl+Ex | $\mathrm{Cl}+\mathrm{Ex}$ | | Cl+Ex | Cl+Ex | Cl+Ex | | | | Cl+Ex | Cl+Ex | Cl+Ex |
| Detector 1 Channel | | | | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Queue (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Delay (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Turn Type | custom | NA | | Perm | NA | Perm | | | | Split | NA | pt+ov |
| Protected Phases | 4 | 24 | | | 6 | | | | | 3 | 3 | 34 |
| Permitted Phases | 2 | | | 6 | | 6 | | | | | | |
| Detector Phase | 4 | 24 | | 6 | 6 | 6 | | | | 3 | 3 | 34 |
| Switch Phase | | | | | | | | | | | | |
| Minimum Initial (s) | 8.0 | | | 12.0 | 12.0 | 12.0 | | | | 8.0 | 8.0 | |
| Minimum Split (s) | 25.0 | | | 31.0 | 31.0 | 31.0 | | | | 25.0 | 25.0 | |

Lane Group ø2 ¢7 ø8				
Lane**onfigurations				
Volume (vph)				
Ideal Flow (vphpl)				
Lane Width (tt)				
Storage Length (tt)				
Storage Lanes				
Taper Length (tt)				
Lane Util. Factor				
Frt				
Flt Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (mph)				
Link Distance (tt)				
Travel Time (s)				
Peak Hour Factor				
Heavy Vehicles (\%)				
Adj. Flow (vph)				
Shared Lane Traffic (\%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(tt)				
Link Offset(ft)				
Crosswalk Width(tt)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (mph)				
Number of Detectors				
Detector Template				
Leading Detector (tt)				
Trailing Detector (ft)				
Detector 1 Position(tt)				
Detector 1 Size(tt)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Turn Type				
Protected Phases	2	7	8	
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	12.0	8.0	16.0	
Minimum Split (s)	31.0	29.0	25.0	
7/10/2014 2018 No-Build Bergmann Associates				Synchro 8 Repor Page 5

	4							\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	41.0			34.0	34.0	34.0				25.0	25.0	
Total Split (\%)	41.0\%			34.0\%	34.0\%	34.0\%				25.0\%	25.0\%	
Maximum Green (s)	35.5			28.0	28.0	28.0				19.5	19.5	
Yellow Time (s)	3.5			4.0	4.0	4.0				3.5	3.5	
All-Red Time (s)	2.0			2.0	2.0	2.0				2.0	2.0	
Lost Time Adjust (s)					-3.0	-1.0					0.0	
Total Lost Time (s)					3.0	5.0					5.5	
Lead/Lag	Lag									Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0			3.0	3.0	3.0				2.0	2.0	
Recall Mode	None			C-Max	C-Max	C-Max				None	None	
Walk Time (s)	7.0			9.0	9.0	9.0				7.0	7.0	
Flash Dont Walk (s)	12.0			15.0	15.0	15.0				12.0	12.0	
Pedestrian Calls (\#/hr)	0			0	0	0				0	0	
Act Efftt Green (s)		72.9			31.0	29.0					15.6	63.0
Actuated g/C Ratio		0.73			0.31	0.29					0.16	0.63
v/c Ratio		0.76			0.59	0.35					0.61	0.38
Control Delay		19.9			35.1	9.6					48.8	10.4
Queue Delay		1.5			0.0	0.0					0.0	0.0
Total Delay		21.4			35.1	9.6					48.8	10.4
LOS		C			D	A					D	B
Approach Delay		21.4			25.0						22.7	
Approach LOS		C			C						C	

Intersection Summary

Area Type:
 Other

Cycle Length: 100
Actuated Cycle Length: 100
Offset: 0 (0\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.76
Intersection Signal Delay: 22.8
Intersection Capacity Utilization 70.2\%
Analysis Period (min) 15
Splits and Phases: 1102: Driving Park \& Dewey (North)

Lane Group	$ø 2$	$\varnothing 7$	$\varnothing 8$
Total Split (s)	34.0	41.0	25.0
Total Split (\%)	34%	41%	25%
Maximum Green (s)	28.0	35.5	19.5
Yellow Time (s)	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?	3.0	2.0	3.0
Vehicle Extension (s)	C-Max	None	Max
Recall Mode	9.0	8.0	7.0
Walk Time (s)	15.0	12.0	12.0
Flash Dont Walk (s)	0	0	0
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			

	\rightarrow	\leftarrow	4		\checkmark
Lane Group	EBT	WBT	WBR	SBT	SBR
Lane Group Flow (vph)	711	284	185	164	349
v/c Ratio	0.76	0.59	0.35	0.61	0.38
Control Delay	19.9	35.1	9.6	48.8	10.4
Queue Delay	1.5	0.0	0.0	0.0	0.0
Total Delay	21.4	35.1	9.6	48.8	10.4
Queue Length 50th (ft)	262	152	18	98	99
Queue Length 95th (ft)	\#427	239	71	159	154
Internal Link Dist (tt)	100	851		584	
Turn Bay Length (tt)			75		275
Base Capacity (vph)	939	482	531	336	921
Starvation Cap Reductn	95	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.84	0.59	0.35	0.49	0.38

Intersection Summary

\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

	EBT	EBR	WBL	WBT	NBL	NBR
Lane Group	259	111	419	359	31	327
Lane Group Flow (vph)	0.48	0.23	0.73	0.38	0.05	0.36
V/c Ratio	28.8	8.2	18.4	7.1	20.5	9.6
Control Delay	0.0	0.0	1.0	1.3	0.0	0.2
Queue Delay	28.8	8.2	19.4	8.4	20.5	9.8
Total Delay	118	6	75	62	11	82
Queue Length 50th (ft)	173	37	79	67	31	117
Queee Length 95th (ft)	385			100	461	
Internal Link Dist (ft)		75	75		200	
Turn Bay Length (ft)	539	493	711	1097	630	916
Base Capacity (vph)	0	0	113	521	0	0
Starvation Cap Reductn	0	0	0	0	0	139
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0.48	0.23	0.70	0.62	0.05	0.42

[^15]| | 4 | | | \bigcirc | | | 4 | \dagger | 7 | | \ddagger | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{*}$ | 4 | | | + | 「 | | | | | \uparrow | 「 |
| Volume (vph) | 286 | 195 | 5 | 24 | 275 | 87 | 0 | 0 | 0 | 232 | 57 | 371 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 11 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 11 | 12 | 11 |
| Storage Length (ft) | 75 | | 0 | 0 | | 75 | 0 | | 0 | 0 | | 275 |
| Storage Lanes | 1 | | 0 | 0 | | 1 | 0 | | 0 | 0 | | 1 |
| Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt | | 0.996 | | | | 0.850 | | | | | | 0.850 |
| Flt Protected | 0.950 | | | | 0.996 | | | | | | 0.961 | |
| Satd. Flow (prot) | 1646 | 1726 | 0 | 0 | 1726 | 1473 | 0 | 0 | 0 | 0 | 1723 | 1473 |
| Flt Permitted | 0.298 | | | | 0.961 | | | | | | 0.961 | |
| Satd. Flow (perm) | 516 | 1726 | 0 | 0 | 1665 | 1473 | 0 | 0 | 0 | 0 | 1723 | 1473 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | No |
| Satd. Flow (RTOR) | | 3 | | | | 97 | | | | | | |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 180 | | | 931 | | | 272 | | | 664 | |
| Travel Time (s) | | 4.1 | | | 21.2 | | | 6.2 | | | 15.1 | |
| Peak Hour Factor | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% |
| Adj. Flow (vph) | 345 | 235 | 6 | 29 | 331 | 105 | 0 | 0 | 0 | 280 | 69 | 447 |
| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| Lane Group Flow (vph) | 345 | 241 | 0 | 0 | 360 | 105 | 0 | 0 | 0 | 0 | 349 | 447 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(ft) | | 11 | | | 8 | | | 0 | | | 12 | |
| Link Offset(ft) | | 0 | | | 0 | | | 30 | | | 0 | |
| Crosswalk Width(ft) | | 16 | | | 16 | | | 16 | | | 16 | |
| Two way Left Turn Lane | | | | | | | | | | | Yes | |
| Headway Factor | 1.04 | 1.04 | 1.00 | 1.00 | 1.04 | 1.04 | 1.00 | 1.00 | 1.00 | 1.04 | 1.00 | 1.04 |
| Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 |
| Number of Detectors | 1 | 0 | | 1 | 1 | 1 | | | | 1 | 1 | 0 |
| Detector Template | | | | Left | | | | | | | | |
| Leading Detector (ft) | 50 | 0 | | 20 | 40 | 40 | | | | 40 | 40 | 0 |
| Trailing Detector (ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Position(ft) | 0 | 19 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Size(ft) | 50 | 0 | | 20 | 40 | 40 | | | | 40 | 40 | 25 |
| Detector 1 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ |
| Detector 1 Channel | | | | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Queue (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Delay (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Turn Type | custom | NA | | Perm | NA | Perm | | | | Split | NA | pt+ov |
| Protected Phases | 4 | 24 | | | 6 | | | | | 3 | 3 | 34 |
| Permitted Phases | 2 | | | 6 | | 6 | | | | | | |
| Detector Phase | 4 | 24 | | 6 | 6 | 6 | | | | 3 | 3 | 34 |
| Switch Phase | | | | | | | | | | | | |
| Minimum Initial (s) | 8.0 | | | 12.0 | 12.0 | 12.0 | | | | 8.0 | 8.0 | |
| Minimum Split (s) | 25.0 | | | 31.0 | 31.0 | 31.0 | | | | 25.0 | 25.0 | |

	$\stackrel{ }{*}$					4		\uparrow	7	\checkmark	$\frac{1}{7}$	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	30.0			31.0	31.0	31.0				29.0	29.0	
Total Split (\%)	33.3\%			34.4\%	34.4\%	34.4\%				32.2\%	32.2\%	
Maximum Green (s)	24.5			25.0	25.0	25.0				23.5	23.5	
Yellow Time (s)	3.5			4.0	4.0	4.0				3.5	3.5	
All-Red Time (s)	2.0			2.0	2.0	2.0				2.0	2.0	
Lost Time Adjust (s)	-2.5				-3.0	-1.0					0.0	
Total Lost Time (s)	3.0				3.0	5.0					5.5	
Lead/Lag	Lag									Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0			3.0	3.0	3.0				2.0	2.0	
Recall Mode	None			C-Max	C-Max	C-Max				None	None	
Walk Time (s)	7.0			9.0	9.0	9.0				7.0	7.0	
Flash Dont Walk (s)	12.0			15.0	15.0	15.0				12.0	12.0	
Pedestrian Calls (\#/hr)	0			0	0	0				0	0	
Act Efftt Green (s)	57.4	60.4			28.0	26.0					21.1	56.0
Actuated g/C Ratio	0.64	0.67			0.31	0.29					0.23	0.62
v / c Ratio	0.49	0.21			0.69	0.21					0.87	0.49
Control Delay	15.4	7.5			35.6	7.4					55.0	11.5
Queue Delay	1.9	0.9			0.4	0.0					0.0	0.0
Total Delay	17.3	8.4			36.0	7.4					55.0	11.5
LOS	B	A			D	A					D	B
Approach Delay		13.6			29.5						30.6	
Approach LOS		B			C						C	

Intersection Summary

Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 3 (3\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.87
Intersection Signal Delay: 24.9 Intersection LOS: C
Intersection Capacity Utilization 58.7\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 1102: Driving Park \& Dewey (North)

Lane Group	$ø 2$	$\varnothing 7$	$\varnothing 8$
Total Split (s)	31.0	29.0	30.0
Total Split (\%)	34%	32%	33%
Maximum Green (s)	25.0	23.5	24.5
Yellow Time (s)	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?	3.0	2.0	3.0
Vehicle Extension (s)	C-Max	None	Max
Recall Mode	9.0	8.0	7.0
Walk Time (s)	15.0	12.0	12.0
Flash Dont Walk (s)	0	0	0
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			

	\rangle		\leftarrow	4		\checkmark
Lane Group	EBL	EBT	WBT	WBR	SBT	SBR
Lane Group Flow (vph)	345	241	360	105	349	447
v/c Ratio	0.49	0.21	0.69	0.21	0.87	0.49
Control Delay	15.4	7.5	35.6	7.4	55.0	11.5
Queue Delay	1.9	0.9	0.4	0.0	0.0	0.0
Total Delay	17.3	8.4	36.0	7.4	55.0	11.5
Queue Length 50th (tt)	91	56	179	3	186	125
Queue Length 95th (ft)	153	81	249	34	\#258	173
Internal Link Dist (tt)		100	851		584	
Turn Bay Length (t)	75			75		275
Base Capacity (vph)	699	1160	518	494	449	908
Starvation Cap Reductn	213	664	0	0	0	0
Spillback Cap Reductn	0	0	18	0	0	21
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.71	0.49	0.72	0.21	0.78	0.50
Intersection Summary						
\# 95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.						

Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	$ø 3$	$\emptyset 4$	$ø 6$
Lane Configurations	4	「	${ }^{*}$	4	${ }^{1}$	「			
Volume (vph)	215	92	348	298	26	271			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width (ft)	11	11	11	11	11	11			
Storage Length (ft)		75	75		200	0			
Storage Lanes		1	1		1	1			
Taper Length (ft)			25		25				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt		0.850				0.850			
Flt Protected			0.950		0.950				
Satd. Flow (prot)	1733	1473	1646	1733	1646	1473			
Flt Permitted			0.437		0.950				
Satd. Flow (perm)	1733	1473	757	1733	1646	1473			
Right Turn on Red		Yes				No			
Satd. Flow (RTOR)		96							
Link Speed (mph)	30			30	30				
Link Distance (ft)	465			180	541				
Travel Time (s)	10.6			4.1	12.3				
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83			
Heavy Vehicles (\%)	6\%	6\%	6\%	6\%	6\%	6\%			
Adj. Flow (vph)	259	111	419	359	31	327			
Shared Lane Traffic (\%)									
Lane Group Flow (vph)	259	111	419	359	31	327			
Enter Blocked Intersection	No	No	No	No	No	No			
Lane Alignment	Left	Right	Left	Left	Left	Right			
Median Width(ft)	11			11	11				
Link Offset(ft)	0			0	0				
Crosswalk Width(ft)	16			16	16				
Two way Left Turn Lane									
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed (mph)		9	15		15	9			
Number of Detectors	2	2	1	0	2	2			
Detector Template									
Leading Detector (ft)	26	26	50	0	26	26			
Trailing Detector (ft)	0	0	0	0	0	0			
Detector 1 Position(ft)	20	20	0	19	0	0			
Detector 1 Size(ft)	6	6	50	0	6	6			
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			
Detector 1 Channel									
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 2 Position(ft)	0	0			20	20			
Detector 2 Size(ft)	6	6			6	6			
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			
Detector 2 Channel									
Detector 2 Extend (s)	0.0	0.0			0.0	0.0			
Turn Type	NA	Perm	custom	NA	Prot	pt+ov			
Protected Phases	2		7	67	8	78	3	4	6

Intersection Summary

Area Type:
Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 3 (3\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.87
Intersection Signal Delay: 15.7
Intersection LOS: B
Intersection Capacity Utilization 53.9\%
ICU Level of Service A
Analysis Period (min) 15

EBT	EBR	WBL	WBT	NBL	NBR		
Lane Group	259	111	419	359	31	327	
Lane Group Flow (vph)	0.48	0.23	0.73	0.38	0.05	0.36	
v/c Ratio	28.8	8.2	18.3	7.1	20.5	9.6	
Control Delay	0.5	0.0	1.0	1.4	0.0	0.9	
Queue Delay	29.3	8.2	19.3	8.4	20.5	10.5	
Total Delay	118	6	75	62	11	82	
Queue Length 50th (ft)	173	37	79	67	31	117	
Queue Length 95th (ft)	385			100	461		
Internal Link Dist (ft)		75	75		200		
Turn Bay Length (ft)	539	493	711	1097	630	916	
Base Capacity (vph)	0	0	113	527	0	0	
Starvation Cap Reductn	72	0	0	0	0	342	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0.55	0.23	0.70	0.63	0.05	0.57	
Reduced v/c Ratio							

[^16]| | 4 | \rightarrow | | 7 | | 4 | 4 | \dagger | \% | (| \dagger | \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | \uparrow | | | 4 | F | | | | | \uparrow | 7 |
| Volume (vph) | 286 | 195 | 5 | 24 | 275 | 87 | 0 | 0 | 0 | 232 | 57 | 371 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 11 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 11 | 12 | 11 |
| Storage Length (ft) | 75 | | 0 | 0 | | 75 | 0 | | 0 | 0 | | 275 |
| Storage Lanes | 0 | | 0 | 0 | | 1 | 0 | | 0 | 0 | | 1 |
| Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt | | 0.999 | | | | 0.850 | | | | | | 0.850 |
| Flt Protected | | 0.971 | | | 0.996 | | | | | | 0.961 | |
| Satd. Flow (prot) | 0 | 1681 | 0 | 0 | 1726 | 1473 | 0 | 0 | 0 | 0 | 1723 | 1473 |
| Flt Permitted | | 0.349 | | | 0.931 | | | | | | 0.961 | |
| Satd. Flow (perm) | 0 | 604 | 0 | 0 | 1613 | 1473 | 0 | 0 | 0 | 0 | 1723 | 1473 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | No |
| Satd. Flow (RTOR) | | 1 | | | | 97 | | | | | | |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 180 | | | 931 | | | 272 | | | 664 | |
| Travel Time (s) | | 4.1 | | | 21.2 | | | 6.2 | | | 15.1 | |
| Peak Hour Factor | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% |
| Adj. Flow (vph) | 345 | 235 | 6 | 29 | 331 | 105 | 0 | 0 | 0 | 280 | 69 | 447 |
| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| Lane Group Flow (vph) | 0 | 586 | 0 | 0 | 360 | 105 | 0 | 0 | 0 | 0 | 349 | 447 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(ft) | | 11 | | | 8 | | | 0 | | | 12 | |
| Link Offset(ft) | | 0 | | | 0 | | | 30 | | | 0 | |
| Crosswalk Width(ft) | | 16 | | | 16 | | | 16 | | | 16 | |
| Two way Left Turn Lane | | | | | | | | | | | Yes | |
| Headway Factor | 1.04 | 1.04 | 1.00 | 1.00 | 1.04 | 1.04 | 1.00 | 1.00 | 1.00 | 1.04 | 1.00 | 1.04 |
| Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 |
| Number of Detectors | 1 | 1 | | 1 | 1 | 1 | | | | 1 | 1 | 0 |
| Detector Template | | | | Left | | | | | | | | |
| Leading Detector (ft) | 50 | 50 | | 20 | 40 | 40 | | | | 40 | 40 | 0 |
| Trailing Detector (ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Position(ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Size(ft) | 50 | 50 | | 20 | 40 | 40 | | | | 40 | 40 | 25 |
| Detector 1 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | Cl+Ex | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ |
| Detector 1 Channel | | | | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Queue (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Delay (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Turn Type | custom | NA | | Perm | NA | Perm | | | | Split | NA | pt+ov |
| Protected Phases | 4 | 24 | | | 6 | | | | | 3 | 3 | 34 |
| Permitted Phases | 2 | | | 6 | | 6 | | | | | | |
| Detector Phase | 4 | 24 | | 6 | 6 | 6 | | | | 3 | 3 | 34 |
| Switch Phase | | | | | | | | | | | | |
| Minimum Initial (s) | 8.0 | | | 12.0 | 12.0 | 12.0 | | | | 8.0 | 8.0 | |
| Minimum Split (s) | 25.0 | | | 31.0 | 31.0 | 31.0 | | | | 25.0 | 25.0 | |

Lane Group	$ø 2$	$\varnothing 7$	$\emptyset 8$	
Lane Configurations				
Volume (vph)				
Ideal Flow (vphpl)				
Lane Width (ft)				
Storage Length (ft)				
Storage Lanes				
Taper Length (ft)				
Lane Util. Factor				
Frt				
Flt Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (mph)				
Link Distance (ft)				
Travel Time (s)				
Peak Hour Factor				
Heavy Vehicles (\%)				
Adj. Flow (vph)				
Shared Lane Traffic (\%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(ft)				
Link Offset(ft)				
Crosswalk Width(ft)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (mph)				
Number of Detectors				
Detector Template				
Leading Detector (ft)				
Trailing Detector (ft)				
Detector 1 Position(ft)				
Detector 1 Size(ft)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Turn Type				
Protected Phases	2	7	8	
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	12.0	8.0	16.0	
Minimum Split (s)	31.0	29.0	25.0	
5/28/2014 2038 No-Build AM - EB Parked Cars				Synchro 8 Report Page 5

	4						-	\uparrow	7	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	30.0			31.0	31.0	31.0				29.0	29.0	
Total Split (\%)	33.3\%			34.4\%	34.4\%	34.4\%				32.2\%	32.2\%	
Maximum Green (s)	24.5			25.0	25.0	25.0				23.5	23.5	
Yellow Time (s)	3.5			4.0	4.0	4.0				3.5	3.5	
All-Red Time (s)	2.0			2.0	2.0	2.0				2.0	2.0	
Lost Time Adjust (s)					-3.0	-1.0					0.0	
Total Lost Time (s)					3.0	5.0					5.5	
Lead/Lag	Lag									Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0			3.0	3.0	3.0				2.0	2.0	
Recall Mode	None			C-Max	C-Max	C-Max				None	None	
Walk Time (s)	7.0			9.0	9.0	9.0				7.0	7.0	
Flash Dont Walk (s)	12.0			15.0	15.0	15.0				12.0	12.0	
Pedestrian Calls (\#/hr)	0			0	0	0				0	0	
Act Efftt Green (s)		57.4			28.0	26.0					21.1	56.0
Actuated g/C Ratio		0.64			0.31	0.29					0.23	0.62
v/c Ratio		0.80			0.72	0.21					0.87	0.49
Control Delay		28.9			37.1	7.4					55.0	11.5
Queue Delay		12.3			0.4	0.0					0.0	0.0
Total Delay		41.1			37.5	7.4					55.0	11.5
LOS		D			D	A					D	B
Approach Delay		41.1			30.7						30.6	
Approach LOS		D			C						C	

Intersection Summary

Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 3 (3\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.87
Intersection Signal Delay: 34.0
Intersection LOS: C
Intersection Capacity Utilization 69.3\% ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 1102: Driving Park \& Dewey (North)

Lane Group	$ø 2$	$\varnothing 7$	$\varnothing 8$
Total Split (s)	31.0	29.0	30.0
Total Split (\%)	34%	32%	33%
Maximum Green (s)	25.0	23.5	24.5
Yellow Time (s)	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?	3.0	2.0	3.0
Vehicle Extension (s)	C-Max	None	Max
Recall Mode	9.0	8.0	7.0
Walk Time (s)	15.0	12.0	12.0
Flash Dont Walk (s)	0	0	0
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			

	\rightarrow		4	\dagger	4
Lane Group	EBT	WBT	WBR	SBT	SBR
Lane Group Flow (vph)	586	360	105	349	447
v/c Ratio	0.80	0.72	0.21	0.87	0.49
Control Delay	28.9	37.1	7.4	55.0	11.5
Queue Delay	12.3	0.4	0.0	0.0	0.0
Total Delay	41.1	37.5	7.4	55.0	11.5
Queue Length 50th (ft)	225	180	3	186	125
Queue Length 95th (ft)	\#309	252	34	\#258	173
Internal Link Dist (ft)	100	851		584	
Turn Bay Length (ft)			75		275
Base Capacity (vph)	737	501	494	449	908
Starvation Cap Reductn	136	0	0	0	0
Spillback Cap Reductn	0	16	0	0	21
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.98	0.74	0.21	0.78	0.50

Intersection Summary

\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	$ø 3$	$\varnothing 4$	$ø 6$
Lane Configurations	4	「	${ }^{4}$	4	${ }^{1}$	「			
Volume (vph)	310	66	350	344	63	505			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width (ft)	11	11	11	11	11	11			
Storage Length (ft)		75	75		200	0			
Storage Lanes		1	1		1	1			
Taper Length (ft)			25		25				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt		0.850				0.850			
Flt Protected			0.950		0.950				
Satd. Flow (prot)	1733	1473	1646	1733	1646	1473			
Flt Permitted			0.332		0.950				
Satd. Flow (perm)	1733	1473	575	1733	1646	1473			
Right Turn on Red		Yes				No			
Satd. Flow (RTOR)		43							
Link Speed (mph)	30			30	30				
Link Distance (ft)	465			180	541				
Travel Time (s)	10.6			4.1	12.3				
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94			
Heavy Vehicles (\%)	6\%	6\%	6\%	6\%	6\%	6\%			
Adj. Flow (vph)	330	70	372	366	67	537			
Shared Lane Traffic (\%)									
Lane Group Flow (vph)	330	70	372	366	67	537			
Enter Blocked Intersection	No	No	No	No	No	No			
Lane Alignment	Left	Right	Left	Left	Left	Right			
Median Width(ft)	11			11	11				
Link Offset(ft)	0			0	0				
Crosswalk Width(ft)	16			16	16				
Two way Left Turn Lane									
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed (mph)		9	15		15	9			
Number of Detectors	2	2	1	0	2	2			
Detector Template									
Leading Detector (ft)	26	26	50	0	26	26			
Trailing Detector (ft)	0	0	0	0	0	0			
Detector 1 Position(ft)	20	20	0	19	0	0			
Detector 1 Size(ft)	6	6	50	0	6	6			
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			
Detector 1 Channel									
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 2 Position(ft)	0	0			20	20			
Detector 2 Size(ft)	6	6			6	6			
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			
Detector 2 Channel									
Detector 2 Extend (s)	0.0	0.0			0.0	0.0			
Turn Type	NA	Perm	custom	NA	Prot	pt+ov			
Protected Phases	2		7	67	8	78	3	4	6

Splits and Phases: 1101: Dewey (South) \& Driving Park

LBT	EBR	WBL	WBT	NBL	NBR		
Lane Group	330	70	372	366	67	537	
Lane Group Flow (vph)	0.61	0.15	0.56	0.33	0.14	0.58	
v/c Ratio	35.3	13.7	12.6	4.6	29.9	13.9	
Control Delay	0.0	0.0	1.2	1.0	0.0	9.1	
Queue Delay	35.3	13.7	13.7	5.7	29.9	23.1	
Total Delay	178	12	57	50	31	182	
Queue Length 50th (ft)	272	46	84	53	72	279	
Queue Length 95th (ft)	385			100	461		
Internal Link Dist (ft)		75	75		200		
Turn Bay Length (ft)	537	457	803	1247	496	924	
Base Capacity (vph)	0	0	231	624	0	0	
Starvation Cap Reductn	0	0	0	0	0	349	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0.61	0.15	0.65	0.59	0.14	0.93	
Reduced v/c Ratio							

[^17]| | 4 | | 1 | 7 | | | 4 | 4 | \% | | \ddagger | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{1}$ | 4 | | | 4 | F゙ | | | | | \uparrow | 「 |
| Volume (vph) | 517 | 287 | 11 | 32 | 294 | 212 | 0 | 0 | 0 | 150 | 38 | 400 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (ft) | 11 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 11 | 12 | 11 |
| Storage Length (ft) | 75 | | 0 | 0 | | 75 | 0 | | 0 | 0 | | 275 |
| Storage Lanes | 1 | | 0 | 0 | | 1 | 0 | | 0 | 0 | | 1 |
| Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt | | 0.994 | | | | 0.850 | | | | | | 0.850 |
| Flt Protected | 0.950 | | | | 0.995 | | | | | | 0.962 | |
| Satd. Flow (prot) | 1646 | 1722 | 0 | 0 | 1724 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Flt Permitted | 0.308 | | | | 0.942 | | | | | | 0.962 | |
| Satd. Flow (perm) | 534 | 1722 | 0 | 0 | 1632 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | No |
| Satd. Flow (RTOR) | | 5 | | | | 147 | | | | | | |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 180 | | | 931 | | | 272 | | | 664 | |
| Travel Time (s) | | 4.1 | | | 21.2 | | | 6.2 | | | 15.1 | |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% |
| Adj. Flow (vph) | 550 | 305 | 12 | 34 | 313 | 226 | 0 | 0 | 0 | 160 | 40 | 426 |
| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| Lane Group Flow (vph) | 550 | 317 | 0 | 0 | 347 | 226 | 0 | 0 | 0 | 0 | 200 | 426 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(ft) | | 11 | | | 8 | | | 0 | | | 12 | |
| Link Offset(ft) | | 0 | | | 0 | | | 30 | | | 0 | |
| Crosswalk Width(ft) | | 16 | | | 16 | | | 16 | | | 16 | |
| Two way Left Turn Lane | | | | | | | | | | | Yes | |
| Headway Factor | 1.04 | 1.04 | 1.00 | 1.00 | 1.04 | 1.04 | 1.00 | 1.00 | 1.00 | 1.04 | 1.00 | 1.04 |
| Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 |
| Number of Detectors | 1 | 0 | | 1 | 1 | 1 | | | | 1 | 1 | 0 |
| Detector Template | | | | Left | | | | | | | | |
| Leading Detector (ft) | 50 | 0 | | 20 | 40 | 40 | | | | 40 | 40 | 0 |
| Trailing Detector (ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Position(ft) | 0 | 19 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Size(ft) | 50 | 0 | | 20 | 40 | 40 | | | | 40 | 40 | 25 |
| Detector 1 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | Cl+Ex | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ |
| Detector 1 Channel | | | | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Queue (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Delay (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Turn Type | custom | NA | | Perm | NA | Perm | | | | Split | NA | pt+ov |
| Protected Phases | 4 | 24 | | | 6 | | | | | 3 | 3 | 34 |
| Permitted Phases | 2 | | | 6 | | 6 | | | | | | |
| Detector Phase | 4 | 24 | | 6 | 6 | 6 | | | | 3 | 3 | 34 |
| Switch Phase | | | | | | | | | | | | |
| Minimum Initial (s) | 8.0 | | | 12.0 | 12.0 | 12.0 | | | | 8.0 | 8.0 | |
| Minimum Split (s) | 25.0 | | | 31.0 | 31.0 | 31.0 | | | | 25.0 | 25.0 | |

Lane Group	$\varnothing 2$	$\emptyset 7$	ø8	
Lane Configurations				
Volume (vph)				
Ideal Flow (vphpl)				
Lane Width (tt)				
Storage Length (tt)				
Storage Lanes				
Taper Length (tt)				
Lane Utili. Factor				
Frt				
Flt Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (mph)				
Link Distance (tt)				
Travel Time (s)				
Peak Hour Factor				
Heavy Vehicles (\%)				
Adj. Flow (vph)				
Shared Lane Traffic (\%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(tt)				
Link Offset(tt)				
Crosswalk Width(tt)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (mph)				
Number of Detectors				
Detector Template				
Leading Detector (tt)				
Trailing Detector (ft)				
Detector 1 Position(ft)				
Detector 1 Size(ft)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Turn Type				
Protected Phases	2	7	8	
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	12.0	8.0	16.0	
Minimum Split (s)	31.0	29.0	25.0	
7/10/2014 2038 No-Build PM Bergmann Associates				Synchro 8 Report Page 5

	4					4	4	\uparrow	p	\downarrow	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	41.0			34.0	34.0	34.0				25.0	25.0	
Total Split (\%)	41.0\%			34.0\%	34.0\%	34.0\%				25.0\%	25.0\%	
Maximum Green (s)	35.5			28.0	28.0	28.0				19.5	19.5	
Yellow Time (s)	3.5			4.0	4.0	4.0				3.5	3.5	
All-Red Time (s)	2.0			2.0	2.0	2.0				2.0	2.0	
Lost Time Adjust (s)	-2.5				-3.0	-1.0					0.0	
Total Lost Time (s)	3.0				3.0	5.0					5.5	
Lead/Lag	Lag									Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0			3.0	3.0	3.0				2.0	2.0	
Recall Mode	None			C-Max	C-Max	C-Max				None	None	
Walk Time (s)	7.0			9.0	9.0	9.0				7.0	7.0	
Flash Dont Walk (s)	12.0			15.0	15.0	15.0				12.0	12.0	
Pedestrian Calls (\#/hr)	0			0	0	0				0	0	
Act Effict Green (s)	71.0	74.0			31.0	29.0					17.5	63.0
Actuated g/C Ratio	0.71	0.74			0.31	0.29					0.18	0.63
v/c Ratio	0.67	0.25			0.69	0.43					0.66	0.46
Control Delay	17.9	5.2			38.5	13.3					49.3	11.6
Queue Delay	5.2	1.3			0.0	0.0					0.0	0.0
Total Delay	23.2	6.5			38.5	13.3					49.3	11.6
LOS	C	A			D	B					D	B
Approach Delay		17.0			28.6						23.7	
Approach LOS		B			C						C	

Intersection Summary

Area Type: Other
Cycle Length: 100
Actuated Cycle Length: 100
Offset: 0 (0\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.69
Intersection Signal Delay: 22.2
Intersection LOS: C
Intersection Capacity Utilization 67.4\% ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 1102: Driving Park \& Dewey (North)

Lane Group	$ø 2$	$\varnothing 7$	$\varnothing 8$
Total Split (s)	34.0	41.0	25.0
Total Split (\%)	34%	41%	25%
Maximum Green (s)	28.0	35.5	19.5
Yellow Time (s)	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?	3.0	2.0	3.0
Vehicle Extension (s)	C-Max	None	Max
Recall Mode	9.0	8.0	7.0
Walk Time (s)	15.0	12.0	12.0
Flash Dont Walk (s)	0	0	0
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			

[^18]| Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | $ø 3$ | $\varnothing 4$ | $ø 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 4 | 「 | ${ }^{4}$ | 4 | ${ }^{1}$ | 「 | | | |
| Volume (vph) | 310 | 66 | 350 | 344 | 63 | 505 | | | |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | |
| Lane Width (ft) | 11 | 11 | 11 | 11 | 11 | 11 | | | |
| Storage Length (ft) | | 75 | 75 | | 200 | 0 | | | |
| Storage Lanes | | 1 | 1 | | 1 | 1 | | | |
| Taper Length (ft) | | | 25 | | 25 | | | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | |
| Frt | | 0.850 | | | | 0.850 | | | |
| Flt Protected | | | 0.950 | | 0.950 | | | | |
| Satd. Flow (prot) | 1733 | 1473 | 1646 | 1733 | 1646 | 1473 | | | |
| Flt Permitted | | | 0.332 | | 0.950 | | | | |
| Satd. Flow (perm) | 1733 | 1473 | 575 | 1733 | 1646 | 1473 | | | |
| Right Turn on Red | | Yes | | | | No | | | |
| Satd. Flow (RTOR) | | 43 | | | | | | | |
| Link Speed (mph) | 30 | | | 30 | 30 | | | | |
| Link Distance (ft) | 465 | | | 180 | 541 | | | | |
| Travel Time (s) | 10.6 | | | 4.1 | 12.3 | | | | |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | | | |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | | | |
| Adj. Flow (vph) | 330 | 70 | 372 | 366 | 67 | 537 | | | |
| Shared Lane Traffic (\%) | | | | | | | | | |
| Lane Group Flow (vph) | 330 | 70 | 372 | 366 | 67 | 537 | | | |
| Enter Blocked Intersection | No | No | No | No | No | No | | | |
| Lane Alignment | Left | Right | Left | Left | Left | Right | | | |
| Median Width(ft) | 11 | | | 11 | 11 | | | | |
| Link Offset(ft) | 0 | | | 0 | 0 | | | | |
| Crosswalk Width(ft) | 16 | | | 16 | 16 | | | | |
| Two way Left Turn Lane | | | | | | | | | |
| Headway Factor | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | | | |
| Turning Speed (mph) | | 9 | 15 | | 15 | 9 | | | |
| Number of Detectors | 2 | 2 | 1 | 0 | 2 | 2 | | | |
| Detector Template | | | | | | | | | |
| Leading Detector (ft) | 26 | 26 | 50 | 0 | 26 | 26 | | | |
| Trailing Detector (ft) | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| Detector 1 Position(ft) | 20 | 20 | 0 | 19 | 0 | 0 | | | |
| Detector 1 Size(ft) | 6 | 6 | 50 | 0 | 6 | 6 | | | |
| Detector 1 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | |
| Detector 1 Channel | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 1 Queue (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 1 Delay (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| Detector 2 Position(ft) | 0 | 0 | | | 20 | 20 | | | |
| Detector 2 Size(ft) | 6 | 6 | | | 6 | 6 | | | |
| Detector 2 Type | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | |
| Detector 2 Channel | | | | | | | | | |
| Detector 2 Extend (s) | 0.0 | 0.0 | | | 0.0 | 0.0 | | | |
| Turn Type | NA | Perm | custom | NA | Prot | pt+ov | | | |
| Protected Phases | 2 | | 7 | 67 | 8 | 78 | 3 | 4 | 6 |

Splits and Phases: 1101: Dewey (South) \& Driving Park

	EBT	EBR	WBL	WBT	NBL	NBR
Lane Group	330	70	372	366	67	537
Lane Group Flow (vph)	0.61	0.15	0.56	0.33	0.14	0.58
V/C Ratio	35.3	13.7	12.3	4.6	29.9	13.9
Control Delay	20.1	0.0	1.2	1.1	0.0	0.2
Queue Delay	55.4	13.7	13.5	5.8	29.9	14.1
Total Delay	178	12	52	50	31	182
Queue Length 50th (ft)	272	46	84	53	72	279
Queee Length 95th (ft)	385			100	461	
Internal Link Dist (ft)		75	75		200	
Turn Bay Length (ft)	537	457	803	1247	496	924
Base Capacity (vph)	0	0	231	636	0	0
Starvation Cap Reductn	199	0	0	0	0	55
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0.98	0.15	0.65	0.60	0.14	0.62

[^19]| | $\stackrel{ }{*}$ | | | 7 | | | 4 | \dagger | p | | \downarrow | \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | \uparrow | | | \uparrow | 「 | | | | | \uparrow | F |
| Volume (vph) | 517 | 287 | 11 | 32 | 294 | 212 | 0 | 0 | 0 | 150 | 38 | 400 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (tt) | 11 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 11 | 12 | 11 |
| Storage Length (tt) | 75 | | 0 | 0 | | 75 | 0 | | 0 | 0 | | 275 |
| Storage Lanes | 0 | | 0 | 0 | | 1 | 0 | | 0 | 0 | | 1 |
| Taper Length (tt) | 25 | | | 25 | | | 25 | | | 25 | | |
| Lane Utill. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt | | 0.998 | | | | 0.850 | | | | | | 0.850 |
| Flt Protected | | 0.969 | | | 0.995 | | | | | | 0.962 | |
| Satd. Flow (prot) | 0 | 1676 | 0 | 0 | 1724 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Flt Permitted | | 0.349 | | | 0.885 | | | | | | 0.962 | |
| Satd. Flow (perm) | 0 | 604 | 0 | 0 | 1533 | 1473 | 0 | 0 | 0 | 0 | 1724 | 1473 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | No |
| Satd. Flow (RTOR) | | 2 | | | | 147 | | | | | | |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 180 | | | 931 | | | 272 | | | 664 | |
| Travel Time (s) | | 4.1 | | | 21.2 | | | 6.2 | | | 15.1 | |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% |
| Adj. Flow (vph) | 550 | 305 | 12 | 34 | 313 | 226 | 0 | 0 | 0 | 160 | 40 | 426 |
| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| Lane Group Flow (vph) | 0 | 867 | 0 | 0 | 347 | 226 | 0 | 0 | 0 | 0 | 200 | 426 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(t) | | 11 | | | 8 | | | 0 | | | 12 | |
| Link Offset(ft) | | 0 | | | 0 | | | 30 | | | 0 | |
| Crosswalk Width(tt) | | 16 | | | 16 | | | 16 | | | 16 | |
| Two way Left Turn Lane | | | | | | | | | | | Yes | |
| Headway Factor | 1.04 | 1.04 | 1.00 | 1.00 | 1.04 | 1.04 | 1.00 | 1.00 | 1.00 | 1.04 | 1.00 | 1.04 |
| Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 |
| Number of Detectors | 1 | 1 | | 1 | 1 | 1 | | | | 1 | 1 | 0 |
| Detector Template | | | | Left | | | | | | | | |
| Leading Detector (tt) | 50 | 50 | | 20 | 40 | 40 | | | | 40 | 40 | 0 |
| Trailing Detector (ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Position(ft) | 0 | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 |
| Detector 1 Size(ft) | 50 | 50 | | 20 | 40 | 40 | | | | 40 | 40 | 25 |
| Detector 1 Type | Cl+Ex | $\mathrm{Cl}+\mathrm{Ex}$ | | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | | | | Cl+Ex | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ |
| Detector 1 Channel | | | | | | | | | | | | |
| Detector 1 Extend (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Queue (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Detector 1 Delay (s) | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 |
| Turn Type | custom | NA | | Perm | NA | Perm | | | | Split | NA | pt+ov |
| Protected Phases | 4 | 24 | | | 6 | | | | | 3 | 3 | 34 |
| Permitted Phases | 2 | | | 6 | | 6 | | | | | | |
| Detector Phase | 4 | 24 | | 6 | 6 | 6 | | | | 3 | 3 | 34 |
| Switch Phase | | | | | | | | | | | | |
| Minimum Initial (s) | 8.0 | | | 12.0 | 12.0 | 12.0 | | | | 8.0 | 8.0 | |
| Minimum Split (s) | 25.0 | | | 31.0 | 31.0 | 31.0 | | | | 25.0 | 25.0 | |

Lane Group	$\varnothing 2$	¢7	$\varnothing 8$	
Lane Configurations				
Volume (vph)				
Ideal Flow (vphpl)				
Lane Width (tt)				
Storage Length (tt)				
Storage Lanes				
Taper Length (tt)				
Lane Util. Factor				
Frt				
Flt Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (mph)				
Link Distance (tt)				
Travel Time (s)				
Peak Hour Factor				
Heavy Vehicles (\%)				
Adj. Flow (vph)				
Shared Lane Traffic (\%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(tt)				
Link Offset(ft)				
Crosswalk Width(tt)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (mph)				
Number of Detectors				
Detector Template				
Leading Detector (tt)				
Trailing Detector (ft)				
Detector 1 Position(t)				
Detector 1 Size(ft)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Turn Type				
Protected Phases	2	7	8	
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	12.0	8.0	16.0	
Minimum Split (s)	31.0	29.0	25.0	
7/10/2014 2038 No-Build PM - EB Blocked Bergmann Associates				Synchro 8 Repor Page 5

	4							4			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	41.0			34.0	34.0	34.0				25.0	25.0	
Total Split (\%)	41.0\%			34.0\%	34.0\%	34.0\%				25.0\%	25.0\%	
Maximum Green (s)	35.5			28.0	28.0	28.0				19.5	19.5	
Yellow Time (s)	3.5			4.0	4.0	4.0				3.5	3.5	
All-Red Time (s)	2.0			2.0	2.0	2.0				2.0	2.0	
Lost Time Adjust (s)					-3.0	-1.0					0.0	
Total Lost Time (s)					3.0	5.0					5.5	
Lead/Lag	Lag									Lead	Lead	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0			3.0	3.0	3.0				2.0	2.0	
Recall Mode	None			C-Max	C-Max	C-Max				None	None	
Walk Time (s)	7.0			9.0	9.0	9.0				7.0	7.0	
Flash Dont Walk (s)	12.0			15.0	15.0	15.0				12.0	12.0	
Pedestrian Calls (\#/hr)	0			0	0	0				0	0	
Act Efftt Green (s)		71.0			31.0	29.0					17.5	63.0
Actuated g/C Ratio		0.71			0.31	0.29					0.18	0.63
v/c Ratio		1.01			0.73	0.43					0.66	0.46
Control Delay		54.4			41.3	13.3					49.3	11.6
Queue Delay		30.2			0.0	0.0					0.0	0.0
Total Delay		84.6			41.3	13.3					49.3	11.6
LOS		F			D	B					D	B
Approach Delay		84.6			30.2						23.7	
Approach LOS		F			C						C	

Intersection Summary

Area Type: Other

Cycle Length: 100
Actuated Cycle Length: 100
Offset: 0 (0\%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 95
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.01
Intersection Signal Delay: 51.1
Intersection LOS: D
Intersection Capacity Utilization 83.2\% ICU Level of Service E
Analysis Period (min) 15
Splits and Phases: 1102: Driving Park \& Dewey (North)

Lane Group	$ø 2$	$\varnothing 7$	$\varnothing 8$
Total Split (s)	34.0	41.0	25.0
Total Split (\%)	34%	41%	25%
Maximum Green (s)	28.0	35.5	19.5
Yellow Time (s)	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?	3.0	2.0	3.0
Vehicle Extension (s)	C-Max	None	Max
Recall Mode	9.0	8.0	7.0
Walk Time (s)	15.0	12.0	12.0
Flash Dont Walk (s)	0	0	0
Pedestrian Calls (\#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			

	\rightarrow				\downarrow
Lane Group	EBT	WBT	WBR	SBT	SBR
Lane Group Flow (vph)	867	347	226	200	426
v / c Ratio	1.01	0.73	0.43	0.66	0.46
Control Delay	54.4	41.3	13.3	49.3	11.6
Queue Delay	30.2	0.0	0.0	0.0	0.0
Total Delay	84.6	41.3	13.3	49.3	11.6
Queue Length 50th (tt)	~ 488	196	38	117	129
Queue Length 95th (ft)	\#728	\#307	103	192	199
Internal Link Dist (tt)	100	851		584	
Turn Bay Length (t)			75		275
Base Capacity (vph)	857	475	531	336	927
Starvation Cap Reductn	66	0	0	0	0
Spillback Cap Reductn	0	0	0	0	13
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	1.10	0.73	0.43	0.60	0.47
Intersection Summary					
~ Volume exceeds capacity, queue is theoretically infinite.					
Queue shown is maximum after two cycles.					
\# 95th percentile volume exceeds capacity, queue may be longer.					
Queue shown is maximum after two cycles.					

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow		\%	\uparrow	F	${ }^{7}$	¢		\%	1	
Volume (vph)	45	131	75	27	198	71	21	189	33	237	258	46
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (tt)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (tt)	125		75	0		0	100		0	150		0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (tt)	100			25			50			75		
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.946				0.850		0.978			0.977	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1646	1639	0	1646	1733	1473	1646	1695	0	1646	1693	0
Flt Permitted	0.542			0.529			0.950			0.418		
Satd. Flow (perm)	939	1639	0	917	1733	1473	1646	1695	0	724	1693	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		33				182		10			11	
Link Speed (mph)		30			30			30			30	
Link Distance (tt)		465			249			541			329	
Travel Time (s)		10.6			5.7			12.3			7.5	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles (\%)	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%
Adj. Flow (vph)	54	158	90	33	239	86	25	228	40	286	311	55
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	54	248	0	33	239	86	25	268	0	286	366	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		11			11			11			11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1	1	1	1		1	1	
Detector Template	Left			Left		Right	Left			Left		
Leading Detector (tt)	30	30		30	30	20	30	30		30	30	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	30	30		30	30	20	30	30		30	30	
Detector 1 Type	Cl+Ex	Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	

Detector 1 Channel

Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Perm	NA	Perm	NA	Perm	Prot	NA	pm+pt	NA
Protected Phases		2		6		8	3	4	7
Permitted Phases	2		6		6		3	7	7
Detector Phase	2	2	6	6	6	8	3	4	7
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	7.0	10.0	7.0	10.0
Minimum Split (s)	27.0	27.0	32.0	32.0	32.0	13.0	25.0	13.0	27.0

	$\stackrel{ }{*}$						4	\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	33.0	33.0		33.0	33.0	33.0	17.0	30.0		27.0	40.0	
Total Split (\%)	36.7\%	36.7\%		36.7\%	36.7\%	36.7\%	18.9\%	33.3\%		30.0\%	44.4\%	
Maximum Green (s)	27.0	27.0		27.0	27.0	27.0	11.0	24.0		21.0	34.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Recall Mode	Max	Max		Max	Max	Max	None	Max		None	Max	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0		7.0			7.0	
Flash Dont Walk (s)	14.0	14.0		19.0	19.0	19.0		12.0			14.0	
Pedestrian Calls (\#/hr)	12	12		12	12	12		12			12	
Act Efftt Green (s)	27.0	27.0		27.0	27.0	27.0	7.2	24.5		43.2	38.1	
Actuated g/C Ratio	0.33	0.33		0.33	0.33	0.33	0.09	0.30		0.52	0.46	
v/c Ratio	0.18	0.44		0.11	0.42	0.14	0.17	0.52		0.55	0.46	
Control Delay	23.0	22.5		22.0	25.2	0.5	39.3	28.3		15.4	18.6	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	23.0	22.5		22.0	25.2	0.5	39.3	28.3		15.4	18.6	
LOS	C	C		C	C	A	D	C		B	B	
Approach Delay		22.6			19.0			29.2			17.2	
Approach LOS		C			B			C			B	
Intersection Summary												
Area Type: Other												
Cycle Length: 90												
Actuated Cycle Length: 82.3												
Natural Cycle: 75												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.55												
Intersection Signal Delay: 20.8				Intersection LOS: C								
Intersection Capacity Utilization 64.9\%				ICU Level of Service C								
Analysis Period (min) 15												

Splits and Phases: 1101: Dewey (South)/Dewey (North) \& Driving Park

	\rangle	\rightarrow	7	\longleftarrow	4	4	\dagger		\downarrow
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	54	248	33	239	86	25	268	286	366
v/c Ratio	0.18	0.44	0.11	0.42	0.14	0.17	0.52	0.55	0.46
Control Delay	23.0	22.5	22.0	25.2	0.5	39.3	28.3	15.4	18.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	23.0	22.5	22.0	25.2	0.5	39.3	28.3	15.4	18.6
Queue Length 50th (tt)	19	84	12	94	0	12	110	80	103
Queue Length 95th (ft)	47	146	32	155	0	34	179	116	208
Internal Link Dist (tt)		385		169			461		249
Turn Bay Length (tt)	125					100		150	
Base Capacity (vph)	308	560	301	569	606	220	511	615	790
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.18	0.44	0.11	0.42	0.14	0.11	0.52	0.47	0.46

Intersection Summary

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow		${ }_{7}$	\uparrow	F	${ }^{7}$	F		\%	$\hat{1}$	
Volume (vph)	72	182	54	8	233	174	52	352	62	154	279	49
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (tt)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (tt)	125		75	0		0	100		0	150		0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (t)	100			25			50			75		
Lane Utili. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.966				0.850		0.977			0.978	
FIt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1646	1674	0	1646	1733	1473	1646	1693	0	1646	1695	0
Flt Permitted	0.515			0.511			0.950			0.323		
Satd. Flow (perm)	892	1674	0	885	1733	1473	1646	1693	0	560	1695	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		16				185		10			9	
Link Speed (mph)		30			30			30			30	
Link Distance (tt)		465			249			541			329	
Travel Time (s)		10.6			5.7			12.3			7.5	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (\%)	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%
Adj. Flow (vph)	77	194	57	9	248	185	55	374	66	164	297	52
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	77	251	0	9	248	185	55	440	0	164	349	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(tt)		11			11			11			11	
Link Offset(tt)		0			0			0			0	
Crosswalk Width(tt)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1	1	1	1		1	1	
Detector Template	Left			Left		Right	Left			Left		
Leading Detector (tt)	30	30		30	30	20	30	30		30	30	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(tt)	30	30		30	30	20	30	30		30	30	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	Cl+Ex		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	

Detector 1 Channel

Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Perm	NA	Perm	NA	Perm	Prot	NA	pm+pt	NA
Protected Phases		2		6		8	3	4	7
Permitted Phases	2		6		6		3	7	7
Detector Phase	2	2	6	6	6	8	3	4	7
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	7.0	10.0	7.0	10.0
Minimum Split (s)	27.0	27.0	32.0	32.0	32.0	13.0	25.0	13.0	27.0

	$\stackrel{ }{*}$						4	\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	38.0	38.0		38.0	38.0	38.0	26.0	45.0		17.0	36.0	
Total Split (\%)	38.0\%	38.0\%		38.0\%	38.0\%	38.0\%	26.0\%	45.0\%		17.0\%	36.0\%	
Maximum Green (s)	32.0	32.0		32.0	32.0	32.0	20.0	39.0		11.0	30.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Recall Mode	Max	Max		Max	Max	Max	None	Max		None	Max	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0		7.0			7.0	
Flash Dont Walk (s)	14.0	14.0		19.0	19.0	19.0		12.0			14.0	
Pedestrian Calls (\#/hr)	12	12		12	12	12		12			12	
Act Efftt Green (s)	32.0	32.0		32.0	32.0	32.0	8.4	39.0		50.2	42.5	
Actuated g/C Ratio	0.33	0.33		0.33	0.33	0.33	0.09	0.40		0.51	0.43	
v/c Ratio	0.27	0.45		0.03	0.44	0.31	0.39	0.65		0.42	0.47	
Control Delay	28.0	27.9		23.8	29.4	5.3	50.8	29.2		14.7	23.4	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	28.0	27.9		23.8	29.4	5.3	50.8	29.2		14.7	23.4	
LOS	C	C		C	C	A	D	C		B	C	
Approach Delay		27.9			19.2			31.6			20.6	
Approach LOS		C			B			C			C	
Intersection Summary												
Area Type: Other												
Cycle Length: 100												
Actuated Cycle Length: 98.2												
Natural Cycle: 75												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.65												
Intersection Signal Delay: 24.6				Intersection LOS: C								
Intersection Capacity Utilization 72.0\%				ICU Level of Service C								
Analysis Period (min) 15												

Splits and Phases: 1101: Dewey (South)/Dewey (North) \& Driving Park

	\rangle	\rightarrow	\downarrow	\longleftarrow	4	4	\dagger		\downarrow
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	77	251	9	248	185	55	440	164	349
v/c Ratio	0.27	0.45	0.03	0.44	0.31	0.39	0.65	0.42	0.47
Control Delay	28.0	27.9	23.8	29.4	5.3	50.8	29.2	14.7	23.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	28.0	27.9	23.8	29.4	5.3	50.8	29.2	14.7	23.4
Queue Length 50th (tt)	35	115	4	121	0	33	215	48	153
Queue Length 95th (ft)	76	192	16	198	47	71	333	82	251
Internal Link Dist (tt)		385		169			461		249
Turn Bay Length (tt)	125					100		150	
Base Capacity (vph)	290	556	288	564	604	335	678	413	738
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.27	0.45	0.03	0.44	0.31	0.16	0.65	0.40	0.47

Intersection Summary

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow		${ }^{7}$	\uparrow	F	${ }^{7}$	${ }^{1}$		\%	F	
Volume (vph)	56	159	92	33	242	87	26	230	41	289	315	56
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (tt)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (tt)	125		75	0		0	100		0	150		0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (tt)	100			25			50			75		
Lane Utili. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.945				0.850		0.977			0.978	
FIt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1646	1637	0	1646	1733	1473	1646	1693	0	1646	1695	0
Flt Permitted	0.457			0.442			0.950			0.342		
Satd. Flow (perm)	792	1637	0	766	1733	1473	1646	1693	0	593	1695	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		33				182		10			11	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		465			249			541			329	
Travel Time (s)		10.6			5.7			12.3			7.5	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles (\%)	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%
Adj. Flow (vph)	67	192	111	40	292	105	31	277	49	348	380	67
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	67	303	0	40	292	105	31	326	0	348	447	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		11			11			11			11	
Link Offset(tt)		0			0			0			0	
Crosswalk Width(tt)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1	1	1	1		1	1	
Detector Template	Left			Left		Right	Left			Left		
Leading Detector (tt)	30	30		30	30	20	30	30		30	30	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(tt)	30	30		30	30	20	30	30		30	30	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	

Detector 1 Channel

Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Perm	NA	Perm	NA	Perm	Prot	NA	pm+pt	NA
Protected Phases		2		6		8	3	4	7
Permitted Phases	2		6		6		3	7	7
Detector Phase	2	2	6	6	6	8	3	4	7
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	7.0	10.0	7.0	10.0
Minimum Split (s)	27.0	27.0	32.0	32.0	32.0	13.0	25.0	13.0	27.0

Splits and Phases: 1101: Dewey (South)/Dewey (North) \& Driving Park

	\rangle	\rightarrow	7	\longleftarrow	4	4	\dagger		\downarrow
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	67	303	40	292	105	31	326	348	447
v/c Ratio	0.26	0.55	0.16	0.53	0.18	0.22	0.67	0.69	0.55
Control Delay	26.1	26.2	24.2	28.3	0.9	41.0	34.3	19.1	20.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	26.1	26.2	24.2	28.3	0.9	41.0	34.3	19.1	20.3
Queue Length 50th (tt)	26	116	15	124	0	16	146	101	135
Queue Length 95th (ft)	59	192	39	199	0	41	232	142	265
Internal Link Dist (tt)		385		169			461		249
Turn Bay Length (tt)	125					100		150	
Base Capacity (vph)	254	548	246	556	597	215	490	580	808
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.26	0.55	0.16	0.53	0.18	0.14	0.67	0.60	0.55

[^20]| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | \% | \uparrow | | ${ }^{7}$ | \uparrow | 「 | \% | $\hat{6}$ | | \% | $\hat{\beta}$ | |
| Volume (vph) | 88 | 222 | 66 | 10 | 284 | 212 | 63 | 429 | 76 | 188 | 340 | 60 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Lane Width (tt) | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
| Storage Length (tt) | 125 | | 85 | 0 | | 0 | 100 | | 0 | 150 | | 0 |
| Storage Lanes | 1 | | 0 | 1 | | 1 | 1 | | 0 | 1 | | 0 |
| Taper Length (tt) | 100 | | | 25 | | | 50 | | | 75 | | |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Fit | | 0.966 | | | | 0.850 | | 0.977 | | | 0.977 | |
| Flt Protected | 0.950 | | | 0.950 | | | 0.950 | | | 0.950 | | |
| Satd. Flow (prot) | 1646 | 1674 | 0 | 1646 | 1733 | 1473 | 1646 | 1693 | 0 | 1646 | 1693 | 0 |
| Flt Permitted | 0.395 | | | 0.388 | | | 0.950 | | | 0.269 | | |
| Satd. Flow (perm) | 684 | 1674 | 0 | 672 | 1733 | 1473 | 1646 | 1693 | 0 | 466 | 1693 | 0 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes |
| Satd. Flow (RTOR) | | 15 | | | | 226 | | 11 | | | 10 | |
| Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | |
| Link Distance (ft) | | 465 | | | 249 | | | 541 | | | 329 | |
| Travel Time (s) | | 10.6 | | | 5.7 | | | 12.3 | | | 7.5 | |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles (\%) | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% | 6\% |
| Adj. Flow (vph) | 94 | 236 | 70 | 11 | 302 | 226 | 67 | 456 | 81 | 200 | 362 | 64 |
| Shared Lane Traffic (\%) | | | | | | | | | | | | |
| Lane Group Flow (vph) | 94 | 306 | 0 | 11 | 302 | 226 | 67 | 537 | 0 | 200 | 426 | 0 |
| Enter Blocked Intersection | No |
| Lane Alignment | Left | Left | Right |
| Median Width(t) | | 11 | | | 11 | | | 11 | | | 11 | |
| Link Offset(tt) | | 0 | | | 0 | | | 0 | | | 0 | |
| Crosswalk Width(ft) | | 16 | | | 16 | | | 16 | | | 16 | |
| Two way Left Turn Lane | | | | | | | | | | | | |
| Headway Factor | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 |
| Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 |
| Number of Detectors | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | |
| Detector Template | Left | | | Left | | Right | Left | | | Left | | |
| Leading Detector (tt) | 30 | 30 | | 30 | 30 | 20 | 30 | 30 | | 30 | 30 | |
| Trailing Detector (ft) | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | |
| Detector 1 Position(ft) | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | |
| Detector 1 Size(ft) | 30 | 30 | | 30 | 30 | 20 | 30 | 30 | | 30 | 30 | |
| Detector 1 Type | Cl+Ex | Cl+Ex | | Cl+Ex | Cl+Ex | $\mathrm{Cl}+\mathrm{Ex}$ | $\mathrm{Cl}+\mathrm{Ex}$ | Cl+Ex | | Cl+Ex | Cl+Ex | |

Detector 1 Channel

Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Perm	NA	Perm	NA	Perm	Prot	NA	pm+pt	NA
Protected Phases		2		6		8	3	4	7
Permitted Phases	2		6		6		3	7	7
Detector Phase	2	2	6	6	6	8	3	4	7
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	7.0	10.0	7.0	10.0
Minimum Split (s)	27.0	27.0	32.0	32.0	32.0	13.0	25.0	13.0	27.0

	\rangle			7		4	4	\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	33.0	33.0		33.0	33.0	33.0	24.0	49.0		18.0	43.0	
Total Split (\%)	33.0\%	33.0\%		33.0\%	33.0\%	33.0\%	24.0\%	49.0\%		18.0\%	43.0\%	
Maximum Green (s)	27.0	27.0		27.0	27.0	27.0	18.0	43.0		12.0	37.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Recall Mode	Max	Max		Max	Max	Max	None	Max		None	Max	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0		7.0			7.0	
Flash Dont Walk (s)	14.0	14.0		19.0	19.0	19.0		12.0			14.0	
Pedestrian Calls (\#/hr)	12	12		12	12	12		12			12	
Act Efft Green (s)	27.0	27.0		27.0	27.0	27.0	8.9	43.0		54.7	46.5	
Actuated g/C Ratio	0.28	0.28		0.28	0.28	0.28	0.09	0.44		0.56	0.48	
v/c Ratio	0.50	0.65		0.06	0.63	0.40	0.45	0.72		0.53	0.53	
Control Delay	41.1	37.3		28.1	38.3	6.2	51.7	28.7		14.5	21.8	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	41.1	37.3		28.1	38.3	6.2	51.7	28.7		14.5	21.8	
LOS	D	D		C	D	A	D	C		B	C	
Approach Delay		38.2			24.6			31.3			19.5	
Approach LOS		D			C			C			B	
Intersection Summary												
Area Type: Other												
Cycle Length: 100												
Actuated Cycle Length: 97.7												
Natural Cycle: 75												
Control Type: Semi Act-Uncoord												
Maximum v/c Ratio: 0.72												
Intersection Signal Delay: 27.5				Intersection LOS: C								
Intersection Capacity Utilization 81.6\%				ICU Level of Service D								
Analysis Period (min) 15												

Splits and Phases: 1101: Dewey (South)/Dewey (North) \& Driving Park

	4	\rightarrow	7	\longleftarrow	4	4	\dagger		\downarrow
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	94	306	11	302	226	67	537	200	426
v/c Ratio	0.50	0.65	0.06	0.63	0.40	0.45	0.72	0.53	0.53
Control Delay	41.1	37.3	28.1	38.3	6.2	51.7	28.7	14.5	21.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	41.1	37.3	28.1	38.3	6.2	51.7	28.7	14.5	21.8
Queue Length 50th (tt)	49	160	5	165	0	40	261	52	183
Queue Length 95th (ft)	106	260	20	264	56	82	404	86	297
Internal Link Dist (tt)		385		169			461		249
Turn Bay Length (tt)	125					100		150	
Base Capacity (vph)	188	473	185	478	570	303	751	411	810
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.50	0.65	0.06	0.63	0.40	0.22	0.72	0.49	0.53

[^21]
Appendix D: Pavement Information

PAVEMENT EVALUATI ON \& TREATMENT SELECTI ON REPORT (PETSR)

11/15/2013

FINAL 8/19/2014

General

Region: 4
County: Monroe
Route No.: $\begin{aligned} & \text { Dewey Ave } \\ & \text { Driving Park Ave }\end{aligned}$ PIN: 4755.55
Project Description: Dewey Avenue / Driving Park Avenue Intersection Realignment Project
Begin RM: NA End RM: NA Total Length: Less than 500 ft of each approach to intersection
Latest Pavement Rehabilitation/Treatment Date(s): Driving Park Ave - Surface Repair / True \& Leveling (2014) Dewey Ave - Cold Milling and Single Course Overlay (2012)
Original Contract Date(s): Spring 2016 (earliest)

Related Pavement Data:

Traffic AADT (Range): | 5,610 to |
| :---: |
| 10,810 |
| Date: 2014 \% Trucks: 6% Average |

Sufficiency Rating Surface Score: NA Date: NA

Roadway Features

Roadway:	Divided \square	Non-Divided 区	Concrete Median Barrier \square	
Median:	Flush 区	Raised \square		
Curbs:	Mountable \square	Non-Mountable $\boldsymbol{\searrow}$	HMA $\square \quad$ PCC \square	Stone $\mathbb{}$
Gutter:	None $\boldsymbol{\chi}$	Present \square	Location:	
MIARDS/C	ARDS: None $\boldsymbol{\chi}$	Present \square	Location:	

Travel Lanes:
Number: 1-2 Width(s): 10 ft to 12 ft and varies
Type: \quad Reinforced PCC \square Non-Reinforced PCC \square HMA X HMA over PCC \square With one core showing underlaying brick layer
Thickness (normal): Total: 6.5" - 12" (HMA:6.5" - 12" PCC: 0")
Reinforced and Non-Reinforced PCC Pavements only:
Slab Length:
Load Transfer Type: \quad Dowels $\square 2$ Component \square
Transverse Joints: Contraction $\square \quad$ Expansion \square
Subbase: Type: Crushed Thickness (nominal): 3" - 5"
Stone, Sand,
Shoulders: and/or Gravel
Type: HMA X PCC \square Gravel \square Thickness: 6.5"-12"
Surface Treatment/Stabilized Gravel \square Thickness:
Width: Left: None Right: 0 ft to 8 ft
Drainage Type: Open System \square Closed System \mathbb{Z}

PAVEMENT EVALUATI ON \& TREATMENT SELECTI ON REPORT (PETSR)

EXISTING PAVEMENT CONDITION REMARKS:

The existing pavement section along Dewey Avenue appears to be in relatively good condition due to the recent resurfacing operation. The existing pavement section along Driving Park Avenue shows moderate distress including cracking, rutting, numerious utility repairs, pot holes, etc.

EXISTING SHOULDER REMARKS:

Existing shoulders are paved and in similar condition to that of the adjacent pavement surface.

REMARKS AND PAVEMENT RECOMMENDATIONS:

Reconstruction of the existing pavement surface is recommended due to existing conditions of the pavement along Driving Park Avenue and the proposed intersection realignment. Changes in horizontal alignment and grade will be necessary to realign the existing intersection.

GEOTECHNICAL REMARKS AND RECOMMENDATIONS:

Existing subgrade soil conditions were characterized as poor after subsurface exploration. It is recommended that subgrade soils be observed as they are exposed during construction and properly rectified. This could involve isolated areas of undercut and replacement with suitable material. Underdrain and geotextile stabilization / separation is recommended at the subgrade / subbase interface. No other special geotechnical techniques or considerations are anticipated that would affect the design or construction within the project limits.

PAVEMENT EVALUATION \& TREATMENT SELECTION REPORT (PETSR)
 11/15/2013

Treatment Options:

1. Rehabilitation - cold milling with single or multiple course overlay
2. Full Depth Portland Cement Concrete Pavement
3. Full Depth Hot Mix Asphalt (HMA) Pavement

Results of Life Cycle Cost Analysis:
Not required per Table 3-2 of the NYSDOT Comprehensive Pavement Design Manual.

Recommendations:

Within the project limits, fully reconstruct the existing pavement with a full depth HMA pavement section due to the proposed intersection realignment and condition of Driving Park Ave. Proposed hot mix asphalt (HMA) pavement sections would be in accordance with the City of Rochester standard pavement section. These were verified with the Equivalent Single Axle Loading (ESAL) pavement design procedure as outlined in the NYSDOT Comprehensive. Pavement Design Manual. The expected pavement surface life would be 20 years with an expected total pavement service life of 50 years. New asphalt shoulders would also be constructed to full depth.
If you have any questions regarding this report, please contact at 585-232-5137 x380
Michael T. Croce, PE

Prepared by: Thomas R Detrie, PE
Date: 8/15/14

Approved by: Seesen/hor
Date:

Professional Engineering Seal for Recommendations to Use Beyond Preservation Treatments:

8/19/2014

Appendix E: Geotechnical Information

A SUBSIDIARY OF SJB SERVICES, INC.

CORPORATE/ BUFFALO OFFICE 5167 South Park Avenue Hamburg, NY 14075
Phone: (716) 649-8110 Fax: (716) 649-8051

ALBANY OFFICE
PO Box 2199
Ballston Spa, NY 12020
5 Knabner Road
Mechanicville, NY 12118
Phone: (518) 899-7491 Fax: (518) 899-7496

CORTLAND OFFICE
60 Miller Street Cortland, NY 13045
Phone: (607) 758-7182 Fax: (607) 758-7188
(丸 ROCHESTER OFFICE
535 Summit Point Drive Henrietta, NY 14467
Phone: (585) 359-2730 Fax: (585) 359-9668

MEMBER

$\widehat{A C E C N} N$ York

Final Geotechnical Evalluation Report for Proposed Realignment Project
 Dewey Avenue \& Driving Park Avenue Intersection
 PIN 4755.55
 City of Rochester, Monroe County, New York

Prepared For:

Bergmann Associates
28 East Main Street
200 First Federal Plaza
Rochester, New York 14614-1909

Prepared By:
Empire Geo-Services, Inc.
535 Summit Point Drive
Henrietta, New York 14467

Project No.: RE-14-017
August 2014

A SUBSIDIARY OF SJB SERVICES, INC.

CORPORATE/
BUFFALO OFFICE
5167 South Park Avenue Hamburg, NY 14075
Phone: (716) 649-8110 Fax: (716) 649-8051

ALBANY OFFICE
PO Box 2199 Ballston Spa, NY 12020

5 Knabner Road
Mechanicville, NY 12118
Phone: (518) 899-7491 Fax: (518) 899-7496

CORTLAND OFFICE
60 Miller Street Cortland, NY 13045
Phone: (607) 758-7182
Fax: (607) 758-7188

X ROCHESTER OFFICE
535 Summit Point Drive Henrietta, NY 14467 Phone: (585) 359-2730 Fax: (585) 359-9668

MEMBER

August 19, 2014
Project No. RE-14-017

Bergmann Associates
28 East Main Street
200 First Federal Plaza
Rochester, New York 14614
Attention: Mr. Michael T. Croce, P.E. Project Manager

Re: Final Geotechnical Evaluation Report for Proposed Realignment Project
Dewey Avenue \& Driving Park Avenue
PIN 4755.55
Rochester, Monroe County, New York
Dear Mr. Croce,
Pursuant to your request and authorization, Empire Geo-Services, Inc. (Empire) completed a subsurface exploration and subgrade evaluation with regard to the proposed Realignment Project (PIN 4755.55) planned at the intersection of Dewey Avenue and Driving Park Avenue in the City of Rochester, Monroe County, New York. The approximate location of the project site is shown on Figure 1.

This work was completed at the request and authorization of Bergmann Associates (Bergmann) in accordance with our May 20, 2014 proposal, which was approved on July 1, 2014. SJB Services, Inc. (SJB), Empire's affiliated subsurface exploration company, completed the subsurface exploration program, which included a total of four (4) pavement cores and three (3) test borings.

The purpose of our work was to investigate the existing pavement and subgrade conditions at the existing intersection and to develop appropriate design parameters and construction recommendations to assist Bergmann in the redesign and construction of the existing pavement areas. In addition, several indigenous soil samples were tested in our laboratory to provide an indication of the corrosion potential with regard to buried metallic conduits. Figure 2 shows the approximate location of this area and the exploration locations.

SUBSURFACE EXPLORATION

Exploration of the existing asphalt pavement, subbase and subgrade conditions was completed by SJB on July 7, 2014. This work included extracting pavement cores of the existing asphalt concrete, sampling and measuring the underlying subbase layer, as well as sampling the underlying subgrade soils.

The pavement core and test boring locations were designated as B-1 through B-4 on a site plan provided to Empire by Bergmann. The exploration locations were then staked in the field by SJB using tape measurements referenced to existing site features. Due to the existing underground utilities located in the vicinity of test boring B-1, SJB was unable to sample the underlying subgrade soils (advance the test boring), and therefore, SJB just extracted the pavement core and hand sampled the subbase material. The approximate exploration locations are shown on Figure 2.

Portable coring equipment was utilized to obtain a nominal 6-inch diameter core sample of the asphaltic concrete at each location. The underlying subbase was then sampled and its thickness measured at the core locations after the pavement cores were extracted.

Test borings B-2 through B-4 were then advanced in the subbase and subgrade soils using hollow stem auger and split spoon soil sampling methods. Split spoon samples and Standard Penetration Tests (SPTs) were then taken continuously in the underlying subgrade soils to a depth of 10 feet below the existing ground surface. The split spoon sampling and SPTs were completed in general accordance with ASTM D 1586 - "Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils".

A geologist from SJB prepared the test boring logs based on visual observation of the recovered soil samples, and review of the driller's field notes. The soil samples were described based on a visual/manual estimation of the grain size distribution, along with characteristics such as color, relative density, consistency, moisture, etc. The test boring logs are presented in Appendix A, along with general information and a key of terms and symbols used to prepare the logs.

The thickness of the pavement core samples were measured and photographed in our laboratory. The core photographs are presented in Appendix B. The thicknesses of the asphalt concrete and subbase layer encountered at each location, along with a general description of the underlying subgrade soils, are summarized on Table No. 1.

LABORATORY TESTING

The soil samples collected between depths of about 4 feet to 6 feet from test borings B-3 and B-4 and a composite sample of the soil collected from test boring B-2 between depths of 4 feet to 8 feet are currently being tested in SJB's geotechnical testing laboratory for resistivity, redox, pH , moisture, and sulfides according to procedures established by the Ductile Iron Pipe Research Association (DIPRA test). This testing will provide an indication of the corrosion potential of the on-site soils with regard to buried metallic conduits. The laboratory test data has been submitted under a separate cover letter.

SUBSURFACE CONDITIONS

Summary of Pavement, Subbase and Subsurface Conditions Encountered

General

The thicknesses of the asphalt concrete and subbase layer encountered at each exploration location, along with a general description of the underlying subgrade soils, are summarized on Table No. 1 and below. In addition, a thickness breakdown and description of the various components (i.e. top, binder, base) making up the asphalt concrete layer are presented on Table No. 1.

Pavement, Subbase and Subsurface Conditions

Asphalt concrete was encountered at the surface of each pavement core/test boring location. The thickness of the asphaltic concrete core samples obtained varied from 6.5 -inches to 12.0 -inches. In most cases, the pavement cores obtained appeared to be in a relatively good condition as minimal pitting and/or deterioration between and within the various asphalt concrete courses was apparent.

Beneath the asphalt at test boring location B-3, brick was encountered. The brick was about 4-inches thick and had a vertical crack through the center.

Beneath the asphaltic concrete or brick, a subbase layer was apparent at each location. The subbase consisted of crushed stone, sand and/or gravel or possibly crushed concrete. The thickness of the subbase course encountered was typically 3 -inches to 5 -inches. A geotextile fabric was not apparent beneath the subbase materials at any location.

Bergmann Associates
PIN 4755.55
August 19, 2014
Page 4 of 8

We note that the asphalt and subbase measurements are widely spaced. In addition, the subbase material was measured within the test boring hole, and should therefore be considered approximate. It should be expected that the thickness of the asphalt or subbase could vary significantly dependent upon location.

Beneath the crushed stone subbase course at test boring location B-2, sand and gravel fill soils were encountered. The fill soils were found to extend to a depth of about 3 feet at this location. Fill soils were not present at the remaining boring locations (B-3 and B-4). It should be expected, however, that fill soils will vary between and away from the boring locations, will be dependent upon the native site topography and will extend to at least the bottom of any utility lines within the proposed project site area.

Beneath the fill at test boring location B-2 and the subbase material at borings B-3 and B-4, indigenous soils consisting of brown sand intermixed with gravel and/or silt were encountered. The sand soils grade to a brown clayey silt soil below a depth of about 4 feet or 6 feet at the boring locations. The clayey soils extend to boring completion at test borings B-2 and B-4. Silty sand soil deposits were encountered beneath the clay soils at a depth of about 8 feet at test boring B-3. The silty sand soils extend to boring completion at this location. The indigenous soils are classified as SM, SP-SM and ML group soils using the Unified Soil Classification System (USCS).

Standard Penetration Test (SPT) "N" values obtained in the subgrade soils directly beneath the subbase indicate the subgrades are generally of a loose to firm relative density. The deeper subgrade soils generally consist of medium to hard consistency clayey silt soils and firm to very compact sand soils.

Freestanding water was not apparent in any of the test holes immediately following the completion of drilling operations. Accordingly, based on the groundwater measurements within the test borings as well as the "moist" nature of the soil samples recovered, it appears a permanent groundwater condition (i.e. groundwater table) was not encountered within the depths explored at the boring locations. The installation of a groundwater observation well would help to better define the groundwater conditions present on the site.

Although not observed in the test borings, it is possible that some localized perched or trapped groundwater may be present within the looser or more granular zones of fill and indigenous soils, which overlie the less permeable indigenous soils. Perched groundwater conditions can be particularly more prevalent
following heavy or extended periods of precipitation and during seasonally wet periods. Both perched and general groundwater conditions should be expected to vary with location and with changes in soil conditions, precipitation and seasonal conditions.

GEOTECHNICAL CONSIDERATIONS AND RECOMMENDATIONS

The test boring data suggests the upper soils, which make up the pavement structure subgrades, generally vary in composition ranging from loose to firm, gravelly sand, silty sand or silty/gravelly sand. The drainage characteristics of these subgrade soils are variable ranging from "good" to "fair-poor".

It is our understanding, the proposed realignment project is expected to consist of full depth reconstruction. This will include removal of the existing asphalt concrete pavement, excavation of the underlying subbase, as well as the subgrade soils, as necessary to establish the new pavement profile (grade), preparation of the exposed subgrades for the new pavement structure, and placement of a new pavement subbase course and asphalt concrete pavement surface. In addition, due to the varying drainage characteristics of the subgrade soils, we would recommend installation of pavement structure drainage, as discussed further below.

Based on the site conditions and our analysis of subgrade conditions encountered in the test borings, an effective roadbed Soil Resilient Modulus (Mr) of 3,000 psi can be used in the analyses as being representative of the less favorable subgrade soil conditions encountered. This Mr value correlates to subgrade CBR value of approximately 3.5 to 4 . This is contingent upon proper preparation and protection of the existing subgrade soils, as discussed further below.

In addition, the subgrade support characteristics of the upper subgrade soils are expected to vary, therefore, a woven polypropylene stabilization/separation geotextile (i.e., Mirafi 600X or approved suitable equivalent) is recommended prior to placement of the subbase stone.

In all cases we recommend that the existing soil subgrades be proof-rolled and evaluated prior to the placement of any subgrade fill required to raise site grades and/or the placement of the subbase course for the new pavement structure construction. In addition, the surface of the existing soil subgrades should be thoroughly compacted with numerous passes of a vibratory smooth drum roller (i.e. 10 tons or greater) to further compact the soils prior to placement of any additional subgrade fill and/or the new pavement subbase.

Bergmann Associates
PIN 4755.55
August 19, 2014
Page 6 of 8

Placement and compaction of all subgrade fill to raise site grades, if necessary or the pavement subbase should be observed and tested by a representative of Empire (i.e. by our affiliated materials testing company, SJB Services, Inc.). We recommend the subbase or any site grade fill consist of a crusher run stone, as described below.

Structural Fill Material (Subbase Stone)

Structural Fill, used as subbase stone or as site grade fill, should consist of crusher run stone, which should be free of clay, organics and friable or deleterious particles. As a minimum, the crusher stone should meet the requirements of New York State Department of Transportation, Standard Specifications, Item 304.12 - Type 2 Subbase, with the following gradation requirements.

Sieve Size Distribution		Percent Finer by Weight
2 inch		100
$1 / 4$ inch		$25-60$
No. 40		$5-40$
No. 200		$0-10$

The crusher run stone Structural Fill should be compacted to a minimum of 95 percent of the maximum dry density as measured by the modified Proctor test (ASTM D1557). Placement of the fill should not exceed a maximum loose lift thickness of 8 to 10 inches. It may be necessary to reduce the loose lift thickness depending on the type of compaction equipment used so that the required density is attained. The crusher run stone should have a moisture content within two percent of the optimum moisture content prior to compaction.

Additional Design Considerations and Recommendations

The installation of underdrains or edge drains are recommended to drain the pavement subbase course and subgrades in order to limit the potential for frost action and improve pavement structure performance and design life.

Underdrains should include a geotextile (i.e. Mirafi 160 N or suitable equivalent), selected considering drainage and filtration, installed around drainage stone surrounding a slotted or perforated drain pipe. The drainage stone should be sized in accordance with the pipe slotting or perforations. A crushed aggregate conforming to NYSDOT Standard Specifications Section 703-02, Size Designation No. 1 ($1 / 2$-inch washed gravel or stone) is generally acceptable for

Bergmann Associates
PIN 4755.55
August 19, 2014
Page 7 of 8
slotted underdrain pipe. The underdrain pipes should be set in the bottom of the subbase layer, or preferably below the top of the soil subgrade elevation. The drainage stone and surrounding geotextile should extend above the underdrain pipe and into the subbase layer. Underdrain pipes should be connected to the storm water drainage system.

Alternatively, the pavement subbase course should be allowed, as a minimum, to daylight/drain to an adjacent perimeter drainage swale or other drainage relief point. Accumulation of water on pavement subgrades should be avoided by grading the subgrade to a slope of at least 2 percent to allow drainage to the edge drains or drainage swale.

Pavement Construction Considerations

Existing asphalt pavement, as well as any surface slabs, vegetation, topsoil, soils containing organics, demolition rubble, or otherwise wet, soft, or unsuitable material should be removed in the areas to be fully reconstructed or within new pavement areas. Following removal of the surface materials and excavation to the proposed subgrades, the exposed subgrades should be thoroughly compacted and proof-rolled. The subgrade compaction and proof-rolling should be performed, prior to any required fill placement and ground improvement, using a vibratory smooth drum roller weighing at least 10 tons. The roller should be operated in the vibratory mode for compacting the subgrades and in the static mode for proof rolling. The roller should complete at least four (4) passes over the exposed subgrades for the compaction/densification operation and at least two (2) passes for the proof rolling evaluation.

The subgrade proof-rolling and compaction should be done under the guidance of, and observed by, a representative of Empire. It may be necessary to waive the compaction and/or proof-rolling requirement which will be dependent on the type of subgrade conditions exposed (i.e. cohesive vs. granular) and/or if wet subgrades are present. This should be determined by Empire. Any areas, which appear wet, loose, soft, unstable or otherwise contain unsuitable materials, should be undercut. Over excavation, which may be required as the result of the subgrade inspection and/or proof-rolling, should be performed based on evaluation of the conditions and guidance provided by Empire. Resulting over-excavations should be backfilled with additional subbase stone.

The pavement construction can proceed on suitable subgrade soils following the proof-rolling and compaction evaluation. Installation of adjacent geotextile panels should have minimum overlap of 12 to 18 inches. Construction of the asphaltic

Bergmann Associates
PIN 4755.55
August 19, 2014
Page 8 of 8
concrete courses (i.e., binder and top) should be performed in accordance with NYSDOT Standard Specification Section 400. In addition, placement of asphalt concrete courses should not be permitted on wet or snow covered surfaces or when the subgrade surface is less than $40^{\circ} \mathrm{F}$.

CONCLUDING REMARKS

This report was prepared to assist with design and construction of the proposed Realignment Project (PIN 4755.55) planned at the intersection of Dewey Avenue and Driving Park Avenue in the City of Rochester, Monroe County, New York. The report has been prepared for the exclusive use of Bergmann Associates and other members of the design team, for specific application to this site and this project only.

The recommendations were prepared based on Empire Geo-Services, Inc.'s understanding of the proposed project, as described herein, and through the application of generally accepted soils and foundation engineering practices. No warranties, expressed or inferred, are made by the conclusions, opinions, recommendations or services provided.

Empire Geo-Services, Inc. should be retained to review specifications and monitor the site work / pavement construction to verify that the recommendations were properly interpreted and implemented.

Important information regarding the use and interpretation of this report is presented in Appendix C.

Respectfully Submitted:

EMPIRE GEO-SERVICES, INC.

Wanda M. Allen, P.E.
Geotechnical Engineer

John J. Danzer, P.E.
Senior Geotechnical Engineer and Project Reviewer

TABLE

TABLE 1
SUMMARY OF EXISTING PAVEMENT STRUCTURE AND SUBGRADE CONDITIONS
PROPOSED REALIGNMENT PROJECT
DEWEY AVENUE \& DRIVING PARK AVENUE INTERSECTION
PIN 4755.55
CITY OF ROCHESTER, MONROE COUNTY, NEW YORK

		Existing Asphalt Concrete (AC) Pavement					Subbase Material	Subbase Thickness(inches)	Subgrade Soil Conditions		
Core Number	Pavement Surface Material	Top Course Thickness (inches)	Binder Course (BI) Thickness (inches)	Base Course (BA) or Underlying Binder Course (BI) or Brick (BR) Thickness (inches)		Total AC Pavement Thicknes (inches)			Subgrade Material Type	Relative Density or Consistency of Subgrade	Subgrade Drainage Characteristics
B-1	Asphalt Concrete	2.50	2.50	7.00	BA	12.0	Crushed Stone	5	NA	NA	NA
B-2	Asphalt Concrete	2.00	2.25	5.75	BA	10.0	Crushed Stone	3	SAND and Gravel (FILL)	Loose to Firm	Good
B-3	Asphalt Concrete	1.75	4.75	4.00	BR	6.5	Sand	3	Silty SAND (SM)	Loose to Firm	Fair to Poor
B-4	Asphalt Concrete	4.25	1.75	3.00	BI	9.0	Gravel \& Sand or Crushed Concrete	5	Gravelly/Silty fine SAND (SP-SM)	Loose to Firm	Fair

Notes
1.) NA - Not Applicable
2.) Underlying subgrade soils at boring location B-1 was not sampled due to underground utilities in the vicinity of the test boring

FIGURES

APPENDIX A

SUBSURFACE EXPLORATION LOGS

APPENDIX B

ASPHALT PAVEMENT CORE PHOTOGRAPHS

CORE NUMBER	DESCRIPTION
B-2	TOTAL CORE LENGTH = 10" CORE DIAMETER = 5-3/4"
	Asphalt Top Course = 2" Asphalt Binder Course = 2-1/4" Asphalt Base Course = 5-3/4"

DRIVING PARK AVE AND DEWEY AVE RECONSTRUCTION ROCHESTER, NEW YORK CORE SUMMARY

CORE	DESCRIPTION
NUMBER	TOTAL CORE LENGTH = 10-1/2"
CORE DIAMETER $=5-3 / 4 "$	

CORE	DESCRIPTION
NUMBER	TOTAL CORE LENGTH = 9"
CORE DIAMETER = 5-3/4"	
B-4	Asphalt Top Course $=4-1 / 4 "$ Asphalt Binder Course $=1-3 / 4 "$ Asphalt Binder Course $=3 "$

APPENDIX C
REPORT LIMITATIONS

GEOTECHNICAL REPORT LIMITATIONS

Empire Geo-Services, Inc. (Empire) has endeavored to meet the generally accepted standard of care for the services completed, and in doing so is obliged to advise the geotechnical report user of our report limitations. Empire believes that providing information about the report preparation and limitations is essential to help the user reduce geotechnical-related delays, cost over-runs, and other problems that can develop during the design and construction process. Empire would be pleased to answer any questions regarding the following limitations and use of our report to assist the user in assessing risks and planning for site development and construction.

PROJECT SPECIFIC FACTORS: The conclusions and recommendations provided in our geotechnical report were prepared based on project specific factors described in the report, such as size, loading, and intended use of structures; general configuration of structures, roadways, and parking lots; existing and proposed site grading; and any other pertinent project information. Changes to the project details may alter the factors considered in development of the report conclusions and recommendations. Accordingly, Empire cannot accept responsibility for problems which may develop if we are not consulted regarding any changes to the project specific factors that were assumed during the report preparation.

SUBSURFACE CONDITIONS: The site exploration investigated subsurface conditions only at discrete test locations. Empire has used judgement to infer subsurface conditions between the discrete test locations, and on this basis the conclusions and recommendations in our geotechnical report were developed. It should be understood that the overall subsurface conditions inferred by Empire may vary from those revealed during construction, and these variations may impact on the assumptions made in developing the report conclusions and recommendations. For this reason, Empire should be retained during construction to confirm that conditions are as expected, and to refine our conclusions and recommendations in the event that conditions are encountered that were not disclosed during the site exploration program.

USE OF GEOTECHNICAL REPORT: Unless indicated otherwise, our geotechnical report has been prepared for the use of our client for specific application to the site and project conditions described in the report. Without consulting with Empire, our geotechnical report should not be applied by any party to other sites or for any uses other than those originally intended.

CHANGES IN SITE CONDITIONS: Surface and subsurface conditions are subject to change at a project site subsequent to preparation of the geotechnical report. Changes may include, but are not limited to, floods, earthquakes, groundwater fluctuations, and construction activities at the site and/or adjoining properties. Empire should be informed of any such changes to determine if additional investigative and/or evaluation work is warranted.

MISINTERPRETATION OF REPORT: The conclusions and recommendations contained in our geotechnical report are subject to misinterpretation. To limit this possibility, Empire should review project plans and specifications relative to geotechnical issues to confirm that the recommendations contained in our report have been properly interpreted and applied.

Subsurface exploration logs and other report data are also subject to misinterpretation by others if they are separated from the geotechnical report. This often occurs when copies of logs are given to contractors during the bid preparation process. To minimize the potential for misinterpretation, the subsurface logs should not be separated from our geotechnical report and the use of excerpted or incomplete portions of the report should be avoided.

OTHER LIMITATIONS: Geotechnical engineering is less exact than other design disciplines, as it is based partly on judgement and opinion. For this reason, our geotechnical report may include clauses that identify the limits of Empire's responsibility, or that may describe other limitations specific to a project. These clauses are intended to help all parties recognize their responsibilities and to assist them in assessing risks and decision making. Empire would be pleased to discuss these clauses and to answer any questions that may arise.

Appendix F: Non-Standard Feature Justifications

NON-STANDARD FEATURE JUSTIFICATION (in accordance with HDM §2.8)					
PIN:	4755.55		NHS (Y/N):		No
Route No. \& Name:	Dewey Avenue		Functional Class:		Urban Minor Arterial
Project Type:	Major Intersection Reconstruction		Design Class:		Urban Arterial
\% Trucks:	6\%		Terrain:		Rolling
ADT (2038):	13,730		Truck Access/Qualifying Hwy.		Yes / No
a. - Description of Non-Standard Feature					
Type of Feature (e.g., horizonta curve radius):		Horizontal Curve Radius			
Location:		Dewey Avenue, Sta. DA 9+49.58 to Sta. DA 10+98.00, Sta. DA 11+74.05 to Sta. DA 13+21.66			
Standard Value:		371 ft (@ e= 4.0\%)		Design Speed:	35 mph
Existing Value:		None		Advisory Speed:	None
Proposed Value:		$171 \mathrm{ft}\left(@ \mathrm{e}=\mathrm{NC}^{1}\right.$)		Advisory Speed:	25 mph
b. - Accident Analysis					
Current Accident Rate:		6.15 Acc/mvm			
Statewide Rate: Is the non-standard feature a contributing factor?		$2.48 \mathrm{Acc} / \mathrm{mvm}$			
			horizontal	does not currently	
Anticipated Accident Rates, Severity, and Costs:		The overall accident rate is expected to remain the same or decrease given the proposed improvements and the low speed urban environment.			
c. - Cost Estimates					
Cost to Fully Meet Standards: Cost(s) For Incremental Improvements:		\$300,000 - \$750,000 (Estimated, pending the number of right-of-way acquisitions)			
		Not applicable. Increasing the radius results in impacts to the adjacent properties.			
d. - Mitigation (e.g., increased superelevation and speed change lane length for a non-standard ramp radius):					
Consideration to install appropriate curve warning signs and advisory speed plaques, compliant with the current MUTCD standards, for both northbound and southbound drivers. Operating speeds along these curves should be lower than the design speed due to the location of the signalized intersection and adjacent intersections with Lexington Avenue and Selye Terrace, and general tight urban nature of the corridor.					
e. - Compatibility with Adjacent Segments \& Future Plans:					
There are similar curves on adjacent roadway segments within the City of Rochester. There are no plans to widen or reconstruct the adjacent segments. There is an angled intersection $1 / 2$ mile to the south at Emerson Street.					
f. - Other Factors (e.g., Social, Economic \& Environmental):					
Significant right-of-way acquisitions would be required in order to fully meet standards. These would impact include four (4) residential properties and one (1) historic property.					
g. - Proposed Treatment (i.e., Recommendation):					
Construct the proposed curve (radius = 171 ft) and roadway cross slope (2% normal crown) on Dewey Avenue. Curve warning and advisory speed signs would be reviewed in detailed design to mitigate this feature.					

1. Normal crown (NC) retained to facilitate tie-to to Selye Terrace. Allowable in a low-speed urban environment per AASHTO / NYSDOT.

Appendix G:

Public Involvement Plan and Meeting Summaries City of Rochester
Dewey/Driving Park Intersection Realignment Draft Public Participation Plan NYSDOT PIN 4755.55 City of Rochester Project ID 12105

The City of Rochester is advancing an intersection realignment project to eliminate the offset intersections of Dewey Avenue and Driving Park Avenue. The Public Participation Plan for the Dewey Avenue/Driving Park Avenue Intersection Realignment Project identifies the number and type of meetings that will be conducted to solicit input on the design process. It also identifies key stakeholders for the project. The plan provides municipal staff, the consultant, and stakeholders with guidelines to ensure that the community is involved in the project development and that the process is transparent.

Introduction

The City of Rochester is advancing an intersection realignment project to eliminate the offset intersections of Dewey Avenue and Driving Park Avenue. The realignment project will occur 550 feet north and south of Dewey Avenue and 550 feet east and west of Driving Park Avenue. This Public Participation Plan for the Dewey Avenue/Driving Park Avenue Intersection Realignment Project identifies the number and type of meetings that will be conducted to solicit input on the design process. It also identifies key stakeholders for the project. The plan provides municipal staff, the consultant, and stakeholders with guidelines to ensure that the community is involved in the project development and that the process is transparent.

This document is a starting point, developed in March 2014, at the beginning of the project. Other opportunities for public engagement, not identified
in this plan, may be identified and implemented at later stages of the project.

Project Partners

This section of the Plan describes specific different roles and responsibilities of each partner, and describes how each group will be involved.

The City of Rochester is the project administrator. The City will manage the project and have a contractual relationship with the design consultant. City staff will be involved in the design development. Public meetings will be advertised through the City's media contacts and on the City website.

Key stakeholders will provide input too the overall vision of the project. Key stakeholders will include the Dewey/Driving Park FIS Neighborhood Group, Dewey/Driving Park business owners, Rochester Walks, RGRTA, RRCDC, RDP, Rochester Cycling Alliance, Maplewood Neighborhood Association,

The Holy Rosary Apartments, Mary's Place, RGRTA, and Edgerton Neighborhood.

The public will have an opportunity to provide valuable input into the intersection realignment project at the public information meeting.

Participation Methods for Stakeholders

The methods used in the project will be aimed at developing and maintaining project communication, identifying participants, maximizing participant exchange and providing an accurate and timely record and reports.

The project will include one public information meeting/public hearing with advisory agencies, local officials, and citizens. The purpose of the meeting will be to present the proposed design. The meeting will be in an open house format. The consultant will organize, facilitate and develop meeting summaries for this meeting. Public meeting advertisements will be in compliance with the New York State Open Meetings Law. The public hearing will comply with New York State eminent domain procedures law.

Up to seven working group meetings with stakeholders will be scheduled during project. Three of these meetings will take place during the preliminary design phase. Participants will include neighborhood and business stakeholder groups. The purpose of the preliminary design phase meeting will be to present the proposed alternatives and obtain feedback on the proposed project. Four stakeholder meetings will be held during the detailed design with neighborhood and business stakeholder groups. The purpose of these four meetings will be to present the proposed design and streetscape features and to obtain feedback.

Public Engagement Tools

Several different tools will be employed to organize information, document input and evaluate the stakeholder participation process.

The consultant will develop a stakeholder database with the name, address, and email address of each person involved in the project. City staff will provide initial information to populate the database, and additional information will be gathered through the outreach process. The database will be used to communicate with stakeholders throughout the project.

Meeting notices will provide the date, time, location, and purpose of each meeting. Public meeting advertisements will be in compliance with the New York State Open Meetings Law.

Stakeholder meeting materials will consist of meeting invitations, meetings agenda, renderings, graphics, and meeting summaries.

Public meeting materials will consist of a media release, a meeting agenda, renderings, graphics, a PowerPoint presentation, and meeting summaries. The consultant will provide all of these materials to the City of Rochester in a timely manner for posting on the project web page.

The consultant will collect verbal public comments at the public meeting. Written public comments may also be submitted up to two weeks after the last public meeting through the City of Rochester website. Emails will be directed to Paul Way at the City of Rochester.

Project Schedule

Task	Date
Neighborhood Steering Committee	2005 through 2008
First meeting during preliminary design to present and obtain feedback with FIS Neighborhood Group DC	$3 / 19 / 14$
Second meeting during preliminary design to present and obtain feedback with merchants	$4 / 10 / 14$
Outreach with Maplewood Neighborhood Association	$4 / 24 / 14$
Utility and Agency Coordination Meeting	$4 / 28 / 14$
Public Outreach to Merchants	$5 / 7 / 14$
Third meeting during preliminary design to present and obtain feedback with Maplewood Neighborhood Association	$5 / 19 / 14$
Fourth meeting during preliminary design to present and obtain feedback with the Edgerton Neighborhood	$6 / 23 / 14$
Public Comment Period Ends	$6 / 30 / 14$
Public Comments Addressed/Pre-Final Design Report Submission	$7 / 11 / 14$

City of Rochester

Dewey Avenue/Driving Park Avenue Intersection Realignment Project
City Project ID\# 12105
NYSDOT PIN: 4755.55

Meeting Summary

LOCATION: NCS Community Development Corporation
275 Driving Park Avenue
DATE: Wednesday, March 19, 2014
TIME: \quad 5:45 PM to 7:00 PM

PRESENT:

Paul Way, City of Rochester
Theodora Finn, City of Rochester
Thad Schofield, City of Rochester
Ron Penders, NCS
Pete Saks, NCS
Mike Croce, Bergmann Associates
Tom Detrie, Bergmann Associates
Tanya Zwahlen, Highland Planning
Anna Liisa Keller, Highland Planning
Diane Argauer
Bill Collins
Jon Greenbaum, ABC / Rochester Walks
Chuck Heehua
Charlie Heinst
Chris Koehler

Dalton LaBarge, NCS
Eli Mizrahi, Owner of Dewey’s Subs
Melissa Molongo, ABC / Rochester Walks
Nelson Motzer
Andreas Rau
Lynnette Robertson, NeighborWorks
Trin Ruc
Maggie Spaulding
Barbara Steffer
Sam Taylor
Verna Taylor
Michael Toombs

I. Welcome \& Introductions

Theodora Finn, City of Rochester, welcomed meeting participants and thanked them for coming. Meeting attendees introduced themselves.

II. Overview

Paul Way, City of Rochester, provided a brief overview. Mr. Way explained that the project is state and federally funded. There is funding for the design and Right of Way (ROW) Acquisition but construction for the project is not yet funded. A decision was made to commit and move ahead without a construction funding source and to take advantage of the ROW funding, which is set in the federal fiscal year 2014, ending September 30, 2014. The project needs to have formal design approval by this date. Hence the fast pace of this project.

III. Background

A copy of the meeting presentation is included as Appendix A. Mike Croce, Bergmann Associates, reviewed the agencies and organizations involved in the project, including NYSDOT, Monroe County DOT, Bergmann Associates, Highland Planning, and neighborhood groups and associations. Mr. Croce reviewed the limits of the project area: Dewey Avenue, 550 ft . north and south of the offset intersection; and Driving Park Avenue 550 ft . east and west of the offset intersection. Historically the intersection has been hard for vehicles to navigate. The project will
also make the project area more pedestrian and bicycle friendly. The concepts included in the Community Based Vision plan developed by the Rochester Regional Community Design Center five years ago will be used as a starting point for this project.

Past Design Charette Goals:

- Eliminate jog and replace with a traffic circle or direct connection
- Community Investment - Façade improvements, etc.
- Improve Bicycle Environment
- Improve Pedestrian Environment
- Improve Bus Stops
- Improve / increase on-street parking
- Gateway Treatment / Streetscape

IV. Goals, Objectives, and Outcomes

Mr. Croce provided information about the preliminary project goals, objectives, and outcomes:

- Reduce vehicular congestion and improve highway safety by eliminating offset intersection
- Improve multimodal facilities (bicycle / pedestrian / transit)
- Improve community aesthetics with streetscape and landscape features
- Enhance the viability of this intersection as a neighborhood node

V. Refined Concept Plan

Mr. Croce explained that data collection has just begun. There have been 130 collisions documented over a three-year period. He noted that 3% of traffic is from trucks making deliveries so there is a need to accommodate their movements. The aim is to improve pedestrian accommodation and safety. The project would also reduce vehicular congestion especially during peak hours. Other environmental and/or aesthetic improvements would help this project to spark future community investment.

Key Design Challenges:

- Consensus on Design
- On-street vs. Off-street Parking
- Adaptive re-use of open space
- Community features / needs including landscape elements.

VI. Schedule

Data collection is underway. This will intensify quickly as consensus on design details must be reached before this summer.

- Existing condition studies, public outreach, and conceptual development (Spring 2014)
- Develop consensus on proposed design, project goals and objectives (Spring-Summer 2014)
- Design Documentation Complete (August 2014)
- Design Approval (September 2014)
architects // engineers // planners

VII. Purpose of Public Outreach / Ways to Get Involved

Tanya Zwahlen described the elements of the Public Participation Plan (PPP) for the Dewey Avenue/Driving Park Avenue Intersection Realignment Project. The PPP is intended to provide City staff, partner agencies, the consultant team, and project stakeholders with readily accessible and easily understandable guidelines for ensuring that the public has meaningful opportunities to participate in the development of the project. The PPP describes the methods used throughout the study development and the purpose of the Dewey/Driving Park Intersection Realignment Project. There will be seven meetings with neighborhood and business stakeholder groups during the preliminary and detailed design stages, and a public meeting/hearing. The PPP also describes several different tools that will be employed to organize information, document input, and evaluate the stakeholder participation process, such as a stakeholder database, media releases, the City's website, and evaluation methods. Ms. Zwahlen explained that the document is a starting point developed at the beginning of the project and that feedback is welcomed.

VIII. Open Comment Discussion

Mike Croce and Tanya Zwahlen facilitated the public comment/discussion on design elements. A compilation of comments is included below:

One-Way Segment

- The group discussed the one-way segment headed northbound for westbound right turning traffic from Driving Park Avenue. Elimination of the one-way street should be considered in order to expand the pocket park. The one-way street would isolate the park. Driveway access and truck turn accommodations must be considered as the design continues to evolve.
- This area will be challenging for pedestrians. Consider raising it to make it safer if not removed.
- Monroe County DOT may not approve of the "Z" shaped crosswalks, so the design team will consider removing the marked crossing of Driving Park Avenue at Broezel Street.

Access

- New signage is needed to prevent side streets from getting blocked, i.e. Selye Terrace.

Streetscape

- Extend the streetscape enhancements further north and south if possible.
- Think about interesting crosswalk treatments; they must be durable.

Crosswalk

- The crosswalk at Broezel Street will be problematic. If you want people to walk, design it for pedestrians.
- The traffic signal could potentially incorporate leading pedestrian intervals and other enhancements improving the pedestrian crossing experience at the main intersection.

Family Dollar

- What is the impact on Family Dollar? Where would they relocate? To be determined.
- What will this space be used for? Need to discuss.
- Family Dollar site is not well maintained with trash overflowing the dumpster.

Parking

- Maplewood Books needs parking which has been a potential cause for a lack of redevelopment at this site.
- Can more parking be provided?

Project Schedule

- Detailed design would take up to a year subsequent to design approval.
- The City is committed to build the project within 10 years, hopefully sooner.
- Need to be conscious of other projects happening so construction doesn't overlap (e.g. Ridgeway in 2015 and the Driving Park Bridge).

Other

- Will this design speed traffic up? An advantage to the confusing intersection is that it makes vehicles drive slower.
- Accident patterns need to be understood before the design is started so the solution is created around that. Accident studies are underway.
- School buses need to be accommodated from westbound Driving Park Avenue moving northbound on Dewey Avenue.
- Rochester Walks has pedestrian counts they will share with the City of Rochester.

IX. Closing

Ms. Finn thanked participants for their attendance and participation. Next steps will be additional community outreach, design development, utility coordination, and the public meeting / hearing scheduled for later this summer.

City of Rochester
Dewey Avenue / Driving Park Avenue Intersection Realignment Project PIN 4755.55
Summary of April 2014 Stakeholder Outreach

In April 2014, the City of Rochester and Highland Planning conducted outreach to property owners, business owners, and residents regarding the Dewey Avenue/ Driving Park Avenue Intersection Realignment Project. The purpose of the outreach was to provide project information, share the current design concept, discuss the proposed parking scenarios and obtain input from key stakeholders. The current design removes $18-20$ on-street parking spaces, and the City is considering the design and construction of a municipal parking lot at the northwest corner of Dewey Avenue and Driving Park Avenue to replace these parking spaces. The outreach was intended to solicit input about whether or not the community believes there is a need for a municipal lot, and, if so, whether or not property owners would be willing to establish a special tax assessment district to maintain and insure the parking lot.

Door-to-door Outreach

April 2, 2014
Thad Schofield (City of Rochester), Tanya Zwahlen (Highland Planning), and Anna Liisa Keller (Highland Planning) visited businesses on Dewey Avenue and Driving Park Avenue on April 2, 2014. The team shared the current design concept, the locations of the $18-20$ parking spots that will be removed, and discussed the proposed loss of on-street parking. Businesses included Sharp Edgez Barber Shop, Naughty by Nature clothing, Rochester Seafood Plus, Southern Meats \& Deli, Variety Wireless, Ronnie’s Barber Shop, and Clinton \& Ralston Auto Repair. The group placed a letter from the City in the mailboxes of all residences in the impacted area. The letter notified residents of the project and the upcoming meeting date and location on April 10, 2014 at NCS Community Development Corporation.

Stakeholder Engagement Meeting

April 10, 2014

The City hosted a meeting on April 10, 2014 at the offices of NCS at 275 Driving Park Avenue. Paul Way (City of Rochester) provided an overview of the project and the proposed loss of onstreet parking. He also described how the management of the municipal lot would be organized. Property owners in the impacted area would assume financial responsibility for maintenance and insurance of the parking lot. Staff from the City's Department of Neighborhood and Business Development would analyze the number of parking spaces each business requires in order to determine which properties would be included in the special tax assessment district. Tom Detrie (Bergmann Associates) reviewed the project objectives. Tanya Zwahlen (Highland Planning) facilitated a discussion with meeting attendees. A list of meeting attendees is included as Appendix A. A summary of comments from the door-to-door outreach and the stakeholder meeting is below.

Comments made by businesses owners during the 4/2/14 outreach:

- The project will be good for the commercial district. Thank you for sharing these plans.
- Realigning the intersection won’t be great for my business. Currently vehicles stopped at the traffic signal heading southbound on Dewey Avenue face my storefront. I get a lot of customers from being in this high visibility location.
- Family Dollar is an asset to the commercial district. It generates pedestrian and vehicular traffic that helps the surrounding small businesses.
- Businesses will be negatively impacts by the project. And then we will be asked to pay for the maintenance of the lot that we weren't in favor of creating. This does not make sense.
- This project will create a parking issue for my customers and my business will become less visible to vehicles traveling southbound on Dewey Avenue.

Comments submitted by phone:

- I like the idea. Keep us informed.

Comments made at the $4 / 10 / 14$ public meeting:

- Will properties that have their own parking lot also have to pay for the new lot?
- Neighborhood and Business Development will conduct an analysis to determine how many parking spaces each property requires based on its square footage and use. If the current number of off-street parking spaces is more than the calculation, the property will not be included in the special tax assessment district. If the property has a parking deficit, they will be included in the special tax assessment district and their fee will be based on the number of parking spots they need.
- Will there be parking regulations for the proposed lot?
- There can be. If there are, the City's Parking Bureau would enforce the parking regulations.
- Can we meter the lot so the city assumes financial responsibility?
- The lot likely will not be metered, because we would not want to discourage people from visiting the commercial district and using the parking lot.
- For twenty years, there was a municipality owned metered lot on Dewey Ave. No one ever used it.
- Who benefits from this lot? The Price Rite parking lot is open and is empty at night. Local businesses often park in the Price Rite lot. It seems as though only the main commercial section will benefit from the proposed lot.
- Is Family Dollar the only building that's being removed?
- Yes
- What is the time frame for this project?
- Currently, the project is in the planning stage. The design and right-of-way phase is funded. Construction funding is not secured, but the City is committed to the project and is actively seeking funding.
- Is the purpose of this project to address traffic flow concerns?
- The main objective of this project is to improve safety for pedestrians.
- The Price Rite loading area on Dewey Avenue creates a traffic flow issue. Traffic comes to a complete stop when trucks are unloading.
- The Bergmann team is aware of this and will keep this in mind during the design process. However, this project will not resolve this issue nor further impact their operations.
- If the municipal parking lot is not advanced, what are the other options for the use of the Family Dollar space?
- The building could be redeveloped.
- Family Dollar is a big asset to the community. A lot of the smaller businesses depend off of it. It is a mistake to remove it.
- What's the point of creating a new lot? The Family Dollar's parking lot gets used for the businesses that the new lot would serve, and property and businesses owners don't have to pay for its upkeep.
- Don't see parking being a problem. There isn't a need to create a new lot.
- Will the new lot be lighted?
- Yes.
- How much will it cost?
- That is unknown. The City has not yet conducted the analysis to quantify the cost of the lot and the cost to each property owner.
- Will there be time regulations for the spaces in front of the businesses?
- Yes, most likely it will be a two hour maximum
- The green space north of Driving Park Avenue should include a playground or a park with grills and picnic tables.
- The Family Dollar building could be redeveloped as a recreation center.
- Have you considered a roundabout?
- Yes, that was one consideration. However, it will impact more private property than the current design.

Appendix A: April $\mathbf{1 0}^{\text {th }}$ Meeting Attendees

Paul Way, City DES

Theo Finn, City of Rochester
Thad Schofield, City of Rochester
Tom Detrie, Bergmann Associates
Tanya Zwahlen, Highland Planning
Anna Liisa Keller, Highland Planning
Linda Gonzalez, NCS
Dale Anderson, 818-820 Dewey Avenue
Clinton Dixon, Clinton \& Ralston Auto Repair
Joseph Garofanello, 795 Dewey Avenue
Tykim Whisonart, Sharp Edgez
Tom, Rochester Seafood Plus

City of Rochester
Dewey Avenue/Driving Park Avenue Intersection Realignment Project
May 7, 2014
Summary of outreach
Participants:
Bob Richmond
Facilities Manager, Price Rite
Diane Argauer
Northwest Neighborhood
Outreach Center

John Smith
Total Information
Maplewood Books

Tanya Zwahlen, (Highland Planning) called three key stakeholders on Wednesday, May 7, 2014 to discuss the Dewey Avenue/Driving Park Avenue Intersection Realignment Project. The existing issues surrounding the project are listed below:

- The current proposed design would impact the existing Family Dollar parking lot.
- The layout of the roadway, sidewalks, curb lawn, etc. would not require full removal of the Family Dollar building. The property would remain in the property owner's hands with the potential for future redevelopment.
- The proposed design would eliminate 18-20 existing on-street parking spaces. The remainder of the Family Dollar parking lot could provide space for the construction of an off-street parking lot to replace these spaces. The City of Rochester is willing to construct this lot as part of the proposed project, but desires the creation of a Municipal Parking Lot Assessment District to fund future maintenance activities.
- Comments received at a April $10^{\text {th }}$ public meeting, from business owners located immediately adjacent to the intersection, were not in overwhelming support of the construction of a lot or the creation of the parking assessment district. Some believe that the Family Dollar actually brings "pass-by" business to their establishments.
- A public meeting will be held at 6PM on Monday, May $19^{\text {th }}$ at the Aquinas Institute regarding this project.

A summary of comments by Price Rite, Northwest Neighborhood Outreach Center and Total Information/Maplewood Books follows:

- Price Rite does not need a municipal parking lot since they have on-site parking. They would like to review the current concept and will provide comments.
- Northwest Neighborhood Outreach Center may have a future need for a municipal lot to support their education center programming.
- John Smith (Total Information/Maplewood Books) is not interested in contributing to a special tax assessment district to maintain a municipal lot. His business does not require
- Each of these stakeholders will attend or send a representative to the $5 / 19$ public meeting.
- Tanya Zwahlen will follow up with an email to each of these stakeholders with the 5/19 meeting agenda, the $3 / 19$ FIS meeting summary, the schematic of on-street parking that will be impacted, the concept showing the municipal parking lot, and the current project concept.

Dewey Avenue / Driving Park Avenue Intersection Realignment Project
 PIN 4755.55
 City ID\# 12105

Public Meeting \#1
Monday, May 19, 2014 6:00 PM to 8:00 PM
The Aquinas Institute of Rochester, Cafeteria 1127 Dewey Avenue

I. Welcome and Introductions

Jeron Rogers (Assistant City Engineer: City of Rochester and Project Manager) welcomed participants to the meeting. Mike Croce provided an overview of the study goals and objectives. The purpose of this meeting was to reach consensus on design elements and solicit input from the Maplewood Neighborhood Association as well as the general public.

II. Project Overview

Goals, Objectives and Outcomes

The purpose of the project is to realign Dewey Avenue at Driving Park. The agencies and organizations involved in the project include the City of Rochester, NYSDOT, Monroe County DOT, Bergmann Associates, Highland Planning, merchants, and neighborhood associations. The project area is Dewey Avenue, 550 ft . north and south of the offset intersection; and Driving Park Avenue 550 ft . east and west of the offset intersection.

The goal of the study is to develop a vision for the Dewey Avenue / Driving Park Avenue Corridor that will improve conditions, operations, safety, and pedestrian/bicyclist accommodation.

Project objectives:

- Reduce vehicular congestion and improve safety by eliminating the offset intersection
- Improve bicycle, pedestrians and transit accommodations
- Improve community aesthetics with streetscape and landscape features
- Enhance viability of this neighborhood node

Schedule

The consultant team is advancing a study of existing conditions, conducting public outreach and developing the conceptual design. Consensus on proposed project goals and objectives will take place in May and June 2014. Design documentation will be completed and presented at the final public meeting in June 2014. Design approval will occur before September 2014. Design, bidding, and construction will take place after design approval.

III. Preliminary Findings

Traffic and Safety Studies

Findings based on turning movement counts and traffic observations (pedestrian, bus and truck movements) in March 2013 reveal there is a large volume of north-south traffic. This traffic includes RTS buses, school buses, and trucks making local deliveries. Traffic flows well except in peak periods. Parked cars also interrupt traffic flow.

Sixty-five (65) accidents were reported between 2010-2013. Fifty-two percent (52\%) were intersection related, 28% resulted in injury, 74% occurred during daylight hours and 5% involved pedestrians. The predominant collision types were rear end (25 or 38%), right angle (19 or 29%) and overtaking (7 or $11 \%)$.

Concept Plan

The current concept plan is included as Appendix A. This concept includes a turn lane from Driving Park to Dewey. The plan includes pedestrian crossings, bike lanes, parking and streetscape improvements. The current design allows easier traffic movements for buses and trucks. The new curvature on Dewey Avenue would result in speeds in the $25-30 \mathrm{mph}$ range. The pedestrian crossing and pocket parking would be raised (curbed).

Public Outreach

The City held a meeting with the FIS Stakeholders Group on March 19, 2014. Outreach was conducted to property owners and merchants in April to gather input regarding the proposed parking plan. A meeting with merchants and property owners was held on April 10, 2014 to discuss parking. At that time, based on feedback from all major stakeholders, the City has directed the design team to exclude a municipal parking lot from the project.

IV. Facilitated Group Discussion

Concept Plan / Parking

- If the curb cut is removed at 858-862 Dewey Avenue, outreach to Mr. Fidele is needed
- Not in favor of municipal parking lot; it would create issues, trash, nuisance
- Crosswalk needed at Broezel Street
- Broezel Street can be used for parking by seafood customers and LA Nails customers
- Broezel Street residents expressed some concern about increased parking on their street. They stated that on street parking on Broezel is tight already.
- Decorative crosswalks are desired. Would that be captured in this phase or the detailed design phase?
- They prefer the version of the pocket park with more green than concrete.
- Parking impacts for the nail salon and Ronnie's barber shop would be a concern
- Fear that property owner of Family Dollar store will not maintain property if the building is demolished
- Are we keeping Family Dollar store or not?
- Future redevelopment is not in the City's control
- Redevelopment of Family Dollar is possible; City is committed to working on this
- A large transit stop area is needed north of Driving Park Avenue. This stop is heavily used.
- Actuated buses stick out in travel lane.
- Right of Way Acquisition is funded?
- Yes
- At the westbound turn lane to northbound Dewey, add special signs or markings alerting bicyclists to the presence of motorists.
- Is there storage for vehicles northbound on Dewey?
- Yes, there is storage for up to two vehicles in the lane
- Curb cuts at Clinton and Ralston Auto will impact their new planters
- Good job; This is a difficult intersection to redesign
- We want this project!
- How long will construction take?
- One full season from Fall to Summer plus minor finish activities the following year
- Will traffic be diverted?
- This is a detail to be studied during detailed design and MCDOT will review
- What will the year of completion be?
- Not currently known as construction is not currently funded. However, by spending the federal dollars associated with preliminary design, the City is essentially committing to completing the project within 10 years of design approval.

Parking \& Street Amenities

- The Maplewood Neighborhood Association Garden Committee would like its Maplewood Gateway garden at Dewey / Driving Park moved to the new public space / pocket park
- Permeable substances are a good idea, i.e. rain garden
- Features that ease maintenance would be good to include in the design; especially access to water. Self irrigating beds?
- RG\&E is planning to relocate utilities including the vault at the southeast corner of Family Dollar.
- Eliminate walls/hardscape to reduce costs. Keep green space.
- Maplewood Neighborhood Association cannot maintain the entire park.
- Keep to the aesthetic of Olmsted Parkways. Do they have a special tax assessment district?
- Concrete will have maintenance costs too; there would be weeds and it would be ugly as it ages
- It can be green without grass, i.e. ferns
- Prospective uses of the pocket park: Chess boards and sets, large rocks, park benches (must have rails to deter sleeping people), pop-up concerts at performance space, no benches! Chairs that you can move; wall/seat. Stools made of stones, no grills, discourage skateboards.
- Design a flat area in center of park for performance; not a fountain/planter.
- Design for activity; kids to play and the Burmese population to congregate
- Street trees versus boulders / bollards
- Good signal to drivers
- Boulders / bollards along the roadside can be dangerous
- Park should be lit, but don't impact residential units
- Pedestrian scale lighting is desired
- Pedestrian actuated signals with countdown timers and lead pedestrians signals are desired
- Put back bicycle racks
- Can we make the triangle pedestrian island more safe and attractive?
- Low level planting is possible
- Pedestrian signals
- Lake Ave. islands have reflector signs/ poles that are unattractive. Design these in now.
- Make this space feel safe for pedestrians
- 45-60 feet / 6 feet is size where pedestrians feel safe.
- It will be curbed and raised
- Will there be lighting?
- Do you anticipate change in pedestrian counts due to island? There is a great amount of jaywalking
No signal possible at Broezel. Without a signal the City prefers there be no crosswalk
- West of Broezel crosswalk needed without signal
- Would red light camera deter drivers at this spot for pedestrians? Is one proposed?
- None proposed.
- Park will have loitering unless there is an active purpose
- We want a wide variety of people congregating, including kids, elderly, handicapped.
- Should be inclusive.
- Programming such as performances, chess gardens will be important and a clothesline arts display lights on wires.
- Community members should be a part of the project steering task force committee in further design phases.

IV. Next Steps

Tanya Zwahlen encouraged meeting participants to submit comment sheets and email them to jrogers@cityofrochester.gov. The next public meeting will be in June 2014.

The above constitutes our understanding of issues discussed and decisions reached during the meeting. Please notify the undersigned, in writing, with any errors or omissions within five business days.

Best regards,

Highland Planning LLC

Anna Liisa Keller
cc: All in Attendance, BA Project file

Dewey Avenue / Driving Park Avenue Intersection Realignment Project
 PIN 4755.55
 City ID\# 12105

Public Meeting \#2

Monday, June 23, 2014 6:00 PM to 8:00 PM
The Aquinas Institute of Rochester, Cafeteria 1127 Dewey Avenue

In Attendance:

Diane Argauer
John Bretz
Bill Collins
Karen Cox
Michael Croce, Bergmann Associates
Frank DiCostanzo
Debbie DiFrancesco
Gary DiFrancesco
Theo Finn, City of Rochester
Sean Finucque
Ed Gralord
James Hartman
Anna Liisa Keller, Highland Planning
Barb Ann Kudiec
John McMahon
Melissa Molongo
Elizabeth Murphy
Jeron Rogers, City of Rochester
Thad Schofield, City of Rochester
Sara Scott
Bob Stevenson
Peter Wlodarczyk, Bergmann Associates
Tanya Zwahlen, Highland Planning

I. Welcome and Introductions

Jeron Rogers (Manager of Special Projects and Project Manager, City of Rochester) welcomed participants to the meeting. Mike Croce (Project Manager, Bergmann Associates) provided an overview of the study goals and objectives. A copy of the presentation is included as Appendix A.

II. Project Purpose and Need

Goals and Objectives

The purpose of the project is to realign Dewey Avenue at Driving Park. The agencies and organizations involved in the project include the City of Rochester, NYSDOT, Monroe County DOT, Bergmann Associates, Highland Planning, merchants, and neighborhood associations. The project area is Dewey Avenue, 550 ft . north and south of the offset intersection; and Driving Park Avenue 550 ft . east and west of the offset intersection.

The goal of the study is to develop a vision for the Dewey Avenue / Driving Park Avenue Corridor that will improve conditions, operations, safety, and pedestrian/bicyclist accommodation.

Project objectives:

- Reduce vehicular congestion and improve safety by eliminating the offset intersection
- Improve bicycle, pedestrians and transit accommodations
- Improve community aesthetics with streetscape and landscape features
- Enhance viability of this neighborhood node

Existing Conditions

Findings based on turning movement counts and traffic observations (pedestrian, bus and truck movements) in March 2013 reveal there is a large volume of north-south traffic. This traffic includes RTS buses, school buses, and trucks making local deliveries. Traffic flows well except in peak periods. Parked cars also interrupt traffic flow.

Sixty-five (65) accidents were reported between 2010-2013. Fifty-two percent (52\%) were intersection related, 28% resulted in injury, 74% occurred during daylight hours and 5% involved pedestrians. The predominant collision types were rear end (25 or 38%), right angle (19 or 29%) and overtaking (7 or 11\%).

III. Public Outreach Process

The City held a meeting with the FIS Stakeholders Group on March 19, 2014. Outreach was conducted to property owners and merchants in April to gather input regarding the proposed parking plan. A meeting with merchants and property owners was held on April 10, 2014 to discuss parking. At that time, based on feedback from all major stakeholders, the City directed the design team to exclude a municipal parking lot from the project. The first public meeting in collaboration with the Maplewood Neighborhood Association was held May 19, 2014.

Input has received from public outreach efforts has influenced changes to the project design. This included ideas on the shape of the intersection, pedestrian crossing locations, aesthetics and layout of the pocket park, and relocation of the community garden.

IV. Proposed Design Summary

After the second public meeting but prior to a review of the proposed concept plan with the Monroe County DOT, it was determined that stopping sight distance approaching the intersection from the south would not be adequate to ensure safety for all traffic (motorists, pedestrians, and bicyclists) given the most recent iteration of the project design. Therefore, the design team explored multiple options for increasing the sight distance. After consideration of several options the City and MCDOT developed consensus that the best option to pursue would involve a new turning roadway from Driving Park Avenue to Dewey Avenue. This turning roadway would pass through an area previously reserved for the pocket park. The revised plan would continue to include pedestrian crossings, bike lanes, parking and streetscape improvements. It would also preserve the opportunity to establish a pocket park.

V. Costs and Schedule

Design approval must occur before September 2014. Design, bidding, and construction will take place after design approval. The Construction phase is not currently funded nor programmed. It could happen as soon as within in two (2) years of the completion of design or within ten (10) years.

Programmed right of way funds $=\$ 1.1$ million
Anticipated construction cost $=\$ 2.1$ million
Construction funding is being actively pursued by the City of Rochester.

VI. Questions \& Discussion

- The proposed design impacts Rochester Walks Route. The project should replace stencils/signs.
- Rochester Walks will be coordinated with during construction. It is the intent of the project to continue to support the existing route.
- What materials will be used in the triangular island?
- Grass, plantings, sidewalks, other pervious treatments, community garden - to be determined during detailed design.
- Who will maintain the island?
- The City of Rochester continues to explore options and possibilities for maintenance of the island and proposed pocket park.
- Barb Ann from MNA would like to be included in the landscape design for the new public neighborhood garden. She would like water access to be incorporated into this design.
- Will streetscape/park features be in the island?
- Potentially.
- What speeds are the roads designed for?
- Curves north of Dewey Avenue and Driving Park Avenue intersection would be designed for 25 MPH . The speed limit for all roadways in the project area is 30MPH.
- The design will move traffic faster. Why are we doing this project?
- The current configuration creates congestion and delay. This concept design is in response to the community's vision plan. Safety enhancements for all users is also a key focus.
- Where will snow storage be?
- In the curb lawn area next to the sidewalk
- Can this design be posted to the City website?
- Yes.
- Where will park users park their vehicles?
- They would use adjacent on-street spaces. The community did not support the creation of an off street lot.
- How far north will street amenities like lights extend?
- Street amenities will be designed to cover the area shown on the plans; however, the City is looking for additional funding to extend enhancements farther up Dewey Avenue. The desire is to eventually cover the entire FIS area. That work is likely to be done as part of a separate project.
- Will there be lighting in the park or triangle?
- Yes, pedestrian-scaled lighting is anticipated.
- What are Family Dollar intentions? Will this be vacant?
- We don't know yet. The City would work with the property owner to reposition the property for a new tenant.
- Will the Family Dollar building have to come down?
- The entire building does not have to be demolished. A portion must be demolished but a new facade could be built if the owners choose to retain the remaining portion.
- How is Clinton Ralston Auto repair impacted?
- One access point will be removed, but a second access point to Driving Park would be re-established. The owner of that property has been engaged in the project planning.
- What will the construction schedule look like?
- Construction would probably take place from spring to winter (approximately one construction season) with some finish activities taking place in the spring of the following year.
- Please ask MCDOT if a raised crosswalk at Broezel Street to slow westbound traffic on Driving Park is feasible. A crosswalk is needed because there is a heavy amount of neighborhood foot traffic here. The park will create a cut through.
- The angle of the revised turning roadway at Driving Park Avenue should be increased from 45 degrees to 85 degrees to slow traffic.
- The design must balance traffic calming, pedestrian accommodation, and truck accommodation.

Tanya Zwahlen encouraged meeting participants to submit comment sheets and email them to jrogers@cityofrochester.gov. A copy of a comment sheet submitted by a meeting participant is included as Appendix B.

The above constitutes our understanding of issues discussed and decisions reached during the meeting. Please notify the undersigned, in writing, with any errors or omissions within five business days.

Best regards,

Highland Planning LLC

Anna Liisa Keller
cc: All in Attendance, BA Project file

Public Comment Summary

Two (2) public meetings were held in May and June 2014. Project representatives specifically reached out to local business owners and affected property owners. The public meetings consisted of a formal presentation followed by a comment period to record additional input. The public comment period, during which individuals could provide additional comments to the City of Rochester in writing, ended on June 30, 2014. Summaries of the public meetings including verbal comments received are provided in the meeting minutes in Appendix G.

Subsequent to the May 2014 public meeting, content from the meeting was relayed to the Focus Investment Strategies Group by the City of Rochester. The group had several comments which are summarized below.

- Broezel Street residents expressed some concern about increased parking on their street. They stated that on-street parking on Broezel Street is tight already.

No additional parking will be added to Broezel Street. The intersection realignment project would eliminate a total of sixteen (16) on-street parking spaces, therefore, the neighborhood is likely to see a greater demand for on-street parking in the surrounding area during certain times of the day.

- Decorative crosswalks are desired.

The installation of decorative crosswalks will be considered in detailed design. The community will be solicited for input on the general streetscape and pocket park design.

- A pocket park with more green space is preferred over concrete.

The current concept plan includes a balance of "green" verses concrete treatments, with the exact nature of the "green" treatment to be determined in detailed design. The community will be solicited for input on the general streetscape and pocket park design.

Only one (1) written comment was received during the public comment period. A summary of the comment is provided below.

- Where would the Maplewood SIGN be relocated?

The exact location of the "Welcome to Maplewood" sign would be determined during detailed design. Coordination with the Maplewood Neighborhood Association will occur.

- For the final design of the triangle, I want to be part of the group picking design to relocate the garden. The garden can be distributed in 3 or 4 sections. Why plant grass that has to be mowed when you can have a garden?

The current concept plan includes a balance of "green" verses concrete treatments, with the exact nature of the "green" treatment to be determined in detailed design. The community will be solicited for input on the general streetscape and pocket park design. Specific outreach to the Maplewood Neighborhood Association would occur during detailed design. The names and contact information of specific individuals interested in participating in further design activities have been noted.

- Please post the design on the City web page and let me know where it is.

The City of Rochester will make project documents available on its website.

Appendix H: Right-of-Way Information

CONCEPTUAL STAGE RELOCATION PLAN

Dewey Avenue and Driving Park Avenue Intersection Realignment PIN 4755.55

Projected Letting Date - January, 2016

CITY OF ROCHESTER, COUNTY OF MONROE, STATE OF NEW YORK

Date:

Title: \qquad

INTRODUCTION

The purpose of this Conceptual Stage Relocation Plan is to analyze the relocation needs associated with the proposed displacement of one commercial tenant to accommodate the realignment of the intersection of Dewey Avenue and Driving Park Avenue in the City of Rochester. This analysis is based on a study of the general characteristics of the area, a determination of the general nature of the business displacement, and a survey of available facilities in the area.

ALTERNATIVES CONSIDERED

The four alternatives considered for the project are described below. Graphic representations of the alternatives are contained in Exhibit B.

Alternative 1: Null

This alternative would involve no action. The intersection would remain in its current configuration. No impacts to private property would occur. The project objectives or programming goals would not be satisfied by this alternative and will not be considered further.

Alternative 2: Dewey Avenue Re-Alignment, North and South Approach

This alternative would shift the northern Dewey Avenue approach west and the southern approach east creating one intersection between Dewey Avenue and Driving Park Avenue, eliminating the offset intersection. This alternative would impact two commercial lots located at the southwest and northwest corners of the intersection. However, due to increased acquisitions and impacts to historical properties this alternative will not satisfy the project objective or programming goal and therefore will not be considered further.

Alternative 3: Modern Roundabout

This alternative would create a modern roundabout intersection replacing the current offset intersection for Dewey Park and Driving Park Avenue. However, due to increased acquisitions that would include two commercial properties on the northwest and southeast corners and impacts to historical properties this alternative will not satisfy the project objective or the programming goal and therefore will not be considered further.

Alternative 4: Dewey Avenue Re-Alignment

This alternative considers aligning the northern approach of the intersection with the southern approach, eliminating the offset intersection. This realignment would impact an existing commercial property at the northwest corner of the intersection. This alternative would be enhanced by the consolidation of pedestrian street crossings to one location, provide dedicated bicycle lanes and eliminate multiple turns for traveling vehicles. This alternative is the preferred alternative.

DESCRIPTION OF THE AREA

Dewey Avenue and Driving Park Avenue intersect at a commercial node in the heart of a Focused Investment Strategy Area (FIS). The FIS area bridges two distinct neighborhoods. The Maplewood Neighborhood is located to the north and the Edgerton Neighborhood is located to the south. Driving Park Avenue is the dividing line between the two neighborhoods.

The area is located approximately three miles northwest of downtown Rochester, and about one-half mile west of the Genesee River, in the Northwest Quadrant in the City of Rochester's Sector 2. Dewey Avenue has been described as Maplewood's Main Street, with a variety of commercial properties interspersed among the residential properties. The majority of the properties are residential. Occupancy rates are slightly less than fifty percent.

Dewey Avenue is one of the major north-south arterials in the Northwest Quadrant and carries a large volume of automobile and truck traffic to commercial, industrial and residential sites. Driving Park Avenue is an east-west arterial which also has a high traffic count. The Driving Park Bridge is one of four major bridges spanning the Genesee River within the Northwest Quadrant.

RELOCATION ANALYSIS

The preferred alternative would result in the partial acquisition of a commercial property located at the northwest corner of Dewey Avenue and Driving Park Avenue. The subject property is comprised of $0.67 \pm$ acre of land, and is improved with a $10,540 \pm$ square foot building and an asphalt parking lot with amenities. The proposed impact is sufficient to necessitate the removal of the existing structure. The property is currently occupied by a commercial tenant. The tenant operates a retail store at the location.

Tax Map 090.82-1-36.001-354 Driving Park Avenue

The market search focused on improved commercial retail properties for rent. Currently available offerings in the market are outlined in Exhibit C.

RELOCATION ASSISTANCE AND SERVICES

In effecting the relocation activities on this project, the following assurances are made:

1. As part of the preparation procedure for the acquisition stage relocation plan, each site occupant will be personally interviewed to determine specific relocation needs.
2. The acquisition and relocation assistance programs will be conducted in accordance with the requirements and standards of the Uniform Relocation Assistance and Real Property Acquisition Act of 1970, as amended (the "Uniform Act").
3. All site occupants will be furnished a copy of the Federal informational booklet and will be informed of all benefits to which they may be entitled.
4. No site occupant will be required to move from his or her property without at least 90 days written notice.
5. Comparable replacement housing will be available and offered to all residential occupants.
6. The relocation program will be carried out in an orderly, humane and timely fashion.
7. Relocation assistance will be offered to all Displacees without discrimination
8. An onsite relocation office will not be established on the project site. Staff from R.K. Hite \& Co., Inc, PO Box 130, 87 Genesee Street, Avon, New York 14414, phone number 585-226-6702, will be able to provide relocation assistance at hours convenient to the Displacees.

CONCLUSION

There are a sufficient number of available commercial properties on the market in the area to accomplish the successful relocation of the displacee affected by this project. There are no highway construction or other projects by any public or private agency scheduled which would affect the availability of replacement property. It is estimated that the relocation on this project can be accomplished within six months from the date of the notice of eligibility.

PREPARED By:___ Nancy A. Mullin__ DATE: May 29, 2014
Nancy A. Mullin, Property Rights Specialist

EXHIBIT A - LOCATION MAP

EXHIBIT B - ALTERNATIVES

- Alternative 2 - Dewey Avenue Re-Alignment, North and South Approach
- Alternative 3 - Modern Roundabout
- Alternative 4 - Dewey Avenue Re-Alignment,

EXHIBIT C - NON-RESIDENTIAL MARKET OFFERINGS

PROPERTY TYPE	ADDRESS	$\begin{aligned} & \text { BUILDING } \\ & \text { (SQ. FT.) } \end{aligned}$	MONTHLY RENT Per Sq. Ft.
Retail Strip Center	406 Hamlin Clarkson TL Road, Hamlin, NY 14464	10,000	\$ 8.00
Retail Strip Center	2599 Henrietta Road, Rochester, NY 14623	$\begin{array}{\|l\|} \hline \text { Min. - 9,000 } \\ \text { Max. - 18,000 } \\ \hline \end{array}$	\$ 9.00
Retail Strip Center	6600 Fourth Section Rd. Brockport, NY 14420	$\begin{array}{\|l\|} \hline \text { Min. - 9,000 } \\ \text { Max. - 18,000 } \\ \hline \end{array}$	Negotiable
Community Shopping Center	1600 W. Ridge Rd., Rochester, NY 14615	9,000	\$ 18.00
Retail Strip Center	3450 Winton Place, Rochester, NY 14623	14,586	\$ 8.00
Strip Center	1106 Ridge Road, Rochester, NY 14621	11,000	\$ 7.00
Shopping Center	2345 Buffalo Road, Rochester, NY 14624	11,000	\$8.00
Retail Strip Center	2833 W Ridge Road Rochester, NY 14626	11,322	Negotiable
Free Standing	1851 Empire Blvd. Webster, NY 14580	11,348	\$ 16.00
Retail Strip Center	5247 Ridge Road West Spencerport, NY 14559	$\begin{aligned} & \text { Min. - 10,000 } \\ & \text { Max. - 20,000 } \end{aligned}$	\$ 4.50-\$5.00
Power Center	3600 Dewey Ave. Rochester, NY 14616	$\begin{aligned} & \text { Min. }-10,000 \\ & \text { Max. - 42,000 } \end{aligned}$	\$ 12.00
Neighborhood Center	2199 Henrietta Rd., Rochester, NY 14623	15,000	\$ 14.00
Retail Strip Center	376 Jefferson Rd., Rochester, NY 14623	20,000	\$ 12.00

EXHIBIT D - SOURCES

Scott Burdett - Flaum Management Company - 5/26/14 \& 5/27/2014
Theodora Finn - Sr. Community Housing Planner, Northwest Quadrant, City of Rochester 5/28/14
Ryan Gage, Real Estate Broker, Caliber Brokerage - 585-454-4500 Ext. 120-5/26/2014
www.Showcase.com - Commercial Listings - 5/23/14 \& 5/26/2014
www.loopnet.com - Commercial Listings - 5/23/2014
www.cityofrochester.gov. - Neighborhood Area and Project Description - 5/26/14 \& 27/2014

Appendix I: Miscellaneous

Smart Growth Screening Tool

Prepared By: Michael T. Croce, PE

Smart Growth Screening Tool (STEP 1)

NYSDOT \& Local Sponsors - Fill out the Smart Growth Screening Tool until the directions indicate to STOP for the project type under consideration. For all other projects, complete answering the questions. For any questions, refer to Smart Growth Guidance document.

Title of Proposed Project: Dewey Avenue / Driving Park Avenue Intersection Realignment Location of Project: City of Rochester, NY

Brief Description: This project would realign the intersection of Dewey Avenue and Driving Park Avenue, eliminating the offset intersections.

A. Infrastructure:

Addresses SG Law criterion a. -

(To advance projects for the use, maintenance or improvement of existing infrastructure) 1 Does this project use, maintain, or improve existing infrastructure?
Yes $\boxtimes \quad$ No $\square \quad$ N/A \square

Explain: (use this space to expand on your answers above - the form has no limitations on the length of your narrative)

This alternative would consolidate the offset intersections. The northern approach would be shifted west along Driving Park Avenue to align with the southbound approach of Dewey Avenue. There would be one travel lane and a left turn lane in each direction. There would also be a right turn roadway connecting Driving Park Avenue westbound with Dewey Avenue northbound. The intersection would simplify navigation along Dewey Avenue and eliminate one of two signals.

Overall mobility for all users of the intersection would be enhanced. The southbound bicycle lane would extend along Dewey Avenue through the intersection. Northbound travel on Dewey Avenue would be facilitated by a bicycle lane and shared lane use markings. Shared lane use markings would be added eastbound and westbound along Driving Park Avenue extending the existing markings through the project limits. Pedestrian accommodations and safety would be improved by eliminating one traffic signal and consolidating road crossings to a single location. Pedestrian crossings would be enhanced with high visibility markings. Transit mobility would improve through the intersection associated with a reduction in vehicle hours of delay. All sidewalks within project limits would be replaced. The area vacated by

Smart Growth Screening Tool

shifting Dewey Avenue west would provide an opportunity to develop a pocket park. Community aesthetics would be enhanced with streetscape and landscape features.

Maintenance Projects Only

a. Continue with screening tool for the four (4) types of maintenance projects listed below, as defined in NYSDOT PDM Exhibit 7-1 and described in 7-4:
https://www.dot.ny.gov/divisions/engineering/design/dqab/pdm

- Shoulder rehabilitation and/or repair;
- Upgrade sign(s) and/or traffic signals;
- Park \& ride lot rehabilitation;
- \mathbb{R} projects that include single course surfacing (inlay or overlay), per Chapter 7 of the NYSDOT Highway Design Manual.
b. For all other maintenance projects, STOP here. Attach this document to the programmatic Smart Growth Impact Statement and signed Attestation for M aintenance projects.

For all other projects (other than maintenance), continue with screening tool.

B. Sustainability:

NYSDOT defines Sustainability as follows: A sustainable society manages resources in a way that fulfills the community/social, economic and environmental needs of the present without compromising the needs and opportunities of future generations. A transportation system that supports a sustainable society is one that:

- Allows individual and societal transportation needs to be met in a manner consistent with human and ecosystem health and with equity within and between generations.
O Is safe, affordable, and accessible, operates efficiently, offers choice of transport mode, and supports a vibrant economy.
- Protects and preserves the environment by limiting transportation emissions and wastes, minimizes the consumption of resources and enhances the existing environment as practicable.
For more information on the Department's Sustainability strategy, refer to Appendix 1of the Smart Growth Guidance and the NYSDOT web site, www.dot.ny.gov/programs/greenlites/sustainability
(Addresses SG Law criterion j : to promote sustainability by strengthening existing and creating new communities which reduce greenhouse gas emissions and do not compromise the needs of future

Smart Growth Screening Tool

generations, by among other means encouraging broad based public involvement in developing and implementing a community plan and ensuring the governance structure is adequate to sustain and implement.)
1 Will this project promote sustainability by strengthening existing communities?
Yes $\boxtimes \quad$ No $\square \quad$ N/A \square
2. Will the project reduce greenhouse gas emissions?
Yes
区
No \square
N/A

Explain: (use this space to expand on your answers above)
This project would replace the offset signalized intersections with a single signalized intersection at Dewey Avenue and Driving Park Avenue. Overall, vehicular congestion would be reduced given the elimination of one signalized intersection. Additionally, it would improve traffic flow along Dewey Avenue and Driving Park Avenue. New pedestrian and bicyclist facilities are being installed along with signalized pedestrian crossings. This is in order to improve facilities and safety for all users.

C. Smart Growth Location:

Plans and investments should preserve our communities by promoting its distinct identity through a local vision created by its citizens.
(Addresses SG Law criteria b and c: to advance projects located in municipal centers; to advance projects in developed areas or areas designated for concentrated infill development in a municipally approved comprehensive land use plan, local waterfront revitalization plan and/or brownfield opportunity area plan.)
1 Is this project located in a developed area?
Yes \boxtimes
No \square
N/A
2. Is the project located in a municipal center?

Yes $\square \quad$ No $\boxtimes \quad$ N/A \square
3. Will this project foster downtown revitalization?

Yes $\square \quad$ No $\boxtimes \quad$ N/A \square
4.

Is this project located in an area designated for concentrated infill development in a municipally approved comprehensive land use plan, waterfront revitalization plan, or Brownfield Opportunity Area plan?
Yes $\boxtimes \quad$ No $\square \quad$ N/A \square

Smart Growth Screening Tool

Explain: (use this space to expand on your answers above)
The project area is already "built out" with various land uses including both residential and commercial. Immediately adjacent to the the intersections are various commerical businesses including Price Rite and a block of small store fronts. The project is located within the Dewey Driving Park Focused Investment Strategy Area and an Urban Renewal District. The goals of this revitalization effort include improving curb appeal to enhance neighborhoods, investing in commercial development to create a healthy neighborhood shopping center, and creating an attractive neighborhood to live in.

D. Mixed Use Compact Development:

Future planning and development should assure the availability of a range of choices in housing and affordability, employment, education transportation and other essential services to encourage a jobs/housing balance and vibrant community-based workforce.
(Addresses SG Law criteria e and i: to foster mixed land uses and compact development, downtown revitalization, brownfield redevelopment, the enhancement of beauty in public spaces, the diversity and affordability of housing in proximity to places of employment, recreation and commercial development and the integration of all income groups; to ensure predictability in building and land use codes.)

1 Will this project foster mixed land uses?
Yes $\square \quad$ No $\square \quad$ N/A \boxtimes
2. Will the project foster brownfield redevelopment?

Yes
NoN/A 『
3. Will this project foster enhancement of beauty in public spaces?

Yes $\boxtimes \quad$ No $\square \quad$ N/A \square
4. Will the project foster a diversity of housing in proximity to places of employment and/or recreation?

Yes \square No \square
N/A \boxtimes
5. Will the project foster a diversity of housing in proximity to places of commercial development and/or compact development?
Yes $\square \quad$ No $\square \quad$ N/A \boxtimes
6. Will this project foster integration of all income groups and/or age groups?

Yes $\square \quad$ No $\square \quad$ N/A \boxtimes
7. Will the project ensure predictability in land use codes?

Yes $\square \quad$ No $\square \quad$ N/A \boxtimes

Smart Growth Screening Tool

8. Will the project ensure predictability in building codes?

Yes \square No \square N/A \square
Explain: (use this space to expand on your answers above)
This project proposes to improve the streetscape and landscape adjacent to the intersection of Dewey Avenue and Driving Park Avenue. This includes a pocket park, decorative light fixtures, and other surface treatments. These enhancements would improve the aesthetics of the area and help reinforce this area as a neighborhood node. The proposed realignment would facilitate adjacent redevelopment given reduced vehicular delays and improved mobility.

E. Transportation and Access:

NYSDOT recognizes that Smart Growth encourages communities to offer a wide range of transportation options, from walking and biking to transit and automobiles, which increase people's access to jobs, goods, services, and recreation.
(Addresses SG Law criterion f: to provide mobility through transportation choices including improved public transportation and reduced automobile dependency.)

1 Will this project provide public transit?
Yes $\boxtimes \quad$ No $\square \quad$ N/A \square
2. Will this project enable reduced automobile dependency?

Yes $\boxtimes \quad$ No $\square \quad$ N/A \square
3. Will this project improve bicycle and pedestrian facilities (such as shoulder widening to provide for on-road bike lanes, lane striping, crosswalks, new or expanded sidewalks or new/improved pedestrian signals)?
Yes $\boxtimes \quad$ No $\square \quad$ N/A \square
(Note: Question 3 is an expansion on question 2. The recently passed Complete Streets legislation requires that consideration be given to complete street design features in the planning, design, construction, reconstruction and rehabilitation, but not including resurfacing, maintenance, or pavement recycling of such projects.)

Smart Growth Screening Tool

Explain: (use this space to expand on your answers above)
The project would include the reconstruction of pedestrian facilities, relocation and improvement of bus stops, and close a gap in existing bicycle facilities on either side of the intersection. Pedestrian facilities would be ADAAG / PROWAG compliant with signalized pedestrian crossings at the intersections, marked crosswalks, and curb ramps with detectable warning units. Bicycle lanes along Dewey Avenue would be connected as part of this project. Existing shared lane use markings along Driving Park Avenue would be extended through the intersection.

F. Coordinated, Community-Based Planning:

Past experience has shown that early and continuing input in the transportation planning process leads to better decisions and more effective use of limited resources. For information on community based planning efforts, the MPO may be a good resource if the project is located within the MPO planning area.
(Addresses SG Law criteria g and h: to coordinate between state and local government and intermunicipal and regional planning; to participate in community based planning and collaboration.)

1 Has there been participation in community-based planning and collaboration on the project? Yes $\boxtimes \quad$ No $\square \quad$ N/A \square
2. Is the project consistent with local plans?
Yes
No \square
N/A
3. Is the project consistent with county, regional, and state plans?

Yes $\boxtimes \quad$ No $\square \quad$ N/A \square
4. Has there been coordination between inter-municipal/regional planning and state planning on the project?
Yes \boxtimes
No \square
N/A \square

Explain: (use this space to expand on your answers above)
Public meetings regarding the intersection realignment have been held to provide the public opportunities to make formal statements of position before any final decisions are made. Meetings have been held to discuss the project with residents, commuters, and various neighborhood groups. The project has been discussed with various local officials. It is consistent with a concept developed during a community charrette held by the Rochester Regional Community Design Center.

Smart Growth Screening Tool

G. Stewardship of Natural and Cultural Resources:

Clean water, clean air and natural open land are essential elements of public health and quality of life for New York State residents, visitors, and future generations. Restoring and protecting natural assets, and open space, promoting energy efficiency, and green building, should be incorporated into all land use and infrastructure planning decisions.
(Addresses SG Law criterion d :To protect, preserve and enhance the State's resources, including agricultural land, forests surface and ground water, air quality, recreation and open space, scenic areas and significant historic and archeological resources.)
1 Will the project protect, preserve, and/or enhance agricultural land and/or forests?
YesNo \square N/A \boxtimes
2. Will the project protect, preserve, and/or enhance surface water and/or groundwater?
Yes \boxtimes
No \square
N/A \square
3. Will the project protect, preserve, and/or enhance air quality?
Yes \boxtimes
NoN/A
4. Will the project protect, preserve, and/or enhance recreation and/or open space?
Yes \square
No
N/A \boxtimes
5. Will the project protect, preserve, and/or enhance scenic areas?
Yes \qquad NoN/A \boxtimes
6. Will the project protect, preserve, and/or enhance historic and/or archeological resources?
Yes \boxtimes
No \square
N/A \square
Explain: (use this space to expand on your answers above)

All surface water within the project area would be collected and sent for treatment prior to being released. Enhancements to air quality would be realized due to reduced vehicle delay. The project would incorporate appropriate landscaping to enhance aesthetics and complement the surrounding area. The project would thoughtfully consider potential impacts to adjacent historic and archeological resources.

Smart Growth Screening Tool

Smart Growth Impact Statement (STEP 2)

NYSDOT: Complete a Smart Growth Impact Statement (SGIS) below using the information from the Screening Tool.
Local Sponsors: The local sponsors are not responsible for completing a Smart Growth Impact Statement. Proceed to Step 3.

Smart Growth Impact Statement

PIN: 4755.55

Project Name: Dew ey Avenue / Driving Park Avenue Intersection Realignment

Pursuant to ECL Article 6, this project is compliant with the New York State Smart Growth Public Infrastructure Policy Act. This project has been determined to meet the relevant criteria, to the extent practicable, described in ECL Sec. 6-0107. Specifically, the project:
© Proposes to realign the intersection of Dewey Avenue and Driving Park Avenue by eliminating the offset intersections and install a single signalized intersection.

- Addresses geometric deficiencies at the offset intersection to improve traffic flow, reduce vehicular congestion, and improve highway safety.
อ Improves multimodal accommodation for pedestrians, bicyclists, and transit users.
© Improves the visual quality of the built environment and adjoining streetscape.
© Enhance the stature of this intersection as a neighborhood node for commercial and recreational activity.
ข Has received concurrence from the community through various forms of public outreach and public meetings held by the City of Rochester.
ə Is consistent with the local Focused Investment Strategy Area goals.
ง

This publically supported infrastructure project complies with the state policy of maximizing the social, economic and environmental benefits from public infrastructure development. The project will not contribute to the unnecessary costs of sprawl development, including environmental degradation, disinvestment in urban and suburban communities, or loss of open space induced by sprawl.

Smart Growth Screening Tool

Review \& Attestation Instructions (STEP 3)

Local Sponsors: Once the Smart Growth Screening Tool is completed, the next step is to submit the project certification statement (Section A) to Responsible Local Official for signature. After signing the document, the completed Screening Tool and Certification statement should be sent to NYSDOT for review as noted below.

NYSDOT: For state-let projects, the Screening Tool and SGIS is forwarded to Regional Director/ RPPM/Main Office Program Director or designee for review, and upon approval, the attestation is signed (Section B.2). For locally administered projects, the sponsor's submission and certification statement is reviewed by NYSDOT staff, the appropriate box (Section B.1) is checked, and the attestation is signed (Section B.2).

A. CERTIFICATION (LOCAL PROJECT)

I HEREBY CERTIFY, to the best of my knowledge, all of the above to be true and correct.

Preparer of this document:

Thames R. Bethe
Signature
Project Engineer
Title

Responsible Local Official (for local projects):

Signature

Title

6/6/2014
Date

Thomas R. Detrie, P.E.
Printed Name

Printed Name

Smart Growth Screening Tool

B. ATTESTATION (NYSDOT)

1. I HEREBY:

X
Concur with the above certification, thereby attesting that this project is in compliance with the State Smart Growth Public Infrastructure Policy Act
\square Concur with the above certification, with the following conditions (information requests, confirming studies, project modifications, etc.):
(Attach additional sheets as needed)do not concur with the above certification, thereby deeming this project ineligible to be a recipient of State funding or a subrecipient of Federal funding in accordance with the State Smart Growth Public Infrastructure Policy Act.
2. NOW THEREFORE, pursuant to ECL Article 6, this project is compliant with the New York State Smart Growth Public Infrastructure Policy Act, to the extent practicable, as described in the attached Smart Growth Impact Statement.

NYSDOT Commissioner, Regional Director, MO Program Director, Regional Planning \& Programming Manager (or official designee):

[^0]: ${ }^{1}$ See thresholds．doc
 1／31／2014
 1．0FEAW＿final＿v2．docx

[^1]: Intersection Summary

[^2]: Intersection Summary

[^3]: Intersection Summary

[^4]: Intersection Summary

[^5]: Intersection Summary

[^6]: Intersection Summary

[^7]: Intersection Summary

[^8]: Intersection Summary

[^9]: Intersection Summary

[^10]: Intersection Summary

[^11]: Intersection Summary

[^12]: Intersection Summary

[^13]: Intersection Summary

[^14]: Intersection Summary

[^15]: Intersection Summary

[^16]: Intersection Summary

[^17]: Intersection Summary

[^18]: Intersection Summary

[^19]: Intersection Summary

[^20]: Intersection Summary

[^21]: Intersection Summary

