

Appendix 3

Historical Groundwater Analytical Results

Groundwater Sample ResultsTable XI of January 1994 H&A Report

PAGE 1 OF 6

TABLE XI SUMMARY OF GROUNDWATER SAMPLING ANALYTICAL RESULTS FORMER EMERSON STREET LANDFILL MODIFIED REMEDIAL INVESTIGATION ROCHESTER, NEW YORK

SAMPLE LOCATION	NYS BEC	***********	420000000000000000000000000000000000000	***************************************	KOCIIE	5113K, N13	WIOKA						***************************************
AMPERICALATION	SID(8)	GW-1	GW-2	GW-2 dap	GW-3	awi	853 0 24	/3W/_X	73W_3	ern ern	GW-9	C111 100	dw-um
PARAMETERS		*******************	*****************		***************************************			****				***********	2337
VOLATILE ORGANICS	рръ												1
VINYL CHLORIDE	2	ND	ND	ND	ND	ND	ND	ND	10	ND	33	ND	ND
CIS-1.2-DICHLOROETHENE	5	ND	ND	ND	ND	ND	ND	ND	19	ND	59	ND	ND ND
TRANS-1.2-DICHLOROETHENE	5	ND	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND ND	ND
TRICHLOROETHENE	5	ND	ND	ND	ND	ND	ND	ND	5.3	ND	ND	ND	ND ND
TETRACHLOROETHENE	5	ND	1]	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BENZENE	0.7	ND	3.1	3 1	ND	ND	ND	ND	ND	ND	ND	ND	ND
CHLOROBENZENE	5	ND	ND	ND	ND	1 J	ND	ND	ND	ND	ND	ND	ND
1,1-DICHLOROETHANE	5	ND	ND	ND	ND	ND	ND	7.3	ND .	ND	ND	ND	ND
(M+P)XYLENE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 J
1,1,1-TRICHLOROETHANE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ETHYLBENZENE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CHLOROMETHANE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
0-XYLENE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CHLOROETHANE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	,										L		
# OF TIC'S	1	1	1	0	1	0	0	0	0	0	0	0	0
TOTAL CONCENTRATIONS		10	6		6		~~ ~~						
			,										
SEMI-VOLATILES					NA	NA		NA		NA		NA	NA
PHENOL	1 1	ND	ND	ND	····		ND		ND		ND		
2-METHYLPHENOL	5	ND	ND	ND			МD		ND		ND		
2,4-DIMETHYLPHENOL	5	ND	ND	ND			ND		ND		ND		
NAPHTHALENE	10	ND	ND	ND			ND		ND		ND		
2-METHYLNAPITHALENE	50	ND	ND	ND			ND		ND		ND		
ISOPHORONE	50		ND	ND			ND		ND		ND		
BIS(2-ETHYLHEXYL)PHTHALATE	50	2 JB	2 JB	2 JB			3 JB		2 JB		1 JB		
DI-N-BUTYLPHTHALATE	50 [ND	ND	ND			1 J		1 JB		1 JB		
# OF TIC'S	l r	24	11	14		1	11		17		15		
TOTAL CONCENTRATIONS	1 1	862	58	114			120		38		320		
		NOTES:				— <u>-</u>					3.20	_	

NOTES

- 1. ALL CONCENTRATIONS PRESENTED IN UNITS OF UG/KG (PARTS PER BILLION) UNLESS OTHERWISE NOTED.
- 2. J LABORATORY DATA QUALIFIER INDICATING AN ESTIMATED CONCENTRATION REPORTED BELOW PRACTICAL QUANTITATION LIMIT.
- 3. ND NOT DETECTED.
- 4. NA NOT ANALYZED.
- 5. B LABORATORY DATA QUALIFIER INDICATING ANALYTE IS FOUND IN ASSOCIATED BLANK AS WELL AS IN THE SAMPLE.
- 6. TIC's = TENTATIVELY IDENTIFIED COMPOUNDS
- 7. NR = NOT REGULATED
- 8. GROUNDWATER QUALITY STANDARD OR GUIDANCE VALUE (GV) REFERENCED FROM NYSDEC DIVISION OF WATER T.O.G.S. (1.1.1) REVISED NOVEMBER 15, 1991. SHADING INDICATES THE STANDARD OR GUIDANCE VALUE IS EXCEEDED.
- 9. SEE FIGURE 5 FOR MONITORING WELL SAMPLING LOCATIONS.

PAGE 2 OF 6

TABLE XI SUMMARY OF GROUNDWATER SAMPLING ANALYTICAL RESULTS FORMER EMERSON STREET LANDFILL MODIFIED REMEDIAL INVESTIGATION ROCHESTER, NEW YORK

***************************************	07.000.000.000.000.000.000.000.000.000.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Z-1/4444441444444444444444444444		3 1 13 K, 14 13 V	Y IUKK				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-
SAMPLETOCATION	NYS DEC STD (8)	GW-11	GW-12	GW-13	MW-145	MW-14D	MW-155	MW-1510	MW-165	MW-16D	MW-17	MW-17 dan	MW-185
PARAMETERS	1		-			•			***********	***************************************			100000000000000000000000000000000000000
VOLATILE ORGANICS	ppb												
VINYL CHLORIDE	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1.2-DICHLOROETHENE	5	1 Ј	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1,2-DICHLOROETHENE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRICHLOROETHENE	5	ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND
TETRACHLOROETHENE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BENZENE	0.7	ND	ND	ND	ND	ND	ND	590	ND	ND	ND	ND	ND
CHLOROBENZENE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-DICHLOROETHANE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(M+P)XYLENE	5	ND	ND	ND	ND	ND	ND	82	ND	5.1	ND	ND	ND
1,1,1-TRICHLOROETHANE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	ND	ND	ND	ND	ND	ND	50 54 J	ND	ND	ND	ND	ND
ETHYLBENZENE	5	ND	ND	ND	ND	ND	ND	34 3	ND	ND	ND	ND	ND
CHLOROMETHANE	5	ND	ND	ND	ND	ND	ND	150	ND	ND	ND	ND	ND
ACETONE	NR	ND	ND	ND	ND	ND	ND	110	ND	ND	ND	ND	ND
0-XYLENE	5	ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND
CHLOROETHANE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
# OF TIC'S	1	0	1	0	0	0	1 1	8	1	1 1	ō		0
TOTAL CONCENTRATIONS			19				7	603	9	8		6	
	,				· · · · · · · · · · · · · · · · · · ·	**************************************				·			
SEMI-VOLATILES	i i	NA	NA										
PHENOL	1 1			ND	ND	ND	ND	7.1	ND	ND	ND	ND	ND
2-METHYLPHENOL	5			ND	ND	ND	ND	3 J	ND	ND	ND	ND	ND
2,4-DIMETHYLPHENOL	5			ND	ND	ND	ND	3 J	ND	ND	ND	ND	ND
NAPHTHALENE	10			ND	ND	ND	ND	4 J	ND	ND	ND	ND	ND
2-METHYLNAPHTHALENE	50			ND	ND	ND	ND	3 J	ND	ND	ND	ND	ND
ISOPHORONE	50			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BIS(2-ETHYLHEXYL)PITTHALATE	50			ND	ND	8 J	8 J	14	2 JB	4 JB	1 JB	ND	1 JB
DI-N-BUTYLPHTHALATE	50			1 JB	ND	2 J	ND	IJ	1 J	2 J	ND	ND	ND
# OF TIC'S	,			20	13	20	10	20	14	20	16	15	16
TOTAL CONCENTRATIONS	1			480	89	929	46	1549	67	851	116	94	87
	·	NOTES:	l										

- 1. ALL CONCENTRATIONS PRESENTED IN UNITS OF UG/KG (PARTS PER BILLION) UNLESS OTHERWISE NOTED,
- 2. J LABORATORY DATA QUALIFIER INDICATING AN ESTIMATED CONCENTRATION REPORTED BELOW PRACTICAL QUANTITATION LIMIT.
- 3. ND NOT DETECTED.
- 4. NA NOT ANALYZED.
- 5. B- LABORATORY DATA QUALIFIER INDICATING ANALYTE IS FOUND IN ASSOCIATED BLANK AS WELL AS IN THE SAMPLE.
- 6. TIC's = TENTATIVELY IDENTIFIED COMPOUNDS
- 7. NR = NOT REGULATED
- 8. GROUNDWATER QUALITY STANDARD OR GUIDANCE VALUE (GV) REFERENCED FROM NYSDEC DIVISION OF WATER T.O.G.S. (1.1.1) REVISED NOVEMBER 15, 1991. SHADING INDICATES THE STANDARD OR GUIDANCE VALUE IS EXCEEDED.
- 9. SEE FIGURE 5 FOR MONITORING WELL SAMPLING LOCATIONS.

PAGE 3 OF 6

TABLE XI SUMMARY OF GROUNDWATER SAMPLING ANALYTICAL RESULTS FORMER EMERSON STREET LANDFILL MODIFIED REMEDIAL INVESTIGATION ROCHESTER, NEW YORK

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	********			ROCH	esiek, new	IOKK			
SAMPLETOCATION	NYSDEC								
	STD (8)	MW-181)	MW-19	P-t	P-1 dup	P-2	17-3	P-4	P-3
PARAMETERS									
VOLATILE ORGANICS	ppb		,		***************************************	//ST/17/27/27/37/37/37			
VINYL CHLORIDE	2	ND	ND	1000	1100	26	ND	ND	ND
CIS-1,2-DICHLOROETHENE	5	ND	ND	10000	11000	330 E	ND	3 J	ND
TRANS-1,2-DICHLOROETHENE	5	ND	ND	21 1	25 1	2 Ј	ND	ND	ND
TRICHLOROETHENE	5	1 J	ND	280	3.50	730 E	ND	ND	ND
TETRACHLOROETHENE	5	ND	ND	3300	3500	ND	ND	ND	ND
BENZENE	0.7	ND	ND	ND	ND	ND	1 J	ND	ND
CHLOROBENZENE	5	ND	ND	ND	ND	ND	ND	ND	ND
1,1-DICHLOROETHANE	5	8.1	ND	120 J	140 J	ND	ND	ND	ND
(M+P)XYLENE	5	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-TRICHLOROETHANE	5	ND	ND	56 J	65 J	ND	ND	ND	ND
TOLUENE	5	ND	ND	20 J	23 J	ND.	ND	ND	ND
ETHYLBENZENE	5	ND	ND	ND	ND	ND	ИD	ND	ND
CHLOROMETHANE	5	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	NR	ND	ND	ND	ND	ND	ND	ND	ND
0-XYLENE	5	1 J	ND	ND	ND	ND	ND	ND	ND
CHLOROETHANE	5	ND	€27%	ND	ND	ND	ND	ND	ND
		<u> </u>	-C*	•					1
# OF TIC'S		0	0	0	0	1	0	0	0
TOTAL CONCENTRATIONS						6			
				·	,				·
SEMI-VOLATILES				NA	NA	NA	NA	NA	NA
PHENOL	1	ND	ND						
2-METHYLPHENOL	5	ND	ND						
2,4-DIMETHYLPHENOL	5	ND	ND						
NAPHTHALENE	10	ND	ND						
2-METHYLNAPHTHALENE	50	ND	ND						
ISOPHORONE	50	ND	ND						
BIS(2-ETHYLHEXYL)PHTHALATE	50	10	i JB						
DI-N-BUTYLPHTHALATE	50	1 J	1 J						
# OF TIC'S		20	16			T		1	1
TOTAL CONCENTRATIONS		251	75					 	
TOTAL CONCENTIONS	1	NOTES		L	L			L	<u> </u>

NOTES:

- 1. ALL CONCENTRATIONS PRESENTED IN UNITS OF UG/KG (PARTS PER BILLION) UNLESS OTHERWISE NOTED.
- 2. J LABORATORY DATA QUALIFIER INDICATING AN ESTIMATED CONCENTRATION REPORTED BELOW PRACTICAL QUANTITATIONLIMIT.
- 3. ND NOT DETECTED.
- 4. NA NOT ANALYZED.
- 5. B LABORATORY DATA QUALIFIER INDICATING ANALYTE IS FOUND IN ASSOCIATED BLANK AS WELL AS IN THE SAMPLE,
- 6. TIC's = TENTATIVELY IDENTIFIED COMPOUNDS
- 7. NR = NOT REGULATED
- 8. GROUNDWATER QUALITY STANDARD OR GUIDANCE VALUE (GV) REFERENCED FROM NYSDEC DIVISION OF WATER T.O.G.S. (1.1.1) REVISED NOVEMBER 15, 1991. SHADING INDICATES THE STANDARD OR GUIDANCE VALUE IS EXCEEDED.
- 9. SEE FIGURE 5 FOR MONITORING WELL SAMPLING LOCATIONS.

PAGE 4 OF 6

TABLE XI SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS FORMER EMERSON STREET LANDFILL MODIFIED REMEDIAL INVESTIGATION ROCHESTIER NEW YORK

***************************************	***************************************	***********			*************		311510, 1015	(1000 TOTAL	***************************************	100000000000000000000000000000000000000		ESSENSE SERVICE SERVIC	***************************************	NAME OF THE OWNER, WHEN
	NYS DEC		1	W-2		-2 dup	GW-J	G₩-4	GW-5		W-0	e a	GW-8D	OW-9
SAMPLELOCATION	STD (10)	GW-1	TOTAL	DISSOLVED	TOTAL	DISSOLVED	O#	P	····	TOTAL	DISSOLVED			
PARAMETERS	1		10100	DIAM IN THE	110100	· · · · · · · · · · · · · · · · · · ·	5.7 4		NA.			NA	NA	NA
METALS		NA					NA.	NA NA	NA.	175		- NA	-NA	NA.
ALUMINUM	NR		592	38,2 B	538	38.1 B				459	72.5 B			
ANTIMONY	3 (GV)		ND	ND	ND	ND				ND	ND			
ARSENIC	25		ND	ND	ND	ND				ND	ND			
BARIUM	1,000		97.4 B	95.7 B	95.6 B	94.0 B				150 B	143 B			
BERYLLIUM	3 (GV)		ND	6.3	ND	ND				ND	ND			
CADMIUM	10		ND	ND	ND	ND				ND	ND			
CALCIUM	NR		160000	159000	163000	152000				229000	226000			
CHROMIUM	50	***************************************	3.5 B	ND	3.1 B	2.9 B				2.9 B	4.6 B			
COBALT	NR		9.2 B	9.7 B	11.8 B	14.1 B				14.8 B	15.4 B			
COPPER	200		ND	ND	2.9 B	ND				ND	ND			
IRON	300		2840	529	3060	620				269	106			
LEAD	25		2.5 BW	ND	ND	ND				2.0 BW	ND	}	i	
MAGNESIUM	35,000 (GV)		36900	38300	573 0 0	54590				92400	91600			
MANGANESE	300		101	91.4	102	93.0				25.0	48.1			
MERCURY	2		ND	ND	ND	ND				ND	ND			
NICKEL	NR NR		ND	ND	ND	ND				ND	ND			
POTASSIUM	NR		25800	25600	25800	25500				23900	23200			
SELENIUM	10		1.3 BNW	ND	ND	ND				ND	1.6 BN			
SILVER	50		ND	ND	ND	ND				ND	ND			
SODIUM	20,000	***************************************	298000	349000	324000	293000				439100	4.27HR0			
THALLIUM	4(GV)		ND	ND	ND	ND				ND	ND			
VANADIUM	NR		26.4 B	36.4 B	28.3 B	24.8 B				24.1 B	42.2 B			
ZINC	300		25.5	ND	25,7	6.0 B				ND	5.6 B			
	1				·									
CYANIDE	100	NA	ND		ND		NA	NA NA	NA	ND		NA	NA	ÑΑ
								, , , , , , , , , , , , , , , , , , , ,		,			n	
PESTICIDES	<u> </u>	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

- 1. ALL CONCENTRATIONS PRESENTED IN UNITS OF UG/KG (PARTS PER BILLION) UNLESS OTHERWISE NOTED.
- 2. ND NOT DETECTED.
- 3. NA NOT ANALYZED.
- 4. B- LABORATORY DATA QUALIFIER INDICATING THE REPORTED VALUE WAS OBTAINED FROM A READING THAT WAS LESS THAN THE CONTRACT REQUIRED DETECTION LIMIT BUT GREATER THAN OR EQUAL TO THE INSTRUMENT DETECTION LIMIT.
- 5. W- LABORATORY DATA QUALIFIER INDICATING POST DIGESTION SPIKE FOR FURNACE AA IS OUT OF CONTROL LIMITS (85–115%) WHILE SAMPLE ABSORBANCE IS LESSTHAN 50% OF SPIKE ABSORBANCE.
- 6. N- LABORATORY DATA QUALIFIER INDICATING SPIKED SAMPLE RECOVERY NOT WITHIN CONTROL LIMITS.
- 7. S LABORATORY DATA QUALIFIER INDICATING THE REPORTED VALUE WAS DETERMINED BY THE METHOD OF STANDARD ADDITIONS (MSA).
- 8. * LABORATORY DATA QUALIFIER INDICATING DUPLICATE ANALYSIS NOT WITHIN CONTROL LIMITS.
- 9. NR NOT REGULATED.
- 10. GROUNDWATER QUALITY STANDARD OR GUIDANCE VALUE (GV) REFERENCED FROM NYSDEC DIVISION OF WATER T.O.G.S (1.1.1) REVISED NOVEMBER 15, 1991. SHADING INDICATES THE STANDARD OR GUIDANCE VALUE IS EXCEEDED.

VBD:\WK\$24\70348-40\SOILBOR.WK1

11. SEE FIGURE 5 FOR MONITORING WELL SAMPLING LOCATIONS.

PAGE 5 OF 6

TABLE XI SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS FORMER EMERSON STREET LANDFILL MODIFIED REMEDIAL INVESTIGATION ROCHESTER NEW YORK

	***************************************					KUU	IESIER, NEW	IUKK	***************************************	***************************************			TOWN OF THE PROPERTY OF THE PR
SAMPLELOCATION	NYS DEC STD (10)	,	-105	GW-10D	GW-11	co	(~12	ri e	V-13	MW-145	MW-14D	MW-155	MW-15D
PARAMETERS	31121101	TOTAL.	DISSOLVED	••••	- · · · · · · · · · · · · · · · · · · ·	TOTAL	DISSOLVED	TOTAL	DISSOLVED	TOTAL	TOTAL	TOTAL	TOTAL
METALS		***************************************	***************************************	NA	NA								
ALUMINUM	NR	5870 N°	ND	110	1175	1070	37.3 B	214	131 B	684	829 N°	40.6 B N°	8350 N*
ANTIMONY	3 (GV)	ND ND	ND			ND	ND	ND	ND	ND	ND	ND	ND
ARSENIC	25	2.9 B	0.91 BW			10.8	8.2 B	3.5 B	ND	ND	1.6 B	ND	ND
BARIUM	1.000	110 B	81.0 B			319	298	140 B	132 B	79.4 B	33.9 B	113 B	143 B
BERYLLIUM	3 (GV)	ND	ND ND			ND	ND	ND ND	ND	ND	ND	ND	ND
CADMIUM	10	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND
CALCIUM	NR	185000	168000			39700	42300	89600	88600	182000	396000	121000	1510000
CHROMIUM	50	9.4 B	ND			10.0	7.4 B	7.5 B	6.6 B	3.8 B	6,1 B	3,6 B	27.9
COBALT	NR	ND ND	ND			ND	9.5 B	9.4 B	ND	10.9 B	18.5 B	ND	25.2 B
	200	24.4 B	4.4 B	i		16.8 B	ND	31.4	ND	7.6 B	8.9 B	2.9 B	20.7 B
COPPER	1	7186	230 *			5018	1020	1346	692	3880	1160 *	337 *	
IRON	300 25	30.2 S*	19.8 S*			25.4.8	ND		3.0 W	16.0	ND	ND	3466 * 34.1.5*
LEAD		70400	66500			30000	30100	31.6 57800	57100	33700	106000	3240C	215000
MAGNESIUM	35,000 (GV) 300	1170	1100			41.9	13.9 B	26.2	22,1	676	30.3	31.4	50,6
MANGANESE	300	Anness	ND			ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND
MERCURY	2	ND				17.9 B	11.3 B	ND ND	ND	ND	ND	ND	ND
NICKEL	NR	ND	ND 3680 B			79800	76700	82600	83900	7700	32100	46500	123000
POTASSIUM	NR	5310 ND	ND ND			1.9 BW	1.6 BW	ND ND	ND	2.4 BW	ND ND	ND ND	ND ND
SELENIUM	10	ND	ND ND			ND ND	ND ND	ND	ND	ND ND	ND	ND	ND
SILVER	50	405000	418000			746000	746000	646400	621000	208000	1780H6	7340H	9) 8000H
SODIUM	20,000	ND	ND			ND	ND	ND	ND	ND	ND	ND	9.5 B
THALLIUM	1 (GV) NR	18.4 B	17,2 B			17.0 B	14.1 B	46.0 B	48.1 B	12.6 B	23,8 B	ND	66.6
VANADIUM		26.8	8.5 B			25.8	6.8 B	36.1	6.5 B	21.6	67.6	15.2 B	85.7
ZINC	300	20.5	0.3 1)	ili		13.0	0.0 1)	30.1	0.5 0		1, 0, 0	1 22.2 10	03.,
CYANIDE	100	ND		NA	NA	14.4		ND		ND	DND	ND	ND
PESTICIDES		NA	NA I	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND

- 1. ALL CONCENTRATIONS PRESENTED IN UNITS OF UG/KG (PARTS PER BILLION) UNLESS OTHERWISE NOTED.
- 2, ND NOT DETECTED.
- 3. NA NOT ANALYZED.
- 4. B LABORATORY DATA QUALIFIER INDICATING THE REPORTED VALUE WAS OBTAINED FROM A READING THAT WAS LESS THAN THE CONTRACT REQUIRED DETECTION LIMIT BUT GREATER THAN OR EQUAL TO THE INSTRUMENT DETECTION LIMIT.
- 5. W-LABORATORY DATA QUALIFIER INDICATING POST DIGESTION SPIKE FOR FURNACE AA IS OUT OF CONTROL LIMITS (85-115%) WHILE SAMPLE ABSORBANCE IS LESSTHAN 50% OF SPIKE ABSORBANCE.
- 6. N-LABORATORY DATA QUALIFIER INDICATING SPIKED SAMPLE RECOVERY NOT WITHIN CONTROL LIMITS.
- 7. S LABORATORY DATA QUALIFIER INDICATING THE REPORTED VALUE WAS DETERMINED BY THE METHOD OF STANDARD ADDITIONS (MSA).
- 8. * LABORATORY DATA QUALIFIER INDICATING DUPLICATE ANALYSIS NOT WITHIN CONTROL LIMITS.
- 9. NR NOT REGULATED.
- 10. GROUNDWATER QUALITY STANDARD OR GUIDANCE VALUE (GV) REFERENCED FROM NYSDEC DIVISION OF WATER T.O.G.S (1.1.1) REVISED NOVEMBER 15, 1991. SHADING INDICATES THE STANDARD OR GUIDANCE VALUE IS EXCEEDED.

VBD:\WKS24\70348-40\SOILBOR.WK1

11. SEE FIGURE 5 FOR MONITORING WELL SAMPLING LOCATIONS.

PAGE 6 OF 6

TABLE XI SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS FORMER EMERSON STREET LANDFILL MODIFIED REMEDIAL INVESTIGATION ROCHESTER, NEW YORK

				***************************************	BANKANANANANANANANANANANANANANANANANANAN		25112R, NEW		***************************************		TE	120000000000000000000000000000000000000	
	NYS DUC												
SAMPLELOCATION	STD (10)	MW-165	MW-10D	MW-17	MW-17 dap	MW~185	MW-18D	MW-19	P-1	7-2	7-3	P-4	P-5
PARAMETERS		TOTAL	TOTAL	TOTAL	LATOT	TOTAL	TOTAL	TOTAL					,
METALS									NA	NA	NA_	NA.	NA NA
ALUMINUM	NR	9380 N*	4970 N°	8780 N°	16000 N*	1580 N*	405 N°	830 N*				ļ	
ANTIMONY	3 (GV)	ND	ND	ND	ND	ND	78.7	ND	1		ļ	ļ	
ARSENIC	2.5	4.6 B	3.7 B	5.8 B	5.8 B	25.4	1.9 B	17,0			1		
BARIUM	1,000	276	113 B	213	227	95.8 B	137 B	277			<u> </u>		
BERYLLIUM	3 (GV)	ND	ND	ND	ND	DN	ND	ND			IL	<u> </u>	
CADMIUM	10	ND	ND	ND	ND	ND	ND	ND			<u> </u>		
CALCIUM	NR	229000	251000	315000	298000	154000	278000	168000			<u> </u>	1	
CHROMIUM	50	19.0	32.7	12.2	18.1	4.1 B	4.7 B	3.3 B			l[
COBALT	NR	13.8 B	11.1 B	20.3 B	21.0 B	12.7 B	12.0 B	ND	, i		l		L
COPPER	200	20.4 B	13.5 B	12.8 B	18.9 B	4.4 B	7.5 B	5.8 B					
IRON	300	11300 *	4380 *	9750 *	14200 *	14700 *	1490 *	17600 *					
LEAD	25	480 *	78.G 34	39.6 *	34.4 *	18.0 S*	197 *	118 *					
MAGNESIUM	35,000 (GV)	196000	52500	138000	130000	71500	93100	63600			J.L		
MANGANESE	300	257	98.2	322	319	214	70.8	644					
MERCURY	2	ND	ND	ND	ND	ND	ND	ND					
NICKEL	NR	ND	ND	ND	DИ	ND	ND	ND					
POTASSIUM	NR	43000	32900	23600	25300	3870 B	55400	30300					
SELENIUM	10	ND	ND	ND	ИD	ND	ND	ND			1		
SILVER	50	ND	ND	ND	ND	ND	ND	ND					
SODIUM	20,000	190000	499000	586000	569000	112000	4.56000	1,58000					
THALLIUM	+(GV)	ND	ND	ND	ND	ND	ND	ND					
VANADIUM	NR	20.8 B	20.3 B	36.0 B	41.3 B	ND	28.9 B	19.0 B					
ZINC	300	50.8	35.8	55,8	68.9	26.0	38.3	20.5			1	 	
	1	L						,					
CYANIDE	100	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA .	NA
PESTICIDES		ND	ND	ND	ND I	ND	ND	ND I	NA.	NA	l NA	NA NA	NA.
TESTICIDES		NOTES:	L		II						11	11	

- 1. ALL CONCENTRATIONS PRESENTED IN UNITS OF UG/KG (PARTS PER BILLION) UNLESS OTHERWISE NOTED.
- 2. ND NOT DETECTED.
- 3. NA NOT ANALYZED.
- 4. B.- LABORATORY DATA QUALIFIER INDICATING THE REPORTED VALUE WAS OBTAINED FROM A READING THAT WAS LESS THAN THE CONTRACT REQUIRED DETECTION LIMIT BUT GREATER THAN OR EQUAL TO THE INSTRUMENT DETECTION LIMIT.
- 5. W- LABORATORY DATA QUALIFIER INDICATING POST DIGESTION SPIKE FOR FURNACE AA IS OUT OF CONTROL LIMITS (85-115%) WHILE SAMPLE ABSORBANCE IS LESSTHAN 50% OF SPIKE ABSORBANCE.
- 6, N= LABORATORY DATA QUALIFIER INDICATING SPIKED SAMPLE RECOVERY NOT WITHIN CONTROL LIMITS.
- 7. S LABORATORY DATA QUALIFIER INDICATING THE REPORTED VALUE WAS DETERMINED BY THE METHOD OF STANDARD ADDITIONS (MSA).
- 8. * LABORATORY DATA QUALIFIER INDICATING DUPLICATE ANALYSIS NOT WITHIN CONTROL LIMITS.
- 9. NR NOT REGULATED.
- 10. GROUNDWATER QUALITY STANDARD OR GUIDANCE VALUE (GV) REFERENCED FROM NYSDEC DIVISION OF WATER T.O.G.S (1.1.1) REVISED NOVEMBER 15, 1991. SHADING INDICATES THE STANDARD OR GUIDANCE VALUE IS EXCEEDED.

VBD:\WK\$24\70348-40\SOILBOR.WK1

11. SEE FIGURE 5 FOR MONITORING WELL SAMPLING LOCATIONS.

TABLE XII SUMMARY OF GROUNDWATER SAMPLING QA/QC RESULTS FORMER EMERSON STREET LANDFILL MODIFIED EMEDIAL INVESTIGATION

SAMPLE LOCATION	EQUIPMENT BLANK	PILTER BLANK	TRIP BLANK	TRIP BLANK	EQUIPMENT BLANK	FILTER BLANK	TRIP BLANK
SAMPLE DATE	2 JUL 93	2 JUL 93	2 JUL 93	7 JUL 93	8 JUL 93	9 1UL 93	9 JUL 93
PARAMETERS							<u> </u>
VOLATILE ORGANICS	ND	NA	ИD	ДИ	ND	NA	ND
SEMI-VOLATILE							
ORGANICS	NA	NA	NA	NA		NA NA	NA
BIS(2-ETHYLHEXYL)PITTHALATE					t JB		
PESTICIDES	NA	NA	NA	NA	ND	NA NA	NA
TOTAL METALS	NA	NA NA	NA	NA NA		NA	NA
CALCIUM					617 B		
IRON					32.8 B		
LEAD					4.1	***************************************	
MAGNESIUM					197 B		
MANGANESE					2.7 B		
SODIUM					1140 B		
SOLUBLE METALS	NA NA		NA	NA		NA	NA
ALUMINUM		74.9 B			ИD		
BARIUM		2.4 B			ND		
CALCIUM		350 B			ND		
COPPER		6.4 B			ND		
IRON		19.4 B			20.4 B		
LEAD		6.6			ND		
MAGNESIUM		143 B			ND		
MANGANESE		1.9 B			ND		
SODIUM		1520 B			276 B		
VANADIUM		20.2 B			ND		
ZINC		1,54			ND		
CYANIDE	NA	NA	NA	NA NA	ND	NA	NA.

ALL CONCENTRATIONS REPORTED IN UNITS OF UG/KG (PARTS PER BILLION)

VBD:gmc\wks24\703.12-47\tabxii

^{2.} NA - NOT ANALYZED.

^{3. 1 –} LABORATORY DATA QUALIFIER FOR SEMI-VOLATILE ORGANIC COMPOUNDS INDICATING AN ESTIMATED CONCENTRATION REPORTED BELOW PRACTICAL QUANTITATION LIMIT.

^{4.} B – LABORATORY DATA QUALIFIER FOR METALS INDICATING DETECTED BELOW THE POL BUT ABOVE THE INSTRUMENT DETECTION LIMIT.

^{5.} NO - NOT DETECTED.

VOC Groundwater Sample Results
Table 12 of November 2001 LaBella & Geomatrix Report

TABLE 12

SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES

Former Emerson Street Landfill Rochester, New York

	Water Quality	GMX-MW-1	GMX-MW-2	GMX-MW-2 DUP	GMX-MW-3	GMX-MW-4	GMX-MW-5	GMX-MW-6S	GMX-MW-6D	GW-5	MW-14D	MW-14S	MW-16S	P-1
Constituent ⁽¹⁾	Standard ⁽²⁾	07/05/2000	07/05/2000	07/05/2000	07/05/2000	07/05/2000	11/13/2000	11/13/2000	11/13/2000	07/07/2000	07/05/2000	07/05/2000	07/07/2000	07/06/2000
Volatile Organic Compoun	ds, ug/L					ND				ND	ND	ND	ND	
Vinyl Chloride	2	32			2100					1				3700 J
Chloroethane	5				150		5 J	·						
Acetone	50	12							1400 J					
Carbon Disulfide							9 J							
1,1-Dichloroethene	5													59
trans-1,2-Dichloroethene	5				28									93
1,1-Dichloroethane	5		21	22			6 J							220
cis-1,2-Dichloroethene	5	85			3100			3 J						43000
1,1,1-Trichloroethane	5		23	24	30									
Benzene	1				34				1200					
Trichloroethene	5													650
Toluene	5				59				890					
Tetrachloroethene	5													6700
Chlorobenzene	5													
Ethylbenzene	5				13				35 J					
p-Xylene/m-Xylene	5				70				260					
o-Xylene	5				39				75 J					
Total VOCs		129	23	46	5,623	ND	20	3	3,860	ND	ND	ND	ND	54,422

Notes:

- 1. Sample analysis conducted in accordance with ASP Protocols. Volatile organic compounds by ASP-95-1.
- 2. Water quality standards for Class GA groundwater from NYSDEC's "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations", reissued June 1998.
- 3. Sample locations provided on Figure 12.
- 4. Data qualifications reflect 10% data validation performed by Data Validation Services.

ug/l = micrograms per liter.

ND or blank cells = none detected

- "--" = value does not exist.
- J = result estimated below the quantitation limit

VOC & SVOC Groundwater Sample Results

Table 4-7 of February 1990 RECRA Environmental, Inc. Report

TABLE 4-7 SUMMARY OF ORGANIC COMPOUNDS DETECTED IN GROUNDWATER SAMPLES (ug/l) EMERSON STREET LANDFILL

#828023

COMPOUND	WELL NUMBER												
Volatile Organics	GW1	GW2	GW2 (RE)	GW3	GW4	GW5	GW6	GW7	GW8D	GW8S	GW9	GW10D	<u>GW105</u>
Methylene Chloride Acetone		9B 88	9B 84						7B	9B			
Benzene Toluene Total Xylenes		5 2BJ 4J	5 2BJ 3J		4J 2J				0.6BJ	0.7BJ		0.8J	
Chloroethane 1,1-Dichloroethane Chlorobenzene					6J 4J 0.8J						7		
Vinyl Chloride 1,2-Dichloroethane (Tot.) Trichloroethene 1,1-Dichloroethene					3,00			17 190 90			22 190 35 11		
Semi-Volatile Organics													
Di-n-butylphthalate Butylbenzylphthalate	4J 1J	2 J					4 J		1J	1J 0.2J			
bis(2-ethylhexyl)phthalate 1,4-Dichlorobenzene	21	14		3J			25		12	10	7BJ	3 J	4 J
Diethylphthalate Di-n-octyl phthalate Pyrene	no generalismi representativa estre sentinenti del est	T STANDARD MANAGEMENT COME AND	A calch being man and against 40 Maria				0.6J	and and handle yet by each any pig age yet.	M Priville of the annual registration from an execution	0.09J	er fall – her falle gar hersteldhæde	Althoughes area or a Chief had a gray	

 $[\]mbox{\bf B}$ = Analyte was found in the associated blank as well as in the sample. $\mbox{\bf J}$ = Indicates an estimated value.

Storm Water VOC Sample ResultsTable III of January 1994 H&A Report

PAGE 1 OF 3

TABLE III SUMMARY OF STORM WATER/UTILITY WATER SAMPLING ANALYTICAL RESULTS -FORMER EMERSON STREET LANDFILL MODIFIED REMEDIAL INVESTIGATION

SAMPLE IDENTIFICATION	COM-C-113	COM-C-114	COM-E-112	STW-E-109	STW-E-110	STW-E-110*	STW-F-111A
SAMPLE DATE	5 OCT 92	5 OCT 92	5 OCT 92	5 OCT 92	ZOCT 9Z	2 OCT 92	2 OCT 92
PARAMETERS						DUP-2	
VOLATILE ORGANICS							[
METHYLENE CHLORIDE	190 BJ	27 BJ	4 BJ	3 EJ	8 BJY	. ND	ND
1.1.1-TRICHLOROETHANE	3000	260	3.7	מא	2.J	43	15 Y
TOLUENE	110J	24 J	ND	ND	2 J	3.3	2.3
ETITYLBENZENE	50.5	ND	סא	ND.	ďИ	ND	ND
ACETONE	ND	350	9.5	dи	ND	59	ND
l'	ND	14 <i>J</i> Y	ND	מא	ND	ND	ND
XYLENE (TOTAL)	ND	ND	37	ND	Ир	ND	ND
CIILOROFORM	ND	ND	73	ND	ND	ND	ND
2-BUTANONE		ND	2.J	ND	ND	ND	ND
BROMODICHLOROMETHANE	ND		ND ND	ND	44 Y	71 Y	64 Y
VINYLCIILORIDE	ND	MD		ND	15	26	41
1,1-DICHLOROETHANE	ND	מא	DND		39	65	58 Y
1.2-DICHLOROETHENE (TOTAL)	ND	ND	ND	ND	 	ND	27
1,1,2-TRICHE,OROETHANE	ND	ND	ND	ND	ND		3 BJ
BROMOFORM	ND	ND	ND	מא	ND	ND	
4-METHYL-2-PENTANONE	ND	ND	αи	מא	ND	ND	12
2-HEXANONE	ND	ND	ND	ND	ND	ND	11
1,1,22-TETRACHLOROETHANE	ND	ND	αи	מא	ND	ND	37
DIBROMOCIILOROMETILANE	מא	ND	ND	מא	ND	ND	ND

NOTES

- 1. ALL CONCENTRATIONS PRESENTED IN UNITS OF UG/KG (PARTS PER BILLION) UNLESS OTHERWISE NOTED.
- 2.1 LABORATORY DATA QUALIFIER INDICATING AN ESTIMATED CONCENTRATION REPORTED BELOW PRACTICAL QUANTITATION LIMIT.
- 3. B PARAMETER DETECTED IN THE LABORATORY METHOD BLANK.
- 4. Y ~ DATA WAS MANUALLY INTEGRATED ON THE HP DATA SYSTEM.
- 5.ND NOT DETECTED.
- 6. SEE FIGURE 4 FOR STORM WATER/UTILITY WATER SAMPLING LOCATIONS.

VBD:\WK\$24\70352-47\TABLEIII.WK1

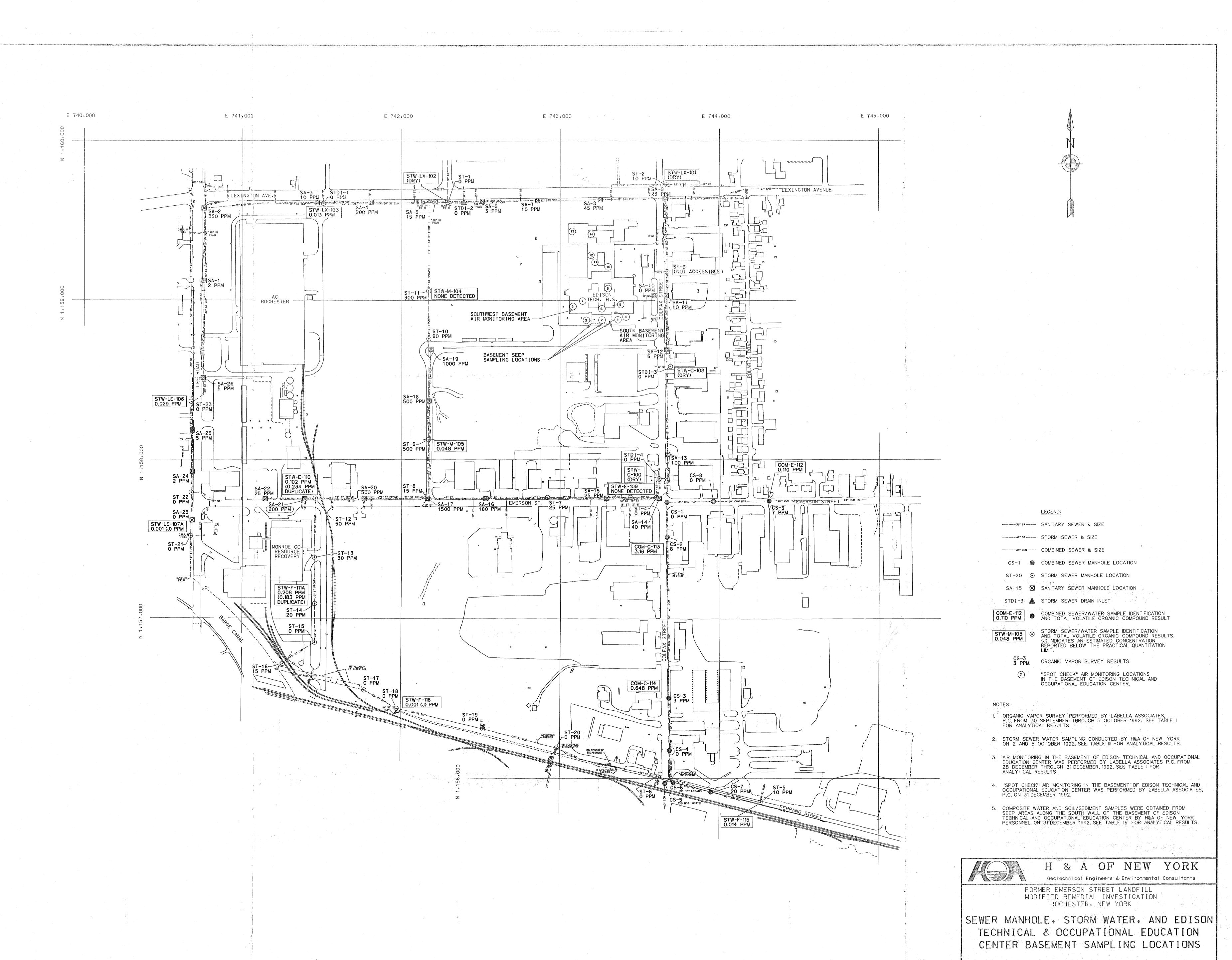
TABLE III

SUMMARY OF STORM WATER/UTILITY WATER SAMPLING ANALYTICAL RESULTS FORMER EMERSON STREET LANDFILL MODIFIED REMEDIAL INVESTIGATION

SAMPLE LOCATION	STW-F-111A*	STW-P-115	STW-F-116	STW-LE-106	STW-LE-107A	STW-LX-103	STW-M-105
SAMPLE DATE	2 OCT 92	2 OCT 92	5 OCT 92	2 OCT 92	2 OCT 92	2 OCT 92	2 OCT 92
PARAMETERS	DUP-1						
VOLATILE ORGANICS							
METHYLENE CHLORIDE	ND	ИD	3 BJ	ND	ND	ND	ND
1,1,1-TRICHLOROETHANE	15	ИD	ND	סא	ND	ND .	3.J
TOLUENE	23	ВD	ND	ND	4 BJ	מא	ND
ETITYLBENZENE	ND	מא	ND	מא	ND	ND	ND
ACETONE	ND	14	ND	14	ND	13	28
XYLENE (TOTAL)	DИ	מא	ND	2 JY	17Y	ND	ND
CHLOROFORM	ND	αи	מא	ЙD	МD	ND	ND
2-BUTANONE	ND	מא	מא	DN	ND	ND	ND
BROMODICHLOROMETHANE	ND	ND	ND	סא	ND	ND	ND
VINYL CHLORIDE	64 Y	מא	DN	DN	סא	ND	ND
1,1-DICHLOROETHANE	42	מא	1 J	מא	מא	ND	17J
1,2-DICHLOROETHENE (TOTAL)	60 Y	מא	ND	ФИ	ND	ND	מא
1.1.2-TRICHLOROETHANE	МD	סא	ND	3.5	ND	ND	ND
BROMOFORM	ND	ND	ND	4 IV	ND	ND	ND
4-METRYL-2-PENTANONE	ND	DN	ИD	ДИ	ND	ND	ND
2-HEXANONE	ND	ND	ND	8 J	ND	ND	МD
1.1.2.2-TETRACIILOROETIIANE	מא	מא	ND	DИ	ИD	מא	ND
DIBROMOCIILOROMETIIANE	ND	ND	ND	2 J	ND	ND	ND

NOTES:

- 1. ALL CONCENTRATIONS PRESENTED IN UNITS OF UG/KG (PARTS PER BILLION) UNLESS OTHERWISE NOTED.
- 2.J LABORATORY DATA QUALIFIER INDICATING AN ESTIMATED CONCENTRATION REPORTED BELOW PRACTICAL QUANTITATION LIMIT.
- 3. B PARAMETER DETECTED IN THE LABORATORY METHOD BLANK.
- 4. Y DATA WAS MANUALLY INTEGRATED ON THE HP DATA SYSTEM.
- 5. ND NOT DETECTED.
- 6. SEE FIGURE 4 FOR STORM WATER/UTILITY WATER SAMPLING LOCATIONS.


TABLE III

PAGE 3 OF 3

SUMMARY OF STORM WATER/UTILITY WATER SAMPLING ANALYTICAL RESULTS FORMER EMERSON STREET LANDFILL MODIFIED EMEDIAL INVESTIGATION

SAMPLE LOCATION	CONTRACTOR STATE AND ADDRESS OF THE	Control of the control of the control	STW-P-111A	STW-F-111A*	STW-LE-107
SAMPLE DATE	2 OCT 92	2 OCT 92	2 OCT 92	2 OCT 92	2 OCT 92
<u>PARAMETERS</u>				DUP-1	
SEMI-VOLATILE				•	
ORGANICS	p13				
1,4-DIOXANE	ND	28 J	19 J	20 J	ND
NAPTHALENE	ND	ND	ND	DM	ND
PHENANTHRENE	DИ	3 J	ND	מא	ND
FLUORANTHENE	2 J	3 J	ND	ND	ND
PYRENE	2 J	2 J	ND	ND	ND
BENZO(A)ANTHRACENE	ND	2J	ND	ИD	ND
CHRYSENE	11	13	ND	ND	ND
BENZO(B)FLUORANTHENE	1.1	1J	מא	מא	ND
BENZO(K)FLUORANTHENE	1J	1 J	ND	ND	ND
BENZO(A)PYRENE	2.3	1 J	ND	ND	ND
INDENO(1,2,3-CD)PYRENE	1J	מא	ND	ND	ND
BENZO(G,II)PERYLENE	1.J	DN	ND	ND	ND
METALS					
ALUMINUM	720	66 B	450	58 B	238
ANTIMONY	ND	ND	סא	13 B	ND
ARSENIC	58	2 B	1 B	1 B	1 B
BARIUM	449	422	257	254	62 B
CALCIUM	138000	143000	14000	145000	129000
COBALT	ND	ND	ND	2 B	ND
COPPER	65	5 B	4 13	8 B	8 B
IRON	12200	1940	1300	1630	397
LEAD	17.40	מא	ND	ND	1 B
MAGNESIUM	53200	66900	54500	56400	41500
MANGANESE	366	106	102	104	28
POTASSIUM	41700	79000	46500	46800	7770
SELENIUM	1 B	ND	ND	ND	18
SILVER [2 B	ND	ND	ND	ND
SODIUM	101000	517000	399000	418000	362000
VANADIUM	7 B	ND	ND	5 B	ND
ZINC	147	23	168	21	41

- 1, ALL CONCENTRATIONS PRESENTED IN UNITS OF UG/KG (PARTS PER BILLION) UNLESS OTHERWISE NOTED.
- 2.J LABORATORY DATA QUALIFIER FOR SEMI-VOLATILE ORGANIC COMPOUNDS INDICATING AN ESTIMATED CONCENTRATION REPORTED BELOW PRACTICAL QUANTITATION LIMIT.
- 3. B LABORATORY DATA QUALIFIER FOR METALS.
- 4.ND NOT DETECTED.
- 5. SEE FIGURE 4 FOR STORM WATER/UTILITY WATER SAMPLING LOCATIONS.

SCALE: 1" = 200'

FILENAME: SEWER .DGN

FIGURE 4

Storm Water VOC Sample ResultsTable 4 of November 2001 LaBella & Geomatrix Report

TABLE 4

The second of th

SUMMARY OF ANALYTICAL RESULTS FOR STORM WATER

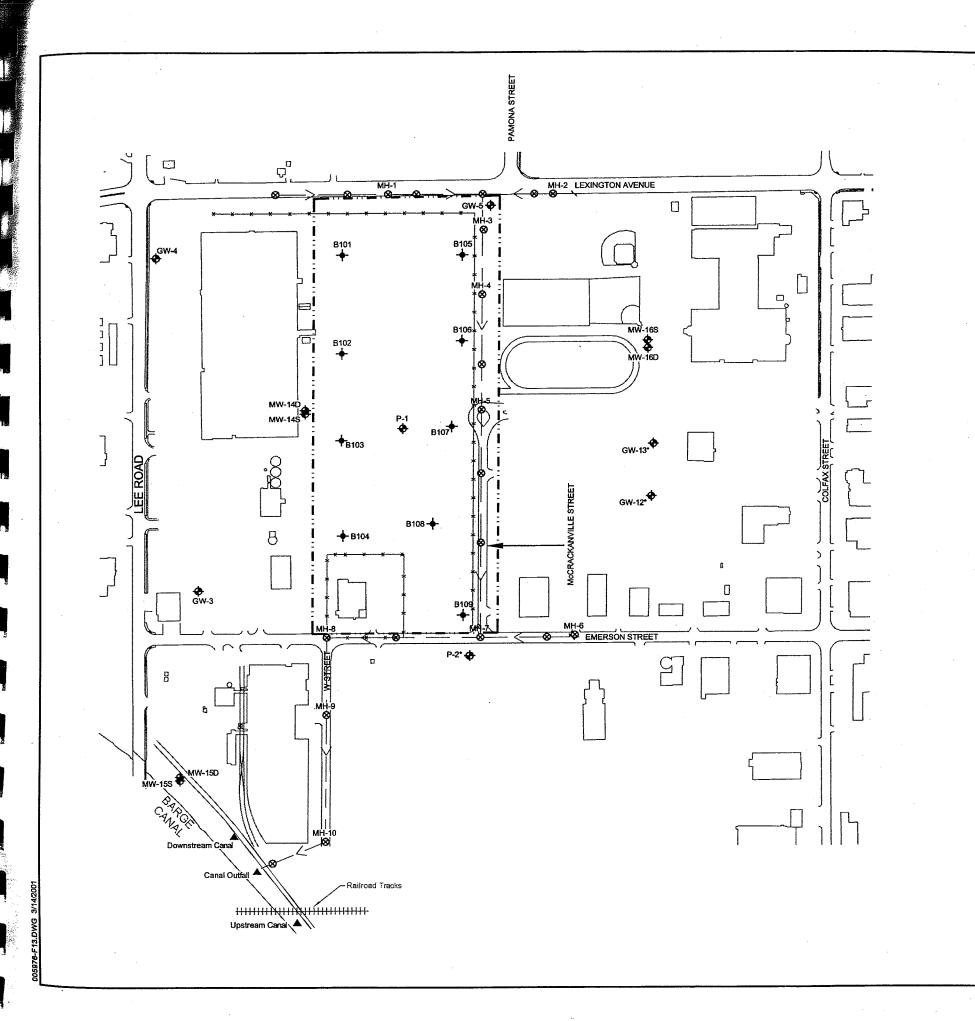
Former Emerson Street Landfill Rochester, New York

	Water Quality	MH-1	MH-2	мн-з	MH-4	MH-5	MH-6	MH-7	MH-7	MH-8		MH-8 DUP		MH-9 11/13/2000		D/S CANAL 11/13/2000	11/13/2000	11/13/2000
Constituent(1)	Standard ⁽²⁾	5/5/2000	5/4/2000	5/4/2000	5/5/2000	5/3/2000	5/3/2000	5/3/2000	11/13/2000	31312000	11/13/2000	2312012000				I	ND	ND
Water:		DRY	DRY	ND			ND	·	ND					10	 ,, 	ND	ND	112
Volatile Organic Compounds, u	g/L	L DKI		 	 					3.2	26	12	22	19	1 44	 		t
Vinyl Chloride			 	 	 	t		1			5 J	3 J	<u>i</u>	91	43	 	 	
Chloroethane	5	<u> </u>	+	 	1.6		 	1	1	1.7	14	7.5	14	21	15		 	
1,1-Dichloroethane	5		<u> </u>	 	1.0	 	 	 		5.4	34	14	41	27	19	ļ		
cis-1,2-Dichloroethene	5		1		 	_	 	 	 	 			T	41			 	
1,1,1-Trichloroethane	5	1	1		1.6	 	 	+	 	 	 				L	<u> </u>		
p-Xylene/m-Xylene	. 5		<u> </u>	 	1.2	4.1	 	 	+	10.3	79	36	77	77	49			
Total VOCs			<u> </u>		4.4	4.1		 - 	+	1	 	1		T				NA
Ambient Air:	T _	ND	NA NA	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	NA	j NA	

- 1. Samples MH-1 through MH-8 analyzed in mobile laboratory (water and headspace sample, May 3-5, 2000). Other sample analysis conducted in accordance with ASP Protocols. Volatile organic compounds by ASP-95-1.
- 2. Water quality standards for Class GA groundwater from NYSDEC's "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations", reissued June 1998.
- 3. Sample locations provided on Figure 13.
- 4. Data qualifications reflect 10% data validation performed by Data Validation Services.

ug/L = micrograms per liter.

mg/cu.m. = milligrams per cubic meter


ND or blank cells = none detected

NA = not analyzed

DRY = storm sewer was dry at the time of sampling, therefore no water sample was collected.

"--" = value does not exist.

I = result estimated below the quantitation limit



EXPLANATION

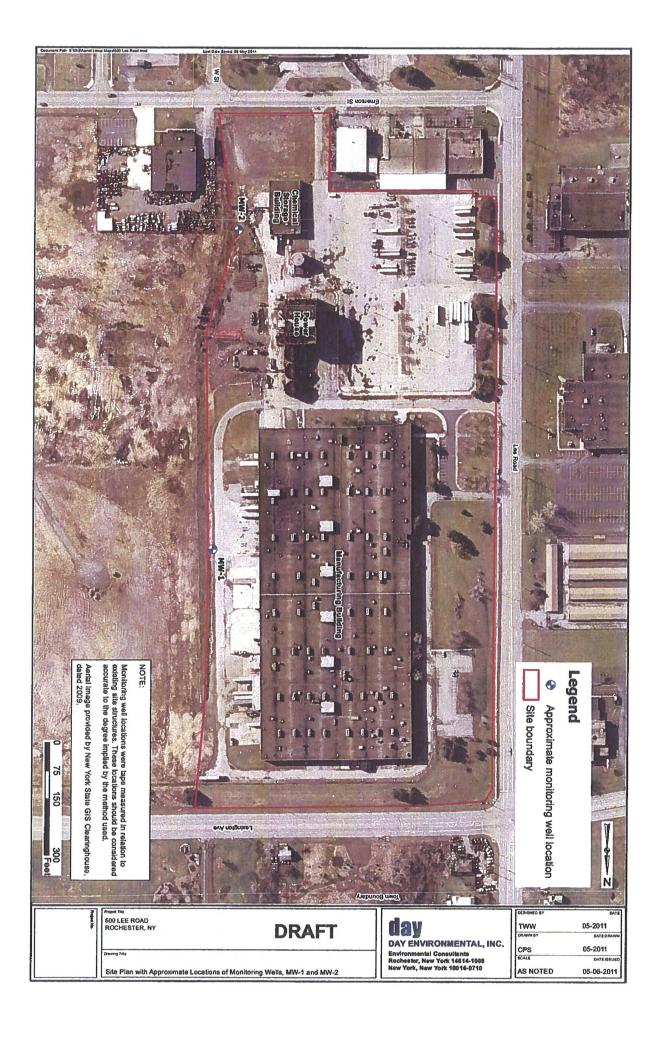
- Monitoring well location
- ♣ Boring location (H&A)
- Storm sewer manhole location
- MH-6

 Storm sewer water sample location
- ▲ Canal water sample collected November 2000
- · · Site boundary
- * * Fence line

NOTE: * Indicates well was destroyed during parcel development or unusable.

STORM SEWER WATER AND CANAL SAMPLE LOCATIONS

Former Emerson Street Landfill RI Rochester, New York



Project No. 005976

Figure 13

VOC Groundwater Sample Results

2001 Day Environmental Groundwater Sample Data Package for DAY-MW-1 & DAY-MW-2

Day Environmental, Inc. 2144 Brighton-Henrietta T.L. Rd. Rochester, New York 14623 (716) 292-1090

Project: 500 Lee Road, Rochester, New York
DAY Representative: J. Joseph Dorety
Drilling Contractor: Nothnagle Drilling

Drilling Rig: CME55

Sampling Method: Direct Push

Completion Method: 2" PVC Monitoring Well

BORING NUMBER: MW-1

Project No: 2531S-00

Boring Location: See Site Plan

Ground Surface Elevation: NA

Start Date: 12/28/00

Datum: NA

Completion Date: 12/29/00

Borehole Depth: 23.5 feet

Borehole Diameter: 3 inches Water Level: Not encountered

Depth (feet)	Blows per	N	Depth (feet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description
2	AN EE!	S-	0-4	80	NA	0.0 0.0 0.0 0.0		Gray Sand, Gravel, Silt, Clay, Cinders, damp (FILL). Brown Silty SAND, some Gravel, trace Clay, damp.
5 6		S-2	4-8	75		0.0 0.0 0.0 0.0		wet 5.0'-6.0'.
9-	=	S-3	8-12	60		0.0 0.0 0.0		Rock fragments.
12- 13-		S-4	12-12.1	5		0.0		Refusal at 12.1' (Sampler). Auger refusal at 13.5' (1440)
14- 15- 16- 17- 18-		C-1	13.5-19	58				Temp casing set at 1505 casing » 15'5" with 20½" stickup First run very broken. Horizontal and vertical fractures, angular pieces, silt in fractures. Begin losing water at approximately 18.3'.
21 22 23 23 23		C-2	19-23.5	48				Petroleum like sheen, approximately 490 gallons of water lost.
24								Bottom at 23.5'

File: 2531MW01.log

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Laboratory Analysis Report For Non-Potable Water

Client:

Day Environmental

Lab Project No.:

01-0120

Client Job Site:

500 Lee Rd.

Lab Sample No.:

1040

Client Job No.:

Rochester 2531S-00

Sample Type:

Water

Field Location:

MW-1

Date Sampled:

01/04/01

Date Received:

01/04/01

Field ID No.:

2531S-MW01

Date Analyzed:

01/05/01

VOLATILE HALOCARBONS	RESULTS (ug/L)	VOLATILE AROMATICS	RESULTS (ug/L)
Bromodichloromethane	ND< 2.00	Benzene	ND< 0.700
Bromomethane	ND< 2.00	Chlorobenzene	ND< 2.00
Bromoform	ND< 2.00	Ethylbenzene	ND< 2.00
Carbon tetrachloride	ND< 2.00	Toluene	ND< 2.00
Chloroethane	ND< 2.00	m,p - Xylene	ND< 2.00
Chloromethane	ND< 2.00	o - Xylene	ND< 2.00
2-Chloroethyl vinyl ether	ND< 2.00	Styrene	ND< 2.00
Chloroform	ND< 2.00		
Dibromochloromethane	ND< 2.00		
1,1-Dichloroethane	ND< 2.00		
1,2-Dichloroethane	ND< 2.00		
1,1-Dichloroethene	ND< 2.00		
cis-1,2-Dichloroethene	ND< 2.00		
trans-1,2-Dichloroethene	ND< 2.00		
1,2-Dichloropropane	ND< 2.00		
cis-1,3-Dichloropropene	ND< 2.00	Ketones	
trans-1,3-Dichloropropens	ND< 2.00	Acetone	ND< 10.0
Methylene chloride	ND< 5.00	Vinyl acetate	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00	2-Butanone	ND< 5.00
Tetrachloroethene	ND< 2.00	4-Methyl-2-pentanone	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00	2-Hexanone	ND< 5.00
1,1,2-Trichloroethane	ND< 2.00		
Trichloroethene	ND< 2.00	Carbon disulfide	ND< 2.00
Vinyl Chloride	ND< 2.00		

Analytical Method: EPA 8260

ELAP ID No.: 10958

Comments:

ND denotes Not Detected

Approved By

Laboratory Director

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Aromatic Analysis Report For Non-Potable Water (Additional EPA 8260 Compounds)

Client:

Day Environmental

Lab Project No.:

01-0120

Client Job Site:

500 Lee Rd.

Lab Sample No.:

1040

Onent bob one.

Rochester

Sample Type:

Water

Client Job No.:

2531S-00

Date Sampled:

01/04/01

Field Location:

MW-1

Date Received:

01/04/01

Field ID No.:

2531S-MW01

Date Analyzed:

01/05/01

VOLATILE AROMATICS	RESULTS (ug/L)	
Methyl tert-Butyl Ether	ND< 2.00	
lsopropylbenzene	ND< 2.00	
n-Propylbenzene	ND< 2.00	
1,3,5-Trimethylbenzene	ND< 2.00	
tert-Butylbenzene	ND< 2.00	
1,2,4-Trimethylbenzene	ND< 2.00	
sec-Butylbenzene	ND< 2.00	
p-Isopropyltoluene	ND< 2.00	
n-Butylbenzene	ND< 2.00	
Naphthalene	ND< 5.00	

Analytical Method: EPA 8260

NYS ELAP ID No.: 10958

Comments: ND denotes not detected

Approved By:

Laboratory Director

Day Environmental, Inc. 2144 Brighton-Henrietta T.L. Rd. Rochester, New York 14623 (716) 292-1090

Project: 500 Lee Road, Rochester, New York
DAY Representative: J. Joseph: Dorety
Drilling Contractor: Nothnagle Drilling

Drilling Rig: CME55

Sampling Method: Direct Push

Completion Method: 2" PVC Monitoring Well

BORING NUMBER: MW-2

Project No: 2531S-00

Boring Location: See Site Plan

Ground Surface Elevation: NA

Start Date: 12/29/00

9/00 Completi

Completion Date: 1/2/01
Borehole Depth: 17.7 feet

Datum: NA

Borehole Diameter: 3 inches Water Level: Not encountered

Depth (feet)	Blows per 0.5¹	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description
2 3 1 1 1 1 1 1 1 1 1	NA	S-1	0-4	70	NA	0.0 0.0 0.0 0.0		Dark gray Sand, Silt, Gravel, Roots, damp (FILL). Reddish brown Silty SAND, some Gravel, damp.
5		S-2	4-6.9	80		0.0 0.0 0.0 0.0		wet 5.0'-6.0' Rock fragment. Sampler Refusal at 6.9'.
10-		C-1	6.9-7.7 7.7-12.7	87	58	-		Auger refusal at 7.7'. Gray DOLOMITE. Numerous horizontal and vertical fractures from 7.7'-8.5'. Pits and Vugs from 8.5'-9' imbedded planes of Silt and iron staining. Approximately 25 gallons of water lost during core.
14-11-11-11-11-11-11-11-11-11-11-11-11-1		C-2	12.7-17.7	98	60			Numerous pits from 13.3' to 17.7'. Vugs from 14.3' to 14.9' with soft white mineral deposits. Collapse
18								Bottom at 17.7'

File: 2531MW02.log

PARADIGM ENVIRONMENTAL SERVICES, INC.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Laboratory Analysis Report For Non-Potable Water

Client:

Day Environmental

Lab Project No.:

01-0120

Client Job Site:

500 Lee Rd.

Lab Sample No.:

1041

Client Job No.:

Rochester 2531S-00

Sample Type:

Water

Field Location:

Date Sampled:

01/04/01

MW-2

Date Received:

01/04/01

Field ID No.:

2531S-MW02

Date Analyzed:

01/05/01

VOLATILE HALOCARBONS	RESULTS (ug/L)	VOLATILE AROMATICS	RESULTS (ug/L)
Bromodichloromethane	ND< 2.00	Benzene	ND< 0.700
Bromomethane	ND< 2.00	Chlorobenzene	ND< 2.00
Bromoform	ND< 2.00	Ethylbenzene	ND< 2.00
Carbon tetrachloride	ND< 2.00	Toluene	ND< 2.00
Chloroethane	ND< 2.00	m,p - Xylene	ND< 2.00
Chloromethane	ND< 2.00	o - Xylene	ND< 2.00
2-Chloroethyl vinyl ether	ND< 2.00	Styrene	ND< 2.00
Chloroform	ND< 2.00		
Dibromochloromethane	ND< 2.00		
1,1-Dichloroethane	ND< 2.00		
1,2-Dichloroethane	ND< 2.00		
1,1-Dichloroethene	ND< 2.00		
cis-1,2-Dichloroethene	ND< 2.00		
trans-1,2-Dichloroethene	ND< 2.00		
1,2-Dichloropropane	ND< 2.00		
cis-1,3-Dichloropropene	ND< 2.00	<u>Ketones</u>	
trans-1,3-Dichloropropene	ND< 2.00	Acetone	ND< 10.0
Methylene chloride	ND< 5.00	Vinyl acetate	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00	2-Butanone	ND< 5.00
Tetrachloroethene	ND< 2.00	4-Methyl-2-pentanone	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00	2-Hexanone	ND< 5.00
1,1,2-Trichloroethane	ND< 2.00		
Trichloroethene	ND< 2.00	Carbon disulfide	ND< 2.00
Vinyl Chloride	ND< 2.00		

Analytical Method: EPA 8260

ELAP ID No.: 10958

Comments:

ND denotes Not Detected

Approved By

Laboratory Director

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Aromatic Analysis Report For Non-Potable Water (Additional EPA 8260 Compounds)

Client:

Day Environmental

Lab Project No.:

01-0120

Client Job Site:

500 Lee Rd.

Lab Sample No.:

1041

Rochester

Sample Type:

Water

Client Job No.:

2531S-00

Date Sampled:

01/04/01

Date Received:

01/04/01

Field Location:

MW-2

Date Analyzed:

01/05/01

Field ID No.:

2531S-MW02

VOLATILE AROMATICS	RESULTS (ug/L)	
Methyl tert-Butyl Ether	2.54	•
Isopropylbenzene	ND< 2.00	
n-Propylbenzene	ND< 2.00	
1,3,5-Trimethylbenzene	ND< 2.00	
tert-Butylbenzene	ND< 2.00	
1,2,4-Trimethylbenzene	ND< 2.00	
sec-Butylbenzene	ND< 2.00	
p-Isopropyltoluene	ND< 2.00	
n-Butylbenzene	ND< 2.00	
Naphthalene	ND< 5.00	

Analytical Method: EPA 8260

NYS ELAP ID No.: 10958

Comments: ND denotes not detected

Approved By:

Laberatory Director