

Environmental Management Plan

Location: 236 University Avenue Rochester, New York 14607

Prepared For:

Mr. Dennis Peck City of Rochester 30 Church Street Rochester, New York 14614

LaBella Project No. 2202620

November 25, 2020

300 State Street, Suite 201 | Rochester, NY 14614 | p 585-454-6110 | f 585-454-3066 www.labellapc.com

Table of Contents

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND BACKGROUND	1
2.1 2.2 2.3 3.0	Site Description and History Summary of Previous Studies Site Geology OBJECTIVE	1 2
3.1 3.2 4.0	Applicability of Plan Distribution ENVIRONMENTAL MANAGEMENT PLAN	3
4.1 4.2 4.3 4.4 4.5 4.6	Development of Screening Procedures for Excavated Soil Excavated Soil Management Procedures Waste Disposal Tracking Waste Disposal Documentation NYSDEC Notification Water Management	5 6 6 6 6
5.0	DECONTAMINATION OF EQUIPMENT	6
6.0	HEALTH AND SAFETY PLAN	7
7.0	COMMUNITY AIR MONITORING PLAN (CAMP)	7

FIGURES

Figure 1	Site Location Map
Figure 2	Known Areas of Impacts

APPENDICES

- Appendix 1 Phase II Environmental Site Assessment, LaBella, October, 2020
- Health & Safety Plan
- Appendix 2 Appendix 3 NYSDOH Generic Community Air Monitoring Plan

1.0 INTRODUCTION

This Environmental Management Plan (EMP) was developed to address residual petroleum impacts and fill material that may be present at 236 University Avenue in the City of Rochester, Monroe County, New York hereinafter referred to as the "Site." A Site Location Map is attached as Figure 1. This EMP is intended to be implemented during all subsurface work at the Site.

Locations of known impacts are shown on Figure 2; however, this EMP will be applicable to the entire Site. It is recommend the owner retain an environmental consultant to oversee subsurface work, conduct community air monitoring, and assist the contractor in identifying residual petroleum impacts and fill material.

2.0 SITE DESCRIPTION AND BACKGROUND

2.1 Site Description and History

The Site was undeveloped from at least 1888 until at least 1892. The Site was developed with various residential dwellings in at least 1911. The Site was occupied by a confectioners in at least 1930, an electric appliance supply company in at least 1935, and various restaurants from at least 1939 until at least 1945. From at least 1935 to at least 1945 the Site appears to have been utilized as a used car lot, and in at least 1950 the Site was occupied by an automobile repair facility. Variance dockets on file for the City of Rochester dated April 1950 indicated revisions and layouts were requested for an existing gasoline filling station. From at least 1955 until at least 1960 the Site was occupied by a radio supply company. The Site Building is approximately 2,250-square foot slab on grade and was constructed in 1970 for use as a restaurant. The current Site Building has been utilized by various restaurants from at least 1970 to at least 2011.

2.2 Summary of Previous Studies

Phase I Environmental Site Assessment (ESA), LaBella, June 5, 2020

LaBella completed a Phase I ESA for the Site dated June 5, 2020. The following Recognized Environmental Condition(s) (RECs) were identified at the Site:

Historical Use of Site

From at least 1935 to at least 1945, the Site was utilized as a used car sales facility, and in at least 1950, the Site appeared to have been occupied by an automobile repair facility. Variance dockets on file for the City of Rochester dated April 1950 indicated revisions and layouts were requested for an existing gasoline station at the Site. Based on historical operations, there is the potential for subsurface contamination from orphaned or previous underground storage tanks (USTs) or previous hydraulic lifts to be present at the Site. In addition, there is the potential to be present at the Site from previous generations of buildings.

Historical Use of Adjacent Properties

Based on the historical records reviewed, the following historical adjacent property uses of potential concern were identified.

- The east adjacent property addressed as 616 East Main Street was identified as a used car sales dealership in at least 1950.
- The south adjacent property addressed as 581-583 East Main Street was identified as an auto

repair shop from at least 1912 until at least 1971, as a clothes cleaners in at least 1912, and as a gasoline filling station in at least 1938 and 1950. Two gasoline USTs are depicted on the north central portion of the property in at least 1938 and 1950.

• The south adjacent property addressed 571-593 East Main Street was identified as a gasoline filling station from at least 1935 until at least 1960, a drycleaner and tailor in at least 1930, a motors company in at least 1950, and an automobile repair facility in at least 1974.

Phase II ESA, LaBella, October 2020

LaBella conducted a Phase II ESA to evaluate potential subsurface impacts associated with the historical uses of adjacent properties identified during the Phase I ESA. The Phase II ESA consisted of a ground penetrating radar (GPR) survey, the advancement of ten (10) soil borings and installation of five (5) overburden monitoring wells (it should be noted groundwater was not encountered in the overburden and groundwater could not be sampled). The following conclusions were made:

- The GPR survey did not identify anomalies indicative of USTs.
- Evidence of impairment including elevated PID readings, odors, and/or staining were not encountered during field screening.
- Fill material was identified in seven (7) of the ten (10) soil borings. Fill material consisted of ash, concrete, asphalt, and/or brick and is indicative of typical urban fill material. Metals, lead and mercury, were detected above 6NYCRR Part 375 Unrestricted Use SCOs in one (1) of the soil samples collected that contained fill material (SB-03 2-5-ft bgs). Several SVOCs were detected above 6NYCRR Part 375 Unrestricted Use SCOs in one (1) of the soil samples collected that contained fill material (SB-03 2-5-ft bgs). Several SVOCs were detected above 6NYCRR Part 375 Unrestricted Use SCOs in one (1) of the soil samples collected that contained fill material (SB-05 2-4-ft bgs). Three (3) compounds, benzo(a)anthracene, benzo(b)fluoranthene and chrysene exceeded 6NYCRR Part 375 Protection of Groundwater SCOs and one (1) compound, benzo(a)pyrene, exceeded 6NYCRR Part 375 Commercial Use SCOs in SB-05 (2-4-ft bgs).
- Petroleum compounds were detected in one (1) of five (5) soil samples analyzed for VOCs (SB-08 9.4-ft bgs) above laboratory MDLs; however, concentrations do not exceed 6NYCRR Part 375 Unrestricted Use, Commercial Use, or Protection of Groundwater SCOs. SB-08 was advanced on the southern portion of the Site. It should be noted the southern adjacent property addressed as 571-593 East Main Street was historically utilized as a gasoline filling station, a drycleaner and tailor, a motors company, and an automobile repair facility. A source of petroleum on-Site was not identified.

Based on the presence of fill material, SVOCs and metals in soil/ fill material and residual petroleum impacts associated with the southern adjacent property, LaBella recommended an EMP be developed and implemented for use during subsurface work. The Phase II ESA is included as Appendix 1.

2.3 Site Geology

Ten (10) soil borings were advanced at the Site on September 18, 2020 during the LaBella Phase II ESA, designated SB-01 through SB-10. The borings were advanced to equipment refusal, presumed to be bedrock, which ranged from approximately 8.4 to 10.-ft bgs. Groundwater was not encountered during drilling.

Soils at the Site consisted generally of fine to coarse brown sand, with lesser amounts of gravel and silt. Fill material consisting of ash, concrete, asphalt and/or brick was encountered in seven (7) of ten (10) soil borings; SB-01 (0.3-3.5-ft bgs), SB-03 (2-5-ft bgs), SB-05 (3.5-3.6-ft bgs), SB-06 (4.5-ft bgs), SB-07 (0.4-5-ft bgs), SB-08 (3.5-4-ft bgs) and SB-09 (2.5-4.5-ft bgs). (Refer to Figure 2 for soil boring locations). Evidence

of impairment was not encountered in any of the soil borings. Elevated PID readings greater than 0 parts per million (ppm) were not observed. Odors and/or staining were not observed.

3.0 OBJECTIVE

This EMP is intended to provide guidance for the identification and management of petroleum impacted soil or groundwater or other regulated materials including fill material that may contain SVOCs and/or metals which may be encountered during construction-related excavations and ground intrusive work (e.g. subsurface utility work, excavation, grading, etc.) on the Site. The development of this EMP was based on the evidence of fill material containing elevated levels of SVOCs and metals identified during the Phase II ESA, and the potential for discreet areas of petroleum impacts based on the historical use of the Site and adjacent properties.

This EMP has been prepared in general accordance with current United States Environmental Protection Agency (USEPA) and NYSDEC non-hazardous waste disposal regulations, and to satisfy the requirements established by the NYSDEC regarding the handling of regulated materials generated during construction. In addition, the "Beneficial Use" provisions in 6 NYCRR Part 360.12 and 360.13 are referenced to assist with the management of soil and fill materials at the Site. Any changes made to these standards or guideline subsequent to the date of this EMP may result in portions of this EMP becoming obsolete.

The Owner of the Site at the time of subsurface disturbance shall be primarily responsible for implementation of this EMP and third-parties conducting the subsurface work shall also have an obligation to conduct the work in conformance with this EMP and all federal, state, and local regulations. This EMP should be provided to future Owners, contractors, and other third-parties whose activities may disturb the subsurface at the Site. Additional parties to which the EMP has been distributed are listed in Section 3.2.

3.1 Applicability of Plan

This EMP shall be implemented during all subsurface work at the Site including but not limited to utility work, excavation, grading, etc. Locations of known impacts are shown on Figure 2; however, this EMP will be applicable to the entire Site.

3.2 Distribution

This EMP has been distributed to:

Property Owner:

East Main Realty Group Inc, 1655 78th Street Brooklyn, New York 11214

Municipality:

Mr. Dennis Peck City of Rochester Division of Environmental Quality 30 Church Street, Room 300B Rochester, New York 14614

4.0 ENVIRONMENTAL MANAGEMENT PLAN

This section of the EMP details field screening and the classification system to be used to segregate excavated soil and regulated materials during potential future subsurface work at the Site. The method to screen and segregate soil will rely on visual evidence of impairment, olfactory evidence of impairment, photo-ionization detector (PID) readings, and previous analytical data generated at the Site. The Site owner should consider engaging an Environmental Professional to assist with the management of any materials derived from subsurface excavations at the Site.

As noted above, both the Owner of the Site and the parties conducting the subsurface work have responsibility for compliance with this EMP. Any regulated materials or other subsurface structures of environmental concern encountered must be managed in accordance with this EMP and all applicable Federal, State, and Local laws/regulations. The following is general guidance for the handling, reuse and/or disposal of impacted materials that may be encountered during future work at the Site.

4.1 Development of Screening Procedures for Excavated Soil

Upon encountering potentially impacted soil, on-Site contractors should follow their own company's Health and Safety Plan (HASP) to provide for worker protection. A copy of LaBella's HASP is included as Appendix 2 for use by LaBella personnel only. Various classes of material have been defined for the Site and will be managed and handled in a manner dictated by evidence of environmental impairment and anticipated reuse, and as allowed under the 6 NYCRR Part 360 Regulations. The classes of material are described in the below table.

Class of Material	Description	Screening Parameter	Management/ Re-use of Material Requirements
Class 1	Layers of non- impacted soil and earth that do not contain evidence of impairment or fill material.	No discernable odor or staining, PID readings less than 5 ppm. Visibly free of regulated solid waste such as urban fill, construction and demolition debris, etc.	On-Site Reuse: Per section 360.13(c) of the BUD Regulations, unrestricted use anywhere on the Site, if required or desired. Material can also be used on-site to cover Class 2 Materials. Off-Site Reuse: This material may be used off-Site in accordance with 6 NYCRR Part 360 provided the material is sampled in accordance with 6 NYCRR Part 360.13(e) Table 1 and in accordance with the appropriate reuse guidelines per 6 NYCRR Part 360.13(f) Table 2 and NYCRR Part 360.13(g). If the sampling results do not meet the 6 NYCRR Part 360.13(f) Table 2 Fill Material Beneficial Use requirements, the material should be disposed at a NYSDEC Part 360 landfill.

Table 1 - Material Classifications

Class of Material	Description	Screening Parameter	Management/ Re-use of Material Requirements
Class 2	Material with minor petroleum impacts. Soil and soil/solid waste impacted media including but not limited to construction and demolition debris, ash, and cinders, etc.	PID readings greater than 5 ppm, but less than 50 ppm without significant evidence of impairment (i.e. no significant odors or staining, etc.). Signs of regulated solid waste such as urban fill, construction and demolitions debris, etc.	Sample in accordance with NYSDEC's Part 360 Regulations On-Site Reuse: Per section 360.13 of the BUD Regulations, material may be reused on-site under at least 1 ft of Class 1 Material or imported 'clean' fill, or placed under exterior impervious surfaces (e.g. asphalt, concrete, etc.). Soil with hazardous levels of lead or other compounds may not be reused on-Site Off-Site Reuse: This material may be used off-Site in accordance with 6 NYCRR Part 360 provided the material is sampled in accordance with 6 NYCRR Part 360.13(e) Table 1 and in accordance with the appropriate reuse guidelines per 6 NYCRR Part 360.13(f) Table 2 and NYCRR Part 360.13(g). If the sampling results do not meet the 6 NYCRR Part 360.13(f) Table 2 Fill Material Beneficial Use requirements, the material should be disposed of at a NYSDEC Part 360 landfill.
Class 3	Material with significant petroleum impacts. Solid waste physically unacceptable for re- use or recycling (e.g. lumber, refuse, metal scrap, large foundations, large pieces of concrete or brick unacceptable for reuse on-site, drainage piping, municipal waste)	PID readings greater than 50 ppm and/or significant evidence of impairment (significant odors, staining, etc.).	Sample in accordance with Disposal Facility Requirements Cannot be re-used on-Site. Must be staged on and covered with 6-mil polyethylene sheeting pending disposal at a NYSDEC Part 360 landfill.

Note: In the event that petroleum impacts are encountered a spill should be called in to NYSDEC (refer to Section 4.5). In this event, NYSDEC should be consulted with for any proposed soil reuse.

4.2 Excavated Soil Management Procedures

The three (3) classes of soil described in Section 4.1 shall be managed on-site as follows:

- *Class 1 Materials* will be staged, in accordance with applicable stormwater regulations, for later use as cover material or removed from the Site for reuse or disposal per the NYSDEC Part 360 regulations.
- *Class 2 Materials* will be staged on and covered with minimum 6-mil polyethylene sheeting until either placed on-site or removed from the Site for re-use or disposal per the NYSDEC Part 360 regulations. The location of the designated staging area will be selected at the time of the excavation work.
- Class 3 Materials will be staged on and covered with minimum 6-mil polyethylene sheeting until removed from Site for disposal after waste characterization and waste profiling. The location of the designated staging area will be selected at the time of the excavation work.

If Class 1, 2 or 3 Materials require disposal at a NYCRR Part 360 landfill, the material will require waste characterization sampling and analysis prior to off-Site disposal. Waste characterization analysis

parameters will be dependent upon the accepting waste disposal facility. Class 1, Class 2, and Class 3 materials should be staged separately.

4.3 Waste Disposal Tracking

All Treatment, Storage, and Disposal (TSD) facilities and waste transporters must provide evidence of applicable NYSDEC permits prior to handling, transporting, and/or receiving impacted media.

All operators responsible for the removal and disposal of contaminated media shall comply with the applicable Federal, State, and local laws and regulations and policies. The Contractor shall provide the owner with documentation that the receiving facility is permitted to receive the accepted waste and the waste transporter is permitted to haul such wastes.

4.4 Waste Disposal Documentation

The contractor shall be responsible for proper documentation regarding waste disposal. Documentation of proper disposal, including copies of all waste disposal manifests and disposal facility receipts shall be provided to the Site owner within 48-hours of removal of regulated materials from the Site.

4.5 NYSDEC Notification

NYSDEC Spill reporting requirements should be reviewed upon discovery of any petroleum-impacted media. If warranted, the NYSDEC Spills Hotline must be notified within two (2) hours of discovery. Notification to the NYSDEC will be the responsibility of the Owner of the Site at the time when the petroleum-impacted media is discovered, but notification may be made by third-party representatives of the Owner (such as the contractor who encountered the contamination, the Owner's legal counsel and/or an environmental consultant who has been retained by the Owner).

4.6 Water Management

Although groundwater has not been encountered in the overburden during the previous testing, if groundwater is encountered at the Site or storm water accumulates in excavations, it should be properly managed and disposed of. In the event that groundwater is encountered during intrusive activities or storm water accumulates in excavations, the water should be pumped to a holding tank and waste characterization testing completed. Waste characterization analysis parameters will be dependent upon the accepting waste disposal facility or municipal sewer discharge requirements. Upon characterization and disposal facility/municipal approval, this water will be managed in one of the following ways:

- 1. Disposal to sanitary sewer under permit with the local municipality; or
- 2. Transportation and off-Site disposal at an approved facility.

5.0 DECONTAMINATION OF EQUIPMENT

It is recommended that all equipment used on the Site that comes in contact with soil or groundwater be decontaminated using manual methods to scrape off residual soil from construction activities. Impacted soil removed from equipment should be collected and staged with any impacted soil that has been excavated and is being managed as part of this plan. Persistent residue may require steam cleaning or

other methods.

6.0 HEALTH AND SAFETY PLAN

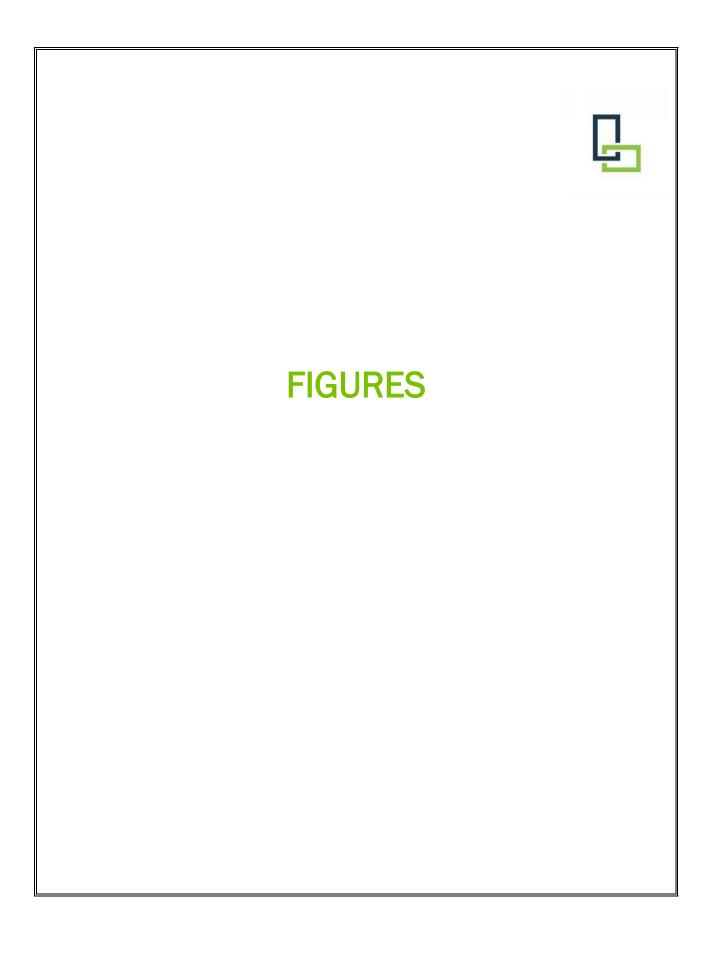
This EMP contains a Site Specific HASP for the Site. The included HASP has been developed by LaBella Associates, D.P.C. is designated for LaBella personnel only should they be involved in future intrusive site work. A copy of this HASP is included in Appendix 2.

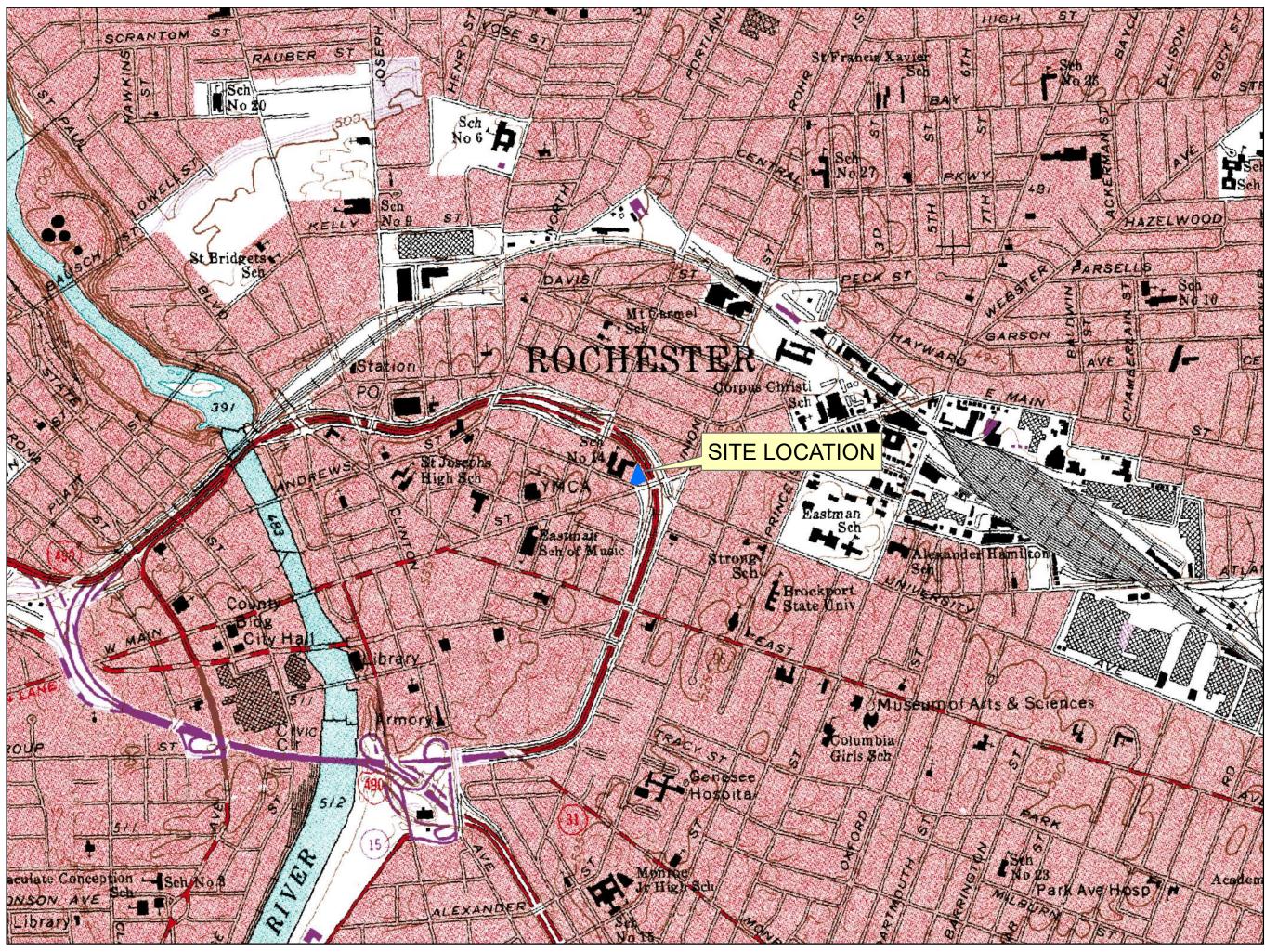
LaBella's HASP is included as an example. All contractors working at the Site will need to develop and rely on their own HASP to manage health and safety issues associated with potential exposure to site chemicals of concern and any other potential construction-related issues. LaBella assumes no liability for the health and safety of personnel not employed or subcontracted by LaBella.

7.0 COMMUNITY AIR MONITORING PLAN (CAMP)

Based on previous investigations, there are some low-level concentrations of VOCs that have been detected in soil at the Site as well as fill material containing SVOCs and metals. As such, it is recommended that community air monitoring be implemented during subsurface work. Air monitoring is recommended during all subsurface work to identify and quantify airborne levels of dust and VOCs in order to determine the appropriate level of employee protection required for personnel working on-Site and also to monitor and prevent dust and vapors from leaving the Site. Refer to the HASP included in Appendix 2 for a description of personal protective equipment (PPE).

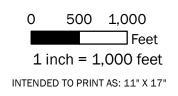
A qualified environmental monitor is recommended to perform particulate and VOC ambient air monitoring during ground intrusive activities that encounter regulated materials. Locations of known impacts are shown on Figure 2; however, additional areas may be present. It is recommended that the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan included as Appendix 1A in the NYSDEC Department of Environmental Remediation DER-10 guidance document be utilized. A copy of this plan is included in Appendix 3.


The CAMP will be implemented during all ground intrusive work. It should be noted that the air monitoring may identify elevated levels of VOCs or fugitive dust that may require mitigation. In this event the Contractor will be required to implement dust and VOC suppression measures as directed by the environmental professional that may include the following methods:


- Application of water on haul roads;
- Wetting equipment and excavation faces;
- Restricting vehicle speeds to 10 mph;
- Hauling material in properly tarped containers;
- Spraying water in buckets during excavation and dumping;
- Reducing excavation size and/or number of excavations.

The Contractor shall have an on-Site designated water truck or other dust suppression system. The Contractor shall obtain any necessary permits for hydrant usage, etc.

\\Projects2\ProjectsNZ-2\Rochester, City\2202620 - 236 University Ave Ph II\Reports\EMP\DRAFT 2202620 EMP.docx



\\Projects2\ProjectsNZ-2\Rochester, City\2202620 - 236 University Ave Ph II\Drawings\EMP\Figure 1_EMP_Site Location Map.mxd

CLIENT:

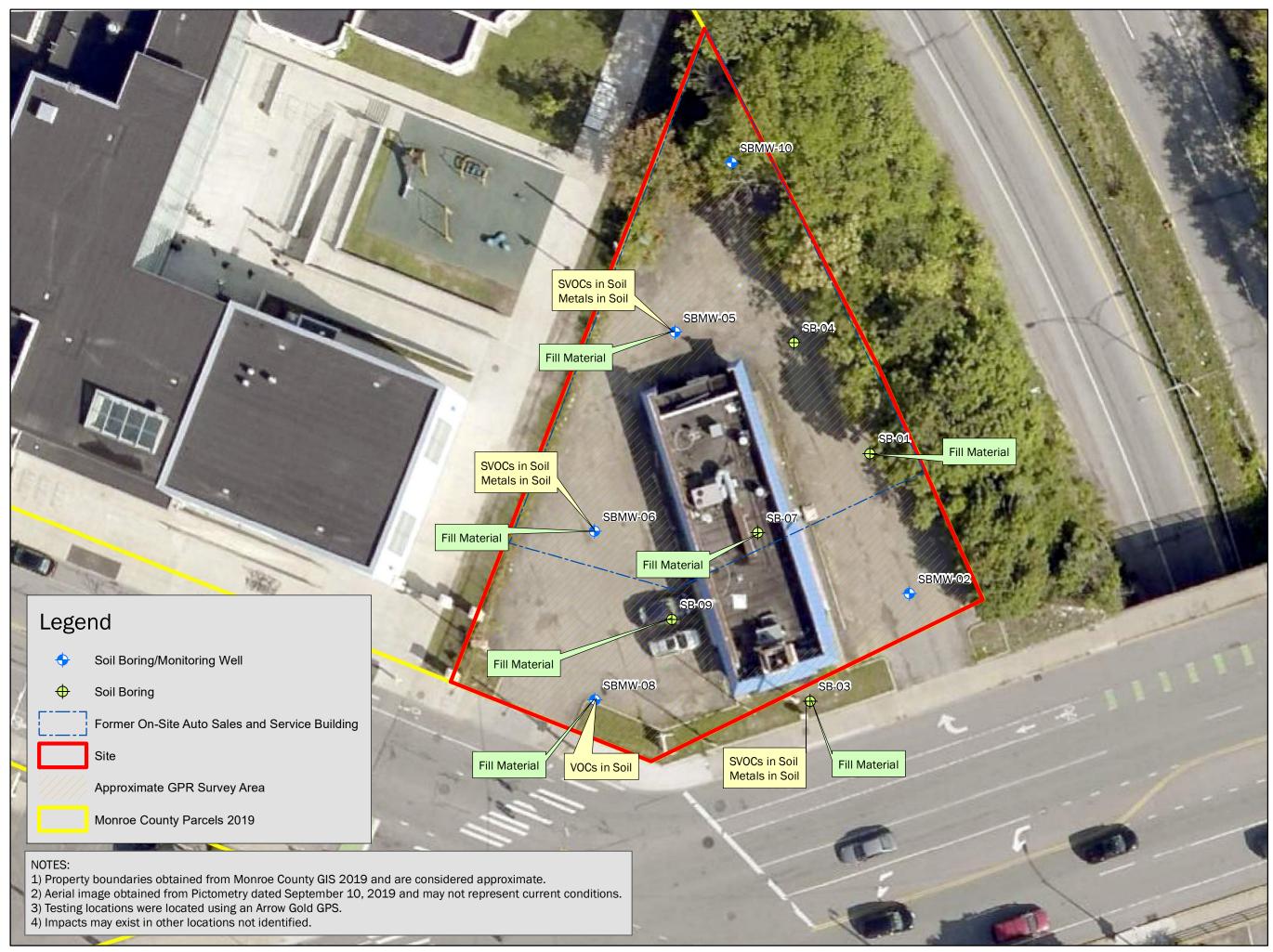
CITY OF ROCHESTER

PROJECT:

ENVIRONMENTAL MANAGMENT PLAN

236 UNIVERSITY AVE ROCHESTER, NY DRAWING NAME:

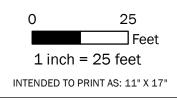
SITE LOCATION MAP


USGS TOPOGRAPHIC MAP

PROJECT #/DRAWING #/ DATE

2202620

FIGURE 1


11/6/2020

\\Projects2\ProjectsNZ-2\Rochester, City\2202620 - 236 University Ave Ph II\Drawings\EMP\Figure 2_EMP_Known areas of impact.mxd

CLIENT:

CITY OF ROCHESTER

PROJECT: ENVIRONMENTAL MANAGMENT PLAN

236 UNIVERSITY AVE ROCHESTER, NY

DRAWING NAME: KNOWN AREAS OF IMPACTS

PROJECT #/DRAWING #/ DATE

2202620

FIGURE 2

11/10/2020

APPENDIX 1

Phase II ESA, LaBella, October 2020

Phase II **Environmental Site Assessment**

Location:

Prepared for:

October 2020

Mr. Dennis Peck **City of Rochester** 30 Church Street

300 State Street, Suite 201 | Rochester, NY 14614 | p 585-454-6110 | f 585-454-3066

Table of Contents

1.0 1.1	INTRODUCTION Special Terms & Conditions	L 1
1.2	Limitations & Exceptions	
2.0	BACKGROUND	1
2.1	Site Description & Features	
2.2	Physical Setting	L
2.3	Site History & Land Use	L
2.4	Adjacent Property Use	2
2.5	Summary of Previous Studies	2
3.0	OBJECTIVE	2
4.0	SCOPE OF WORK	
5.0	FINDINGS	1
5.1	GPR Survey	1
5.2	Site Geology and Hydrology4	4
5.3	Laboratory Analytical Results	5
5	5.3.1 Soil	5
6.0 7.0 8.0	CONCLUSIONS	6

Figures	Figure 1 – Site Location Map Figure 2 – Testing Locations
Tables	Table 1 – Detected VOCs in Soil Table 2 – Detected SVOCs, Metals, and PCBs in Soil Table 3 – Soil Boring and Monitoring Well Coordinates
Appendix 1 Appendix 2	GPR Survey Report Field Logs

Appendix 3 Laboratory Report

1.0 INTRODUCTION

LaBella Associates, D.P.C. ("LaBella") was retained by the City of Rochester (City), to conduct a Phase II Environmental Site Assessment (ESA) at the property located at 236 University Avenue in the City of Rochester, Monroe County, New York, hereinafter referred to as the "Site" (see Figure 1). This Phase II ESA has been performed in conformance with the scope and limitations of ASTM Practice E 1903-19.

1.1 Special Terms & Conditions

The findings of this Phase II ESA are based on the scope of work and project objectives as stated in LaBella Proposal number P2002266 dated June 16, 2020.

1.2 Limitations & Exceptions

Work associated with this Phase II ESA was performed in accordance with generally accepted environmental engineering and environmental contracting practices for this region. LaBella Associates, D.P.C., makes no other warranty or representation, either expressed or implied, nor is one intended to be included as part of its services, proposals, contracts or reports.

In addition, LaBella cannot provide guarantees, certifications or warranties that the property is or is not free of environmental impairment or other regulated solid wastes. The Client shall be aware that the data and representative samples from any given soil sampling point or monitoring well may represent conditions that apply only at that particular location, and such conditions may not necessarily apply to the general Site as a whole.

2.0 BACKGROUND

2.1 Site Description & Features

The Site comprises approximately 0.43 acres of land and is currently developed with a vacant restaurant building.

2.2 Physical Setting

The Site is located on University Avenue in the City of Rochester within a predominantly urban area.

2.3 Site History & Land Use

The Site was undeveloped from at least 1888 until at least 1892. The Site was developed with various residential dwellings in at least 1911. The Site was occupied by a confectioners in at least 1930, an electric appliance supply company in at least 1935, and various restaurants from at least 1939 until at least 1945. From at least 1935 to at least 1945 the Site appears to have been utilized as a used car lot, and in at least 1950 the Site was occupied by an automobile repair facility. Variance dockets on file for the City of Rochester dated April 1950 indicated revisions and layouts were requested for an existing gasoline filling station. From at least 1955 until at least 1960 the Site was occupied by a radio supply company. The Site Building is approximately 2,250-square foot slab on grade and was constructed in 1970 for use as a restaurant. The current Site Building has been utilized by various restaurants from at least 1970 to at least 2011.

2.4 Adjacent Property Use

The Site is bordered by the following properties:

Direction	Land Use
Northwest	World of Inquiry School No. 58 (200 University Avenue)
East	Inner Loop, historically 616 East Main Street
Southwest	WRG Services, Inc. and Men's Fashion Warehouse (581-583
Southwest	East Main Street, historically 569-589 East Main Street)
West	Enterprise Rent-A-Car (568-580 East Main Street)

2.5 Summary of Previous Studies

LaBella completed a Phase I ESA for the Site dated June 5, 2020. The following Recognized Environmental Condition(s) (RECs) were identified at the Site:

Historical Use of Site

From at least 1935 to at least 1945, the Site was utilized as a used car sales facility, and in at least 1950, the Site appeared to have been occupied by an automobile repair facility. Variance dockets on file for the City of Rochester dated April 1950 indicated revisions and layouts were requested for an existing gasoline station at the Site. Based on historical operations, there is the potential for subsurface contamination from orphaned or previous underground storage tanks (USTs) or previous hydraulic lifts to be present at the Site. In addition, there is the potential for fill material to be present at the Site from previous generations of buildings.

Historical Use of Adjacent Properties

Based on the historical records reviewed, the following historical adjacent property uses of potential concern were identified.

- The east adjacent property addressed as 616 East Main Street was identified as a used car sales dealership in at least 1950.
- The south adjacent property addressed as 581-583 East Main Street was identified as an auto repair shop from at least 1912 until at least 1971, as a clothes cleaners in at least 1912, and as a gasoline filling station in at least 1938 and 1950. Two gasoline USTs are depicted on the north central portion of the property in at least 1938 and 1950.
- The south adjacent property addressed 571-593 East Main Street was identified as a gasoline filling station from at least 1935 until at least 1960, a drycleaner and tailor in at least 1930, a motors company in at least 1950, and an automobile repair facility in at least 1974.

3.0 OBJECTIVE

The objective of this Phase II ESA was to conduct an evaluation of subsurface conditions to assess REC's identified in the Phase I ESA including the historical uses of the Site and adjacent properties.

4.0 SCOPE OF WORK

To achieve the project objectives the following Scope of Work was performed:

G

- 1. Prior to the initiation of subsurface work, an underground utility stake-out, via *Dig Safely New York*, was completed at the Site (ticket number 091000-000-227) to locate utilities in the areas where the subsurface assessment would take place.
- 2. LaBella retained New York Leak Detection, Inc. (NYLD) to conduct a ground penetrating radar (GPR) survey across all exterior accessible areas of the Site (refer to Figure 2) to identify utilities and evaluate the presence of USTs.
- 3. A direct push soil boring and sampling program of the overburden at the Site was implemented. Exterior soil borings were advanced with a track-mounted Geoprobe® Systems Model 6620 direct-push sampling system. The interior soil boring was advanced using a Jackhammer and MacroCore® direct-push sampling system. The use of direct-push technology allows for rapid sampling, observation, and characterization of overburden soils. The Geoprobe utilizes a 5-foot MacroCore® sampler with disposable polyethylene sleeves. Soil cores are retrieved in 5-foot sections and can be easily cut from the polyethylene sleeves for observation and sampling. The MacroCore® sampler was decontaminated between boring locations using an alconox and potable water solution. A total of ten (10) soil borings were advanced at the Site to depths ranging from 8.4 to 10.0 feet (ft) below ground surface (bgs). Soil boring locations are depicted on Figure 2.
- 4. Soils from the borings were continuously assessed for visible impairment, olfactory indications of impairment, and/or indication of detectable volatile organic compounds (VOCs) with a photo-ionization detector (PID). Positive indications from any of these screening methods are collectively referred to as "evidence of impairment."
- 5. Five (5) soil borings were converted to temporary overburden groundwater monitoring wells. Each well was completed with 5-ft of 0.010-slot well screen connected to an appropriate length of solid PVC well riser to complete the well. The annulus was sand packed with quartz sand to a nominal depth of 1-ft above the screen section. A bentonite seal was placed above the sand pack. A flush-mounted curb box was installed at each monitoring well. Groundwater was not present and wells were not sampled during this assessment.
- 6. Soil boring and monitoring well locations were located using an Arrow Gold GPS (refer to Table 3 for coordinates).
- 7. Soil samples were placed in a cooler on ice and sent under standard chain of custody procedures to Alpha Analytical in Westborough, MA, and Environmental Laboratory Accreditation Program (ELAP) certified laboratory. The following laboratory analysis was performed:

Sample ID	Exploration Location	Sample Depth (ft bgs)	Laboratory Analyses
SB-01	East of Site Building	9.85	 USEPA TCL and CP- 51 List VOCs
SB-03	South of Site Building	2-5	 CP-51 List SVOCs RCRA Metals
SB-03	South of Site Building	10.0	 USEPA TCL and CP- 51 List VOCs
SB-05	North of Site Building	2-4	 CP-51 List SVOCs PCBs RCRA Metals
SB-05	North of Site Building	9.6	 USEPA TCL and CP- 51 List VOCs

a. Soil

Sample ID	Exploration Location	Sample Depth (ft bgs)	Laboratory Analyses
SB-06	West of Site Building	4-7	- CP-51 List SVOCs
SB-06	West of Site Building	9.9	 USEPA TCL and CP- 51 List VOCs RCRA Metals
SB-07	Interior	3-5	- PCBs
SB-08	Southwest of Site Building	9.4	 USEPA TCL and CP- 51 List VOCs

Notes:

1. USEPA Target Compound List (TCL) and New York State Department of Environmental Conservation (NYSDEC) Commissioner Policy (CP-51) list VOC analysis performed via USEPA Method 8260

2. CP-51 List SVOC analysis performed via USEPA Method 8270

3. Resource Conservation and Recovery Act (RCRA) metals analysis performed via USEPA Method 6010/7470

4. Polychlorinated Biphenyls (PCBs) analysis performed via USEPA Method 8082

5.0 FINDINGS

5.1 GPR Survey

LaBella retained NYLD to conduct a GPR survey across all accessible exterior areas of the Site (refer to Figure 2) to locate utilities and evaluate the potential presence of USTs. Several utilities were located and marked out in paint. Evidence of USTs were not identified. It should be noted that although the GPR survey can identify orphan USTs, the ability of GPR to detect a UST can be impacted by proximity to subsurface utilities. Refer to Appendix 1 for NYLD's report.

5.2 Site Geology and Hydrology

Ten (10) soil borings were advanced at the Site on September 18, 2020, designated SB-01 through SB-10. The borings were advanced to equipment refusal, presumed to be bedrock, which ranged from approximately 8.4 to 10.-ft bgs. Groundwater was not encountered during drilling.

Soils at the Site consisted generally of fine to coarse brown sand, with lesser amounts of gravel and silt. Fill material consisting of ash, concrete, asphalt and/or brick was encountered in seven (7) of ten (10) soil borings; SB-01 (0.3-3.5-ft bgs), SB-03 (2-5-ft bgs), SB-05 (3.5-3.6-ft bgs), SB-06 (4.5-ft bgs), SB-07 (0.4-5-ft bgs), SB-08 (3.5-4-ft bgs) and SB-09 (2.5-4.5-ft bgs).

All soil cores were continuously assessed by a LaBella Environmental Engineer for soil type and evidence of impairment. Evidence of impairment was not encountered in any of the soil borings. Elevated PID readings greater than 0 parts per million (ppm) were not observed. Odors and/or staining were not observed.

Five (5) overburden groundwater monitoring wells (designated as SBMW-02, SBMW-05, SBMW-06, SBMW-08, and SBMW-10) were installed at the Site within soil boreholes SB-02, SB-05, SB-06, SB-08 and SB-10, respectively. The wells were completed with 5-ft of 0.01-in slotted screen below PVC risers, to total depths ranging from 9.2 to 10.0-ft bgs. The areas surrounding the wells were filled with quartz sand. A bentonite seal was placed above the sand pack. Flush-mounted curb boxes were installed at each well. Groundwater was not present in any of the wells on September 18, 2020 during installation or on September 24, 2020. Groundwater was not sampled as part of this assessment.

Soil boring and monitoring well locations are shown on Figure 2. Copies of the Soil Boring and Monitoring Well Construction Logs are included in Appendix 2.

5.3 Laboratory Analytical Results

5.3.1 Soil

Five (5) soil samples and one (1) blind duplicate were analyzed for USEPA Target Compound List (TCL) and New York State Department of Environmental Conservation (NYSDEC) Commissioner Policy (CP)-51 List Volatile Organic Compounds (VOCs) via USEPA Method 8260. Three (3) soil samples and one (1) blind duplicate were analyzed for NYSDEC CP-51 List Semi-Volatile Organic Compounds (SVOCs) via USEPA Method 8270 and Resource Conservation and Recovery Act (RCRA) Metals via USEPA Method 6010/7471. Two (2) soil samples and one (1) blind duplicate were analyzed for polychlorinated biphenyls (PCBs) via USEPA Method 8082. Results were compared to New York Codes, Rules and Regulations (6NYCRR) Part 375 Unrestricted Use, Commercial Use and Protection of Groundwater Soil Cleanup Objectives (SCOs).

VOCs:

Five (5) soil samples and one (1) blind duplicate were analyzed for VOCs. VOCs were detected in one (1) soil sample (SB-08 9.4-ft bgs) above laboratory method detection limits (MDLs); however, the concentrations detected do not exceed 6NYCRR Part 375 Unrestricted Use, Commercial Use, or Protection of Groundwater SCOs. Detected compounds in SB-08 include 1,2,4-trimethlybenzene, 1,3,5-trimethylbenzene, acetone, benzene, methyl cyclohexane, p-isopropyltoluene, p/m-xylene, and toluene. VOCs were not detected above laboratory MDLs in any other soil samples.

SB-08 was advanced on the southern portion of the Site. It should be noted that the south adjacent property addressed 571-593 East Main Street was historically utilized as a gasoline filling station, a drycleaner and tailor, a motors company, and an automobile repair facility.

SVOCs:

Three (3) soil samples and one (1) blind duplicate were analyzed for SVOCs. SVOCs were detected in all three (3) samples and the blind duplicate above laboratory MDLs. Several SVOCs detected in SB-05 (2-4-ft bgs) exceed 6NYCRR Part 375 Unrestricted Use SCOs. Benzo(a)pyrene was detected in SB-05 (2-4-ft bgs) above 6NYCRR Part 375 Commercial Use SCOs. Benzo(a)anthracene, benzo(b)fluoranthene and chrysene were detected in SB-05 (2-4-ft bgs) above 6NYCRR Part 375 Commercial Use SCOs. Benzo(a)anthracene, benzo(b)fluoranthene and chrysene were detected in SB-05 (2-4-ft bgs) above 6NYCRR Part 375 Protection of Groundwater SCOs. Fill material was present in this sample location.

Metals:

Three (3) soil samples and one (1) blind duplicate were analyzed for metals. Metals were detected in all three (3) samples and the blind duplicate above laboratory MDLs. Concentrations of lead and mercury in SB-03 (2-5-ft bgs) exceed 6NYCRR Part 375 Unrestricted Use SCOs. Metals detected do not exceed 6NYCRR Part 375 Commercial Use or Protection of Groundwater SCOs. Fill material was present in this sample location.

PCBs:

Two (2) soil samples and one (1) blind duplicate were analyzed for PCBs. PCBs were not detected above laboratory MDLs.

Refer to Table 1 and Table 2 for a summary of detected compounds in soil. The laboratory report is

G

included as Appendix 3.

6.0 CONCLUSIONS

LaBella was retained by the City of Rochester, to conduct a Phase II ESA at the property located at 236 University Avenue, City of Rochester, Monroe County, New York. The ESA consisted of the advancement of ten (10) soil borings, installation of five (5) groundwater monitoring wells and laboratory analysis of soil samples. This investigation was limited to the overburden and groundwater was not encountered in the overburden during this investigation and thus groundwater samples were not obtained. This ESA was performed to evaluate the Site subsurface based on the historical uses of the Site and adjacent properties. The following conclusions have been made:

- The GPR survey did not identify anomalies indicative of USTs.
- Evidence of impairment including elevated PID readings, odors, and/or staining were not encountered during field screening.
- Fill material was identified in seven (7) of the ten (10) soil borings. Fill material consisted of ash, concrete, asphalt, and/or brick and is indicative of typical urban fill material. Metals, lead and mercury, were detected above 6NYCRR Part 375 Unrestricted Use SCOs in one (1) of the soil samples collected that contained fill material (SB-03 2-5-ft bgs). Several SVOCs were detected above 6NYCRR Part 375 Unrestricted Use SCOs in one (1) of the soil samples collected that contained fill material (SB-05 2-4-ft bgs). Three (3) compounds, benzo(a)anthracene, benzo(b)fluoranthene and chrysene exceeded 6NYCRR Part 375 Protection of Groundwater SCOs and one (1) compound, benzo(a)pyrene, exceeded 6NYCRR Part 375 (2-4-ft bgs).
- Petroleum compounds were detected in one (1) of five (5) soil samples analyzed for VOCs (SB-08 9.4-ft bgs) above laboratory MDLs; however, concentrations do not exceed 6NYCRR Part 375 Unrestricted Use, Commercial Use, or Protection of Groundwater SCOs. SB-08 was advanced on the southern portion of the Site. It should be noted the southern adjacent property addressed as 571-593 East Main Street was historically utilized as a gasoline filling station, a drycleaner and tailor, a motors company, and an automobile repair facility. A source of petroleum on-Site was not identified.
- PCBs were not detected in soil samples above laboratory MDLs.
- Groundwater was not encountered in any of the monitoring wells and groundwater was not evaluated during this assessment.

7.0 RECOMMENDATIONS

Based on the lack of apparent source of petroleum on Site and lack of USTs identified by the GPR survey, further investigation and/ or active remediation does not appear to be warranted. It is recommended an Environmental Management Plan (EMP) be developed due to the presence of fill material containing elevated levels of SVOCs and metals and the potential for discrete areas of impacts based on the historical use of the Site and adjacent properties. Soil containing fill material or other unanticipated impacts/ structures encountered during future subsurface work should be managed in accordance with applicable regulations including but not limited to 6NYCRR Part 360. The EMP should outline procedures required for managing impacted soil/ fill material or unanticipated structures including handling, sampling, and transportation and disposal requirements during future subsurface work. The EMP should be provided to any current and future Site owners, architects/ engineers, tenants/ occupants, developers/ contractors, facility managers, etc. that may

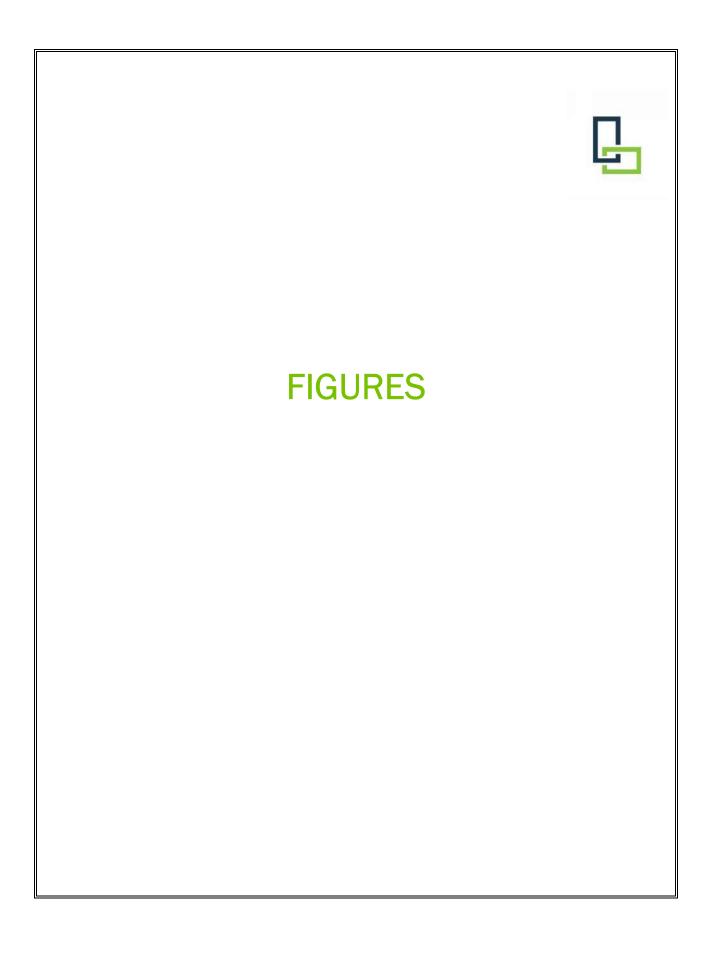
come into contact with fill material or other unanticipated subsurface impacts or subsurface structures.

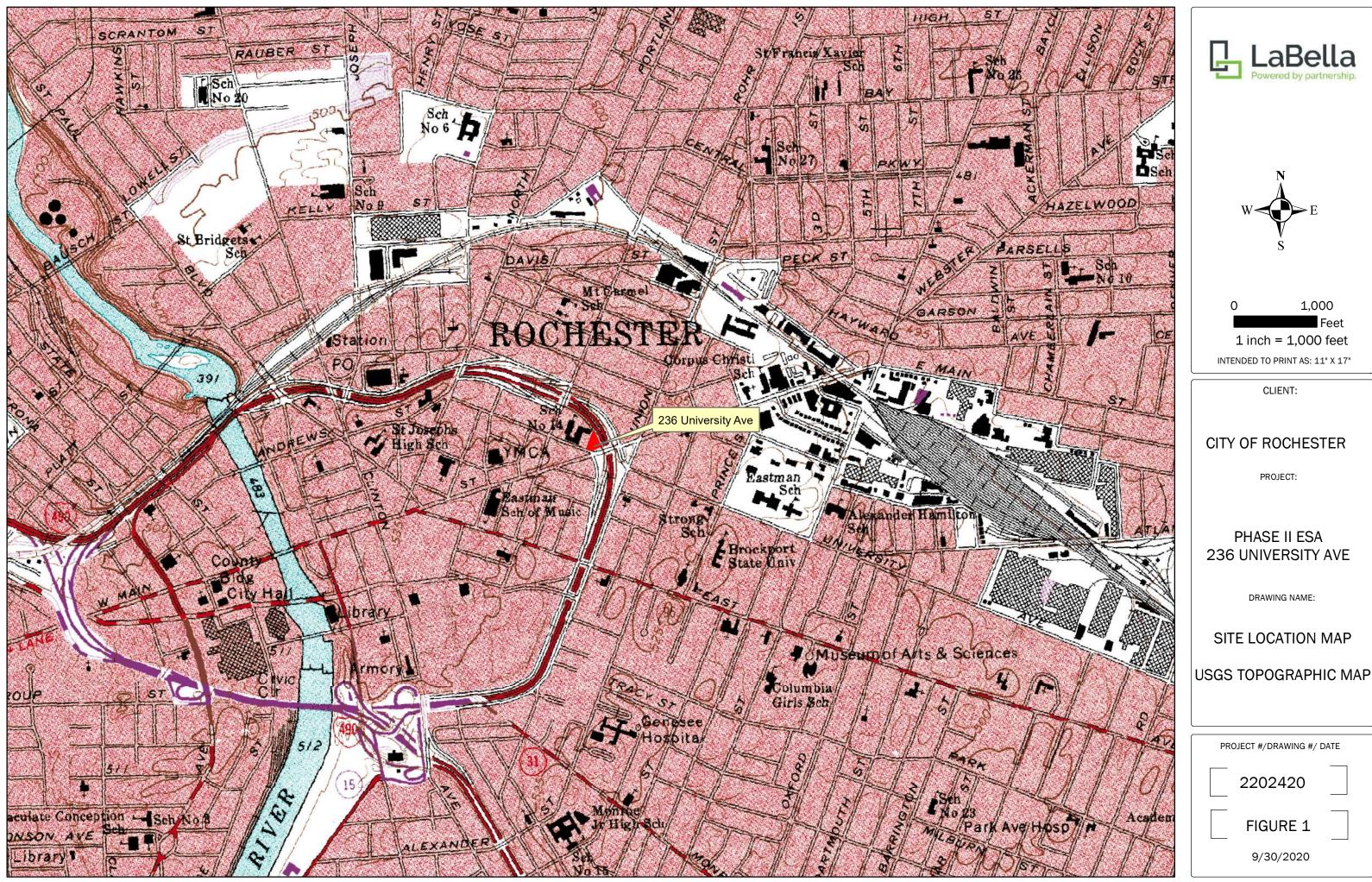
A copy of all information collected during this assessment, including maps, notes, analytical data and other material will be kept on file at the offices of LaBella Associates, D.P.C. This information is available upon the request.

8.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

Report Prepared By:

alement bett

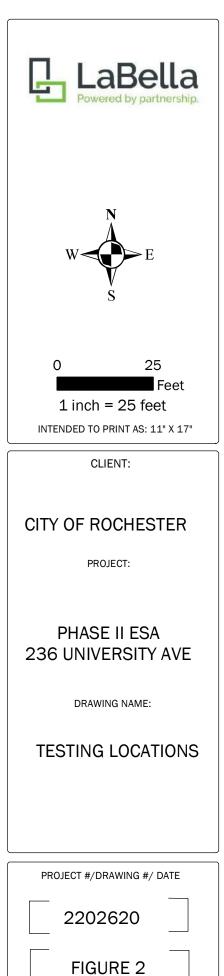

Alexander Brett Environmental Engineer

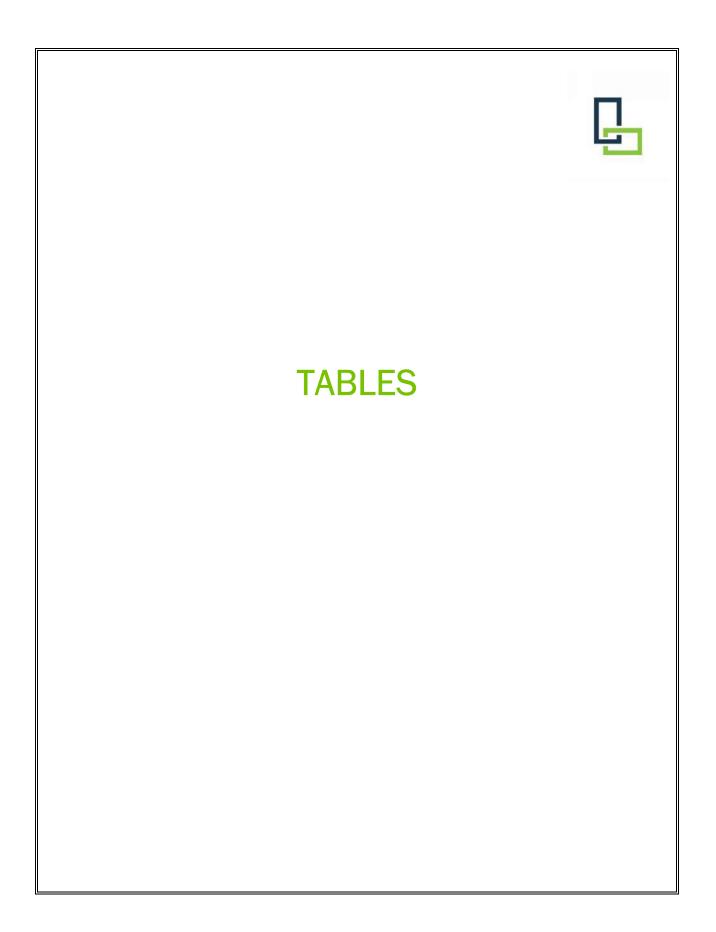

Report Reviewed By:

An Brilas

Ann A. Barber, PE Project Manager

\\PROJECTS2\PROJECTSNZ-2\ROCHESTER, CITY\2202620 - 236 UNIVERSITY AVE PH II\REPORTS\DRAFT 2202620 - PHII 236 UNIVERSITY.DOCX




\\Projects2\ProjectsNZ-2\Rochester, City\2202620 - 236 University Ave Ph II\Drawings\Figure 1.mxd

\\Projects2\ProjectsNZ-2\Rochester, City\2202620 - 236 University Ave Ph II\Drawings\Figure 2.mxd

10/1/2020

Table 1Phase II Environmental Site Assessment236 University Avenue, Rochester, New YorkDetected VOCs in SoilLaBella Project # 2202620

SAMPLE ID:	NYCRR Part 375	NYCRR Part 375	NYCRR Part 375 Protection of	SB-01	SB-03	SB-05	DUPLICATE (SB- 05)	SB-06	SB-08
COLLECTION DATE:	Unrestricted			9/18/2020	9/18/2020	9/18/2020	9/18/2020	9/18/2020	9/18/2020
SAMPLE DEPTH:		Commercial	Groundwater	9.85'	10.0'	9.6'	9.6'	9.9'	9.4'
SAMPLE MATRIX:	Use SCOs	Use SCOs	SCOs	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
VOCs									
1,1,1-Trichloroethane	0.68	500	0.68	<0.00016 U	<0.00016 U	<0.00014 U	<0.00014 U	<0.00013 U	<0.00012 U
1,1,2,2-Tetrachloroethane	NL	NL	NL	<0.00016 U	<0.00016 U	<0.00014 U	<0.00014 U	<0.00013 U	<0.00012 U
1,1,2-Trichloroethane	NL	NL	NL	<0.00026 U	<0.00025 U		<0.00023 U	<0.0002 U	<0.00019 U
1,1-Dichloroethane	0.27	240	0.27	<0.00014 U	<0.00014 U		<0.00012 U	<0.00011 U	<0.0001 U
1,1-Dichloroethene	0.33	500	0.33	<0.00023 U	<0.00022 U		<0.0002 U	<0.00018 U	<0.00017 U
1,2,4-Trichlorobenzene	NL	NL	NL	<0.00026 U	<0.00026 U	<0.00023 U	<0.00023 U	<0.00021 U	<0.0002 U
1,2,4-Trimethylbenzene	3.6	190	3.6	<0.00032 U	<0.00032 U	<0.00028 U	<0.00028 U	<0.00025 U	0.00042 J
1,2-Dibromo-3-chloropropane	NL	NL	NL	<0.00096 U	<0.00094 U		<0.00085 U	<0.00076 U	<0.00072 U
1,2-Dibromoethane	NL	NL	NL	<0.00027 U	<0.00026 U		<0.00024 U	<0.00021 U	<0.0002 U
1,2-Dichlorobenzene	1.1	500	1.1	<0.00014 U	<0.00014 U		<0.00012 U	<0.00011 U	<0.0002 U
1,2-Dichloroethane	0.02	30	0.02	<0.00014 0 <0.00025 U	<0.00014 U	<0.00012 U	<0.00012 U	<0.00011 U	<0.0001 U
1,2-Dichloropropane	NL	NL	NL	<0.00023 U	<0.00024 U	<0.00022 0 <0.00011 U	<0.00022 0 <0.00011 U	<0.0002 0 <0.0001 U	<0.00019 U
1,3,5-Trimethylbenzene	8.4	190	8.4	<0.00012 0 <0.00018 U	<0.00012 0 <0.00018 U	<0.00011 U	<0.00011 0 <0.00016 U	<0.0001 U	0.00031 J
1,3-Dichlorobenzene	2.4	280	2.4	<0.00018 U <0.00014 U	<0.00018 U <0.00014 U		<0.00018 U <0.00012 U	<0.00015 U <0.00011 U	<0.00031 J <0.00011 U
1,4-Dichlorobenzene	2.4	130	2.4		<0.00014 U <0.00016 U	<0.00012 U <0.00014 U	<0.00012 U <0.00014 U	<0.00011 U <0.00013 U	<0.00011 U <0.00012 U
,			0.12						
2-Butanone	0.12 NL	500 NL	0.12 NL	<0.0021 U <0.0011 U	<0.0021 U <0.0011 U	<0.0019 U <0.001 U	<0.0019 U <0.001 U	<0.0017 U <0.0009 U	<0.0016 U <0.00086 U
2-Hexanone									
4-Methyl-2-pentanone	NL	NL	NL	<0.0012 U	<0.0012 U		<0.0011 U	<0.00098 U	<0.00093 U
Acetone	0.05	500	0.05	<0.0046 U	<0.0046 U		<0.0041 U	<0.0037 U	0.0075
Benzene	0.06	44	0.06	<0.00016 U	<0.00016 U		<0.00014 U	<0.00013 U	0.00016 J
Bromodichloromethane	NL	NL	NL	<0.0001 U	<0.0001 U	<0.00009 U	<0.00009 U	<0.0008 U	<0.00008 U
Bromoform	NL	NL	NL	<0.00024 U	<0.00023 U	<0.00021 U	<0.00021 U	<0.00019 U	<0.00018 U
Bromomethane	NL	NL	NL	<0.00056 U	<0.00055 U	<0.00049 U	<0.00049 U	<0.00044 U	<0.00042 U
Carbon disulfide	NL	NL	2.7	<0.0044 U	<0.0043 U	<0.0039 U	<0.0039 U	<0.0035 U	<0.0033 U
Carbon tetrachloride	0.76	22	0.76	<0.00022 U	<0.00022 U		<0.0002 U	<0.00018 U	<0.00017 U
Chlorobenzene	1.1	500	1.1	<0.00012 U	<0.00012 U	<0.00011 U	<0.00011 U	<0.0001 U	<0.00009 U
Chloroethane	NL	NL	NL	<0.00044 U	<0.00043 U	<0.00038 U	<0.00038 U	<0.00034 U	<0.00033 U
Chloroform	0.37	350	0.37	<0.00013 U	<0.00013 U	<0.00012 U	<0.00012 U	<0.00011 U	<0.0001 U
Chloromethane	NL	NL	NL	<0.0009 U	<0.00088 U	<0.00079 U	<0.00079 U	<0.00071 U	<0.00068 U
cis-1,2-Dichloroethene	0.25	500	0.25	<0.00017 U	<0.00016 U	<0.00015 U	<0.00015 U	<0.00013 U	<0.00013 U
cis-1,3-Dichloropropene	NL	NL	NL	<0.00015 U	<0.00015 U	<0.00013 U	<0.00013 U	<0.00012 U	<0.00011 U
Cyclohexane	NL	NL	NL	<0.00052 U	<0.00052 U	<0.00046 U	<0.00046 U	<0.00042 U	<0.00039 U
Dibromochloromethane	NL	NL	NL	<0.00013 U	<0.00013 U	<0.00012 U	<0.00012 U	<0.00011 U	<0.0001 U
Dichlorodifluoromethane	NL	NL	NL	<0.00088 U	<0.00087 U	<0.00078 U	<0.00078 U	<0.0007 U	<0.00066 U
Ethylbenzene	1	390	1	<0.00014 U	<0.00013 U	<0.00012 U	<0.00012 U	<0.00011 U	<0.0001 U
Freon-113	NL	NL	NL	<0.00067 U	<0.00066 U	<0.00059 U	<0.00059 U	<0.00053 U	<0.0005 U
Isopropylbenzene	NL	NL	NL	<0.0001 U	<0.0001 U	<0.00009 U	<0.00009 U	<0.00008 U	<0.00008 U
Methyl Acetate	NL	NL	NL	<0.00092 U	<0.0009 U	<0.00081 U	<0.00081 U	<0.00072 U	<0.00069 U
Methyl cyclohexane	NL	NL	NL	<0.00058 U	<0.00057 U	<0.00051 U	<0.00051 U	<0.00046 U	0.0027 J
Methyl tert butyl ether	0.93	500	0.93	<0.00019 U	<0.00019 U	<0.00017 U	<0.00017 U	<0.00015 U	<0.00014 U
Methylene chloride	0.05	500	0.05	<0.0022 U	<0.0022 U	<0.0019 U	<0.0019 U	<0.0017 U	<0.0016 U
n-Butylbenzene	12	NL	NL	<0.00016 U	<0.00016 U	<0.00014 U	<0.00014 U	<0.00013 U	<0.00012 U
n-Propylbenzene	3.9	500	3.9	<0.00016 U	<0.00016 U		<0.00014 U	<0.00013 U	<0.00012 U
Naphthalene	12	500	12	<0.00063 U	<0.00062 U		<0.00055 U	<0.0005 U	<0.00047 U
o-Xylene	0.26	500	1.6	<0.00028 U	<0.00028 U		<0.00025 U	<0.00022 U	<0.00021 U
p-lsopropyltoluene	NL	NL	NL	<0.0001 U	<0.0001 U		<0.00009 U	<0.00008 U	0.00009 J
p/m-Xylene	0.26	500	1.6	<0.00054 U	<0.00053 U		<0.00048 U	<0.00043 U	0.00047 J
sec-Butylbenzene	11	500	11	<0.00014 U	<0.00014 U		<0.00012 U	<0.00011 U	<0.0001 U
Styrene	NL	NL	NL	<0.00019 U	<0.00014 U		<0.00012 U	<0.00011 U	<0.00014 U
tert-Butylbenzene	5.9	500	5.9	<0.00019 0 <0.00011 U	<0.00010 U		<0.00017 U	<0.00010 U	<0.00014 0 <0.00009 U
Tetrachloroethene	1.3	150	1.3	<0.00011 0 <0.00019 U	<0.00011 0 <0.00018 U		<0.0001 U	<0.00015 U	<0.00014 U
Toluene	0.7	500	0.7	<0.00019 0 <0.00052 U	<0.00018 U		<0.00017 0 <0.00046 U	<0.00013 U <0.00041 U	0.00014 U
trans-1,2-Dichloroethene	0.19	500	0.19	<0.00032 0 <0.00013 U	<0.00031 U		<0.00048 0 <0.00012 U	<0.00041 U	<0.00047 J
	NL 0.19	NL	0.19 NL	<0.00013 U <0.00026 U	<0.00013 U <0.00026 U		<0.00012 U <0.00023 U	<0.0001 U <0.00021 U	<0.0001 U
trans-1,3-Dichloropropene		200							
Trichloroethene	0.47		0.47	<0.00013 U				<0.0001 U	<0.0001 U
Trichlorofluoromethane	NL 0.02	NL 12	NL 0.02	<0.00067 U	<0.00066 U		<0.00059 U	<0.00053 U	<0.0005 U
Vinyl chloride	0.02	13	0.02	<0.00032 U	<0.00032 U		<0.00028 U	<0.00026 U	<0.00024 U
Total VOCs	NL	NL	NL						0.01212 -

NOTES:

All values displayed in milligrams per kilograms (mg/kg) or parts per million (ppm)

"<" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

Bold font indicates the compound was detected above the indicated laboratory method detection limit (MDL).

Underlined font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objective (SCO)

Red font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Commercial Use SCO

Yellow highlighted font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Protection of Groundwater SCO

VOCs analyzed by USEPA Method 8260

NL indicates Not Listed

J indicates an estimated value

Table 2 Phase II Environmental Site Assessment 236 University Avenue, Rochester, New York Detected SVOCs, Metals, and PCBs in Soil LaBella Project # 2202620

SAMPLE ID:	NYCRR Part 375	NYCRR Part 375	NYCRR Part 375	SB-03	SB-05	DUPLICATE (SB-05)	SB-06	SB-07
COLLECTION DATE:	Unrestricted Use	Commercial Use	Protection of	9/18/2020	9/18/2020	9/18/2020	9/18/2020	9/18/2020
SAMPLE DEPTH:	SCOs	SCOs	Groundwater SCOs	2-5'	2-4'	2-4'	4-7'	3-5'
SAMPLE MATRIX:				SOIL	SOIL	SOIL	SOIL	SOIL
SVOCs								
Acenaphthene	20	500	98	<0.1 U	0.58	0.019	<0.019 U	
Acenaphthylene	100	500	107	<0.15 U		<0.028 L	0.029 J	
Anthracene	100	500	1000	<0.19 U	1.6	0.054	0.045 J	
Benzo(a)anthracene	1	5.6	1	0.21 J	2.2	0.13	0.38	
Benzo(a)pyrene	1	1	22	<0.24 U	<u>1.9</u>	0.15	0.39	
Benzo(b)fluoranthene	1	5.6	1.7	0.3 J	2	0.19	0.5	
Benzo(ghi)perylene	100	500	1000	0.16 J	0.76	0.12	0.26	
Benzo(k)fluoranthene	0.8	56	1.7	<0.16 U	0.83	0.073	0.14	
Chrysene	1	56	1	0.27 J	<u>1.8</u>	0.14	0.35	
Dibenzo(a,h)anthracene	0.33	0.56	1000	<0.11 U	0.23	0.024	0.06 J	
Fluoranthene	100	500	1000	0.59	4.7	0.42	0.63	
Fluorene	30	500	386	<0.096 U	0.9	0.022	<0.018 U	
Indeno(1,2,3-cd)pyrene	0.5	5.6	8.2	0.15 J	0.93	0.11	0.27	
Phenanthrene	100	500	1000	0.3 J	5.6	0.23	0.21	
Pyrene	100	500	1000	0.49 J	3.6	0.32	0.6	
Total SVOCs	NL	NL	NL	2.47 -	27.91 -	2.002 -	3.864 -	
PCBs								
Aroclor 1016	NL	NL	NL	-	<0.0031 U	<0.00326 L	-	<0.00324 U
Aroclor 1221	NL	NL	NL	-	<0.0035 L	<0.00367 L	-	<0.00366 U
Aroclor 1232	NL	NL	NL	-	<0.00741 U	<0.00777 L	-	<0.00774 U
Aroclor 1242	NL	NL	NL	-	<0.00471 U	<0.00494 L		<0.00492 U
Aroclor 1248	NL	NL	NL	-	<0.00524 U	<0.0055 L		<0.00548 U
Aroclor 1254	NL	NL	NL	-	<0.00382 U	<0.00401 l	-	<0.004 U
Aroclor 1260	NL	NL	NL	-	<0.00646 L	<0.00678 L		<0.00675 U
Aroclor 1262	NL	NL	NL	-	<0.00444 L	<0.00466 L	-	<0.00464 U
Aroclor 1268	NL	NL	NL	-	<0.00362 L		-	<0.00378 U
PCBs, Total	0.1	1	3.2	-	<0.0031 U	<0.00326 L	-	<0.00324 U
TOTAL METALS								
Arsenic, Total	13	16	16	5.01	3.78	2.48	2.07	
Barium, Total	350	400	820	198	60.2	73.8	20.4	
Cadmium, Total	2.5	9.3	7.5	0.668	0.451	0.567	0.286 J	
Chromium, Total	NL	NL	NL	8.64	7.79	7.67	4.18	
Lead, Total	63	1000	450	<u>139</u>	11.4	12.4	32.5	
Mercury, Total	0.18	2.8	0.73	<u>0.42</u>	0.136	0.111	0.142	
Selenium, Total	3.9	1500	4	<0.116 U	<0.108 U	0.229	<0.108 U	
Silver, Total	2	1500	8.3	0.149 J	<0.118 U	<0.122 l	<0.119 U	

NOTES:

All values displayed in milligrams per kilograms (mg/kg) or parts per million (ppm)

"<" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

Bold font indicates the compound was detected above the indicated laboratory method detection limit (MDL).

Underlined font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objective (SCO)

Red font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Commercial Use SCO

Yellow highlighted font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Protection of Groundwater SCO

SVOCs analyzed by USEPA Method 8270

Metals analyzed by USEPA Method 6010/7471

PCBs analyzed by USEPA Method 8082

NL indicates Not Listed

J indicates an estimated value

Table 3

Phase II Environmental Site Assessment 236 University Avenue, Rochester, New York Soil Boring and Monitoring Well Coordinates LaBella Project # 2202620

ID	Easting	Northing	Elevation
SB-01	1411655.35	1152840.71	515.87
SBMW-02	1411666.36	1152801.85	515.12
SB-03	1411637.95	1152771.23	515.82
SB-04	1411635.48	1152872.21	515.75
SBMW-05	1411600.43	1152875.80	516.00
SBMW-06	1411578.65	1152819.08	515.69
SB-07	1411624.43	1152818.43	
SBMW-08	1411578.21	1152771.57	514.88
SB-09	1411598.90	1152794.73	515.67
SBMW-10	1411616.62	1152922.41	515.23

Notes:

Elevations in feet above mean sea level.

Elevations for monitoring well locations measured from top of casing.

Data for exterior testing locations was collected using an Arrow Gold GPS.

Interior soil boring SB-07 is approximate; elevation not measured.

APPENDIX 1

GPR Survey Report

NEW YORK LEAK DETECTION, INC.		
PO Box 269, Jamesville, NY 13078		
315-469-4601	info@nyld.com	

Date(s) on site: 9/3/20					
Technician: Sonny Kentile	Other Technicians on site:				
Customer: LaBella Associates, P.C.					
Site Address: 236 University Avenue Rochester, NY 14607					
Contact Person: Ann Barber	Phone : 585-519-8266				
Scope of Work: Utility Location Services – GPR to scan for tanks / anomalies					
Type of Service: mark all that apply					
Leak Detection	Comprehensive Leak Survey	Pressurized Pipe Inspection			
Infrastructure Assessment	Utility Location/GPR	Utility Mapping/AutoCAD			
EM Survey	Video Inspection	Valve Exercising			
Type of Equipment Used:	mark all that apply				
Type of Equipment Used :	mark all that apply	MetroTech vLocPro2			
		MetroTech vLocPro2 PosiTector UTG G3			
Profiler EMP 400	RD8000 Pipe & Cable Locator				
 Profiler EMP 400 LC2500 Leak Correlator 	 RD8000 Pipe & Cable Locator Noggin 250 MHz 	PosiTector UTG G3			
 Profiler EMP 400 LC2500 Leak Correlator S-30 Surveyor 	 RD8000 Pipe & Cable Locator Noggin 250 MHz Noggin 500 MHz 	 PosiTector UTG G3 Video Inspection Camera 			
 Profiler EMP 400 LC2500 Leak Correlator S-30 Surveyor Sonde / Locatable Rodder 	 RD8000 Pipe & Cable Locator Noggin 250 MHz Noggin 500 MHz Conquest 1000 MHz 	 PosiTector UTG G3 Video Inspection Camera Helium # Bottles 			
 Profiler EMP 400 LC2500 Leak Correlator S-30 Surveyor Sonde / Locatable Rodder Leica Robotic Total Station 	 RD8000 Pipe & Cable Locator Noggin 250 MHz Noggin 500 MHz Conquest 1000 MHz Leica RTK GPS 	 PosiTector UTG G3 Video Inspection Camera Helium # Bottles JD7 Investigator 			
 Profiler EMP 400 LC2500 Leak Correlator S-30 Surveyor Sonde / Locatable Rodder Leica Robotic Total Station 	 RD8000 Pipe & Cable Locator Noggin 250 MHz Noggin 500 MHz Conquest 1000 MHz Leica RTK GPS 	 PosiTector UTG G3 Video Inspection Camera Helium # Bottles JD7 Investigator 			
 Profiler EMP 400 LC2500 Leak Correlator S-30 Surveyor Sonde / Locatable Rodder Leica Robotic Total Station Valve Maintenance Trailer 	 RD8000 Pipe & Cable Locator Noggin 250 MHz Noggin 500 MHz Conquest 1000 MHz Leica RTK GPS 	 PosiTector UTG G3 Video Inspection Camera Helium # Bottles JD7 Investigator 			

NEW YORK LEAK DETECTION, INC. PO Box 269, Jamesville, NY 13078 315-469-4601 info@nyld.com

Field Report – Utility Location

Site Access/Safety Training: N/A Expiration Date: N/A

Ground Cover/Weather Conditions: Asphalt & Concrete / 80 & Overcast

Instructions from Onsite Contact: We are going to conduct an environmental study on the property, clear all utilities in the area. We are especially interested to see if there are any UST's or related buried structure.

Information Transfer:

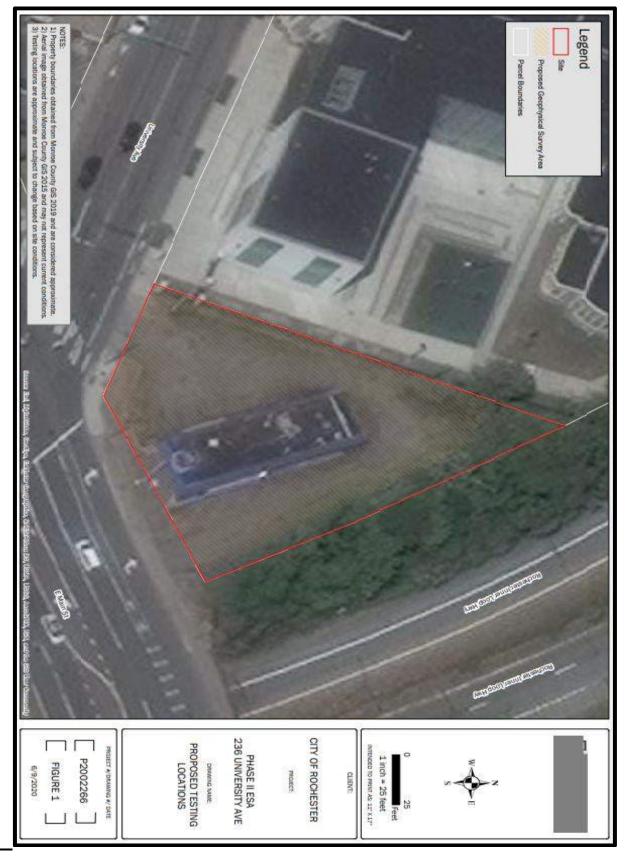
In addition to this field report, mark all that apply:

Information relayed on site to:	Hand drawn sketch	Maps updated onsite
Dennis? City employee	Photographs	Surveyed by others
	Surveyed and AutoCAD Mapping by NYLD	

Notes/Testing Results:

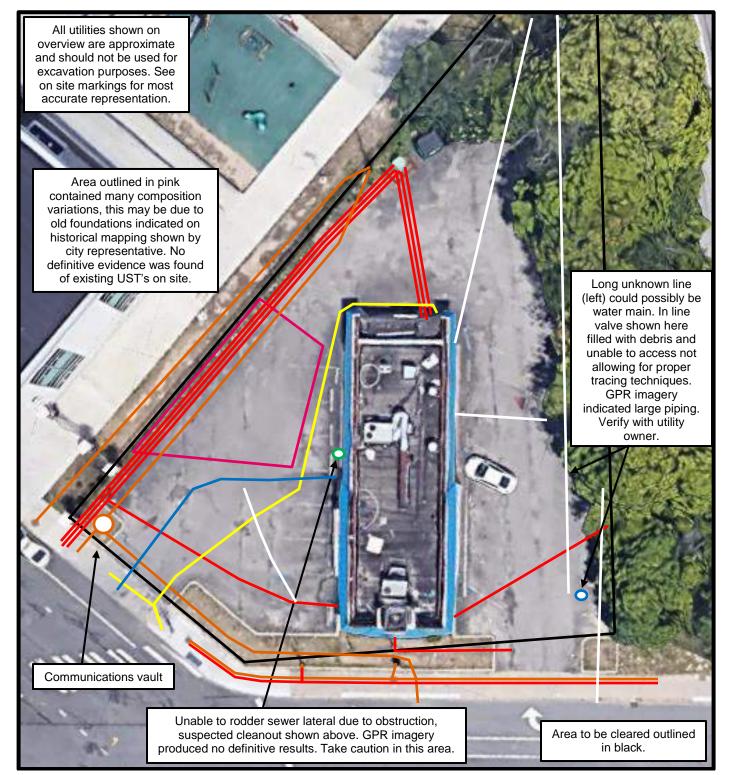
A visual inspection was performed in the area of concern to assess for utility structures. Utilizing the RD8000 in conductive, inductive, and power/radio modes, located and marked out utilities as shown in the area below. Sonde/Locatable Rodder was used within applicable utilities. Additional confirmation performed with the Noggin using the 250 and/or 500 MHz antenna. GPR signal reception varies depending upon soil conditions. Therefore, it is utilized in combination with various other geophysical tools for the most accurate verification of known/unknown utilities and/or structures.

Utilities were painted in appropriate color, marked with flags and depths provided where possible.


GPR imagery was limited between 3 & 5 feet depending upon specific location on site. Additional caution required.

This report is back up to information relayed and marked on site at time of service. It is for informational purposes only.

NEW YORK LEAK DETECTION, INC. PO Box 269, Jamesville, NY 13078 315-469-4601 info@nyld.com


Field Report – Utility Location

Provided Mapping

NEW YORK LEAK DETECTION, INC. PO Box 269, Jamesville, NY 13078 315-469-4601 info@nyld.com

Key	
Blue	Water
Red	Power
Orange	Communications
Yellow	Gas/Flammable Fuel
White	Unknown
Green	Storm/Sanitary

NEW YORK LEAK DETECTION, INC. PO Box 269, Jamesville, NY 13078 315-469-4601 info@nyld.com

NEW YORK LEAK DETECTION, INC. PO Box 269, Jamesville, NY 13078 315-469-4601 info@nyld.com

NYLD Infrastructure

NEW YORK LEAK DETECTION, INC. PO Box 269, Jamesville, NY 13078 315-469-4601 info@nyld.com

Field Report – Utility Location

NYLD Infrastructure

NEW YORK LEAK DETECTION, INC. PO Box 269, Jamesville, NY 13078 315-469-4601 info@nyld.com

Field Report – Utility Location

NYLD Infrastructure

NEW YORK LEAK DETECTION, INC. PO Box 269, Jamesville, NY 13078 315-469-4601 info@nyld.com

Field Report – Utility Location

Subsurface Limitations

Utility locating is the art and science of using non-intrusive methods to search for, find and mark out buried, unseen conduits or other objects. There are innumerable variables involved in locating underground utilities, such as topography, size and complexity of job site, depth and proximity of buried utilities, above ground obstructions, short turnaround schedules, changes in the scope of work, lack of (or outdated) blueprints and adverse weather conditions.

New York Leak Detection, Inc. (NYLD) has made a substantial financial investment in crossover technologies and training to meet our clients' needs when locating and mapping utilities. However, due to unpredictable factors that may affect the results, NYLD makes no guarantee, expressed or implied, with respect to the completeness or accuracy of the information provided. Any use or reliance on the information or opinion is at the risk of the user and NYLD shall not be liable for any damage or injury arising out of the use or misuse of the information provided.

NYLD strives to provide the highest quality utility location services possible with the technical expertise of our field specialists and state-of-the-art equipment used. Every effort is made to provide our clients with the most accurate information possible without adverse consequences.

NYLD makes no guarantee that all subsurface utilities and obstructions will be detected. GPR signal penetration might not be sufficient to detect all utilities. NYLD is not responsible for detecting subsurface utilities and obstructions that normally cannot be detected by the methods employed or that cannot be detected because of site conditions. NYLD is not responsible for maintaining mark-outs after leaving the work area. Mark-outs made in inclement weather and in high traffic areas may not last. Surveyor assumes responsibility of picking up data on site.

APPENDIX 2

Field Logs

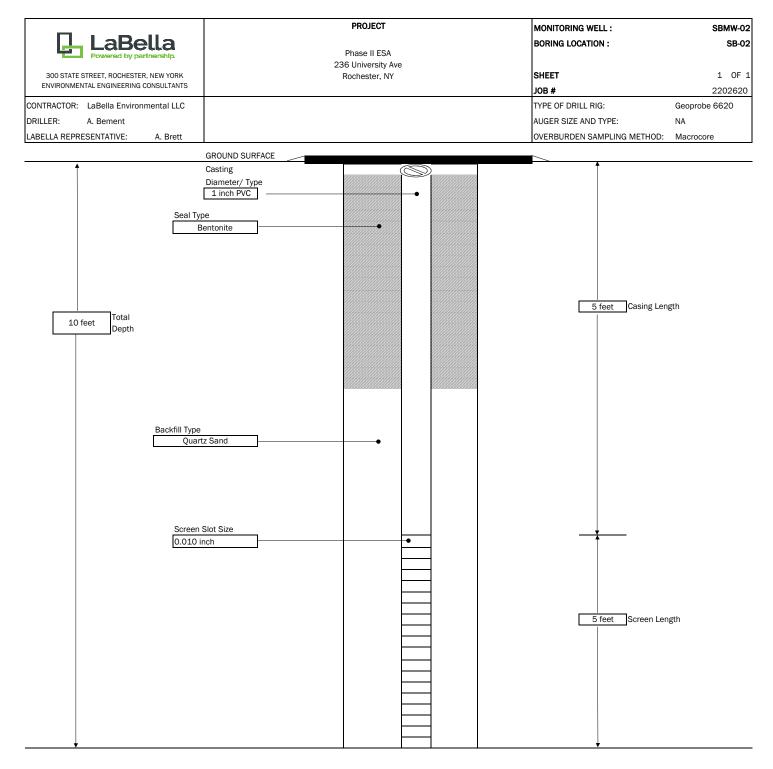
г	1 LaB				PROJECT Phase II E		BORING: SHEET	SB-01 1 of 1
4		partnership.			236 Universit	y Ave	JOB:	2202620
	- Towerca by	por a rora nos			Rochester,	NY	CHKD BY:	AAB
	300 STATE STREET, RO	CHESTER, NY			,		DATE:	9/18/2020
ENVIF	RONMENTAL ENGINEER	ING CONSULTANTS						
		LaBella Env. LLC		BORING LOCATIO			TIME:	NA
		A. Bement		GROUND SURFAC		NA	DATUM:	NA
	ELLA REPRESENTATIVE E OF DRILL RIG: Geopi			START DATE:	9/18/20	END DATE: 9/18/20 DRIVE SAMPLER TYPE: Macrocore	WEATHER:	60's, cloudy
	ER SIZE AND TYPE: NA					INSIDE DIAMETER: 2"		
	RBURDEN SAMPLING		I			OTHER:		
(FEET S)		SAMPLE					PID FIELD	
DEPTH (FEET BGS)	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET	-	VISUAL	CLASSIFICATION	SCREEN (PPM)	REMARKS
0	4.1/5.0'	S1 0-5'	BGS) 0.0'	Asphalt				
U	4.1/ 0.0	31 U-3	0.0		ine sand, some coarse	e to fine gravel, little silt, trace asphalt/debris,	0	
1				moist, no odor.				
2								
3			3.5'	Brown fine to more	dium sand, trace grave	l moist no odor		
4			0.0			.,		
5	3.2/4.85'	S2 5-9.85'						
5	3.2/4.85	32 5-9.85						
6			-	Similar to above,	dark brown, trace orga	nics (i.e., roots).		
7			7.0'	Light brown silty s	and, moist, no odor.			
				8				
8								
9								
10				Appears to be we	t in bottom quarter inc			Wet soil likely from jus
10					9.0	5' Refusal	•	small amount of water perched on potentially
11								bedrock.
12								Refusal on rock
13								
14								
15								
16								
17								
18								
19								
20								
				DEPTH (FT)		NOTES:		
	WATER LEVEL		BOTTOM OF	BOTTOM OF	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	4		
NA	NA	NA	NA	9.85'	NA			
	IERAL NOTES							
	 STRATIFICATION LI WATER LEVEL REAL 					S MAY BE GRADUAL. FIONS OF GROUNDWATER		
	BGS = Below Ground S	Surface	and = 35 - 50%		C = Coarse	R = Rounded		
	NA = Not Applicable		some = 20 - 35%	6	M = Medium	A = Angular		

					PROJECT Phase II ES		BORING: SHEET	SB - 02 1 of 1
		ella			236 University		JOB:	2202620
	Powered by	/ partnership.			-		CHKD BY:	AAB
	300 STATE STREET, RO	CHESTER NY			Rochester,	NI	DATE:	9/18/2020
	RONMENTAL ENGINEER						DATE.	3/10/2020
		LaBella Env. LLC		BORING LOCATIO	N: See Figure		TIME:	NA
DRI	LLER:	A. Bement		GROUND SURFAC	E ELEVATION	NA	DATUM:	NA
	ELLA REPRESENTATIVI			START DATE:	9/18/20	END DATE: 9/18/20	WEATHER:	60's, cloudy
	E OF DRILL RIG: Geop					DRIVE SAMPLER TYPE: Macrocore		
	ER SIZE AND TYPE: NA RBURDEN SAMPLING		I	1		INSIDE DIAMETER: 2" OTHER:		
DEPTH (FEET BGS)		SAMPLE			VISUAL	LASSIFICATION	PID FIELD	REMARKS
DEPTH BG	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET BGS)		VISUAL		SCREEN (PPM)	REMARKS
0	4.1/5.0'	S1 0-5'	0.0'	Asphalt			0	
1			0.3'	Brown coarse to f	fine sand and gravel, tra	ace silt, moist, no odor.		
2								
3								
4								
4								
5	4.0/5.0'	S2 5-10'						
6								
7			7.0'	Brown silty sand	and gravel, moist, no oo	lor.		
8								
9								
5								
10					10.)' Refusal	*	Refusal on rock
11								
12								
13								
14								
15								
16								
17								
18								
19								
20						NOTEO		
	WATER LEVEL	DATA	BOTTOM OF	DEPTH (FT) BOTTOM OF	GROUNDWATER	NOTES: 1" diameter well installed 5-ft of screen, !	5 ft of ricor to 10 th	as w/ourbbox
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	L Giameter weir installed 5-it of screen,	S-IT OF LISER TO TO-IT D	ss w/ curbbox
NA	NA	NA	10'	10'	NA	4		
	IERAL NOTES	IIA.	10	TO	110	1		
GEN	1) STRATIFICATION LI				IL TYPES, TRANSITIONS	MAY BE GRADUAL. IONS OF GROUNDWATER		
	BGS = Below Ground S NA = Not Applicable	Surface	and = 35 - 50% some = 20 - 35%	6	C = Coarse M = Medium	R = Rounded A = Angular		
			some = 20 - 35% little = 10 - 20%	v	F = Fine	SR = Subrounded		
			trace = $1 - 10\%$		VF = Very Fine	SA = Subangular		BORING: SB - 02

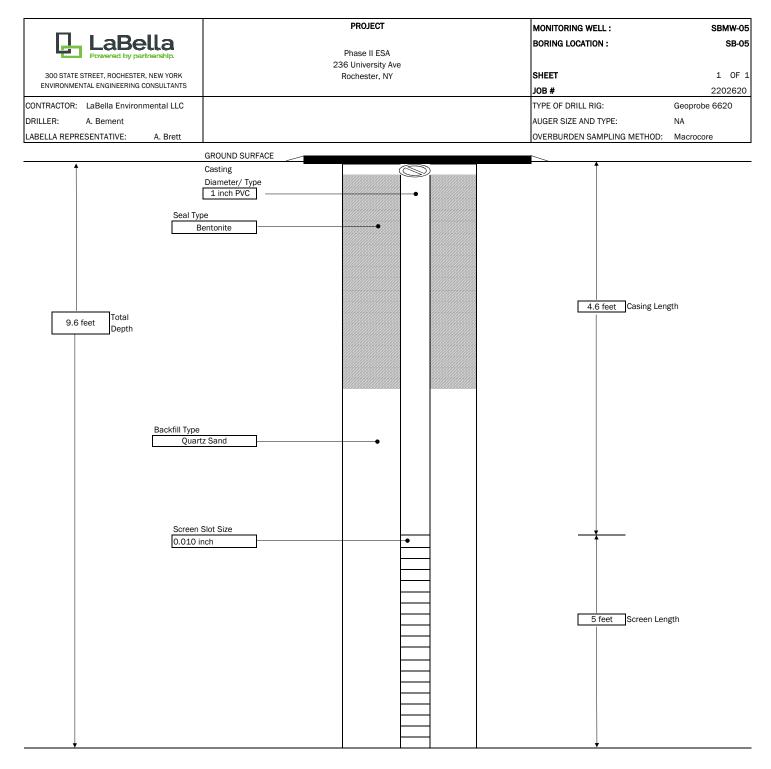
					PROJECT		BORING:	SB - 03
Г					PROJECT Phase II ES		SHEET	5B-03 1 of 1
		lella			236 Universit		JOB:	2202620
	Powered by	/ partnership.			Rochester,		CHKD BY:	AAB
	300 STATE STREET, RO	CHESTER, NY			nooncoter,		DATE:	9/18/2020
	RONMENTAL ENGINEER						BATE.	-, -,
		LaBella Env. LLC		BORING LOCATIO			TIME:	NA
		A. Bement		GROUND SURFAC		NA	DATUM:	NA SOla alaudu
	ELLA REPRESENTATIVI			START DATE:	9/18/20	END DATE: 9/18/20 DRIVE SAMPLER TYPE: Macrocore	WEATHER:	60's, cloudy
	ER SIZE AND TYPE: NA					INSIDE DIAMETER: 2"		
OVE	RBURDEN SAMPLING	METHOD: Direct Push		1		OTHER:		1
ET		SAMPLE					PID	
DEPTH (FEET BGS)					VISUAL C	LASSIFICATION	FIELD	REMARKS
B	SAMPLE RECOVERY	SAMPLE NO. AND	STRATA CHANGE (FEET				SCREEN (PPM)	
	(FEET)	DEPTH	BGS)				(1110)	
0	3.0/5.0'	S1 0-5'	0.0' 0.3'	Asphalt Brown cilty cond	trace grouply moist no	odor	0	
1			0.3	Brown Silty Sanu,	trace gravel, moist, no	0001.		
~				Cimilar to obove	tropp building debrie			
2			-	Similar to above,	trace building debris.			
3								
4			4.0'	Broken concrete				
_			4.4'			ding debris, moist, no odor.		
5	2.9/5.0'	S2 5-10'	5.0'	Brown silty sand,	moist, no odor.			
6								
7								
8								
9								
10					10	' Refusal	↓	Refusal on rock
11								
12								
13								
14								
15								
16								
17								
18								
19								
20				DEPTH (FT)		NOTES:		I
	WATER LEVEL	DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER	1		
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
NA	NA	NA	NA	10'	NA			
GEN	VERAL NOTES							
					IL TYPES, TRANSITIONS	MAY BE GRADUAL. IONS OF GROUNDWATER		
	BGS = Below Ground S	Surface	and = 35 - 50%		C = Coarse	R = Rounded		
	NA = Not Applicable		some = 20 - 35%	6	M = Medium	A = Angular		
	••		little = 10 - 20%		F = Fine	SR = Subrounded		
			trace = 1 - 10%		VF = Very Fine	SA = Subangular		BORING: SB - 03

					PROJECT		BORING	G:	SB - 04	
Г					Phase II ES		SHEET		1 of 1	1
Ļ		ella			236 Universit		JOB:		22026	20
	Powered by	partnership.			Rochester,		CHKD	RV.	AAB	
	300 STATE STREET, RO	CHESTER, NY					DATE:		9/18/20	
	RONMENTAL ENGINEERI	-					DATE.		0/ 20/ 20	20
		LaBella Env. LLC		BORING LOCATIO			TIME:		IA	
		A. Bement		GROUND SURFAC		NA	DATUM:		NA Na alaudu	
	ELLA REPRESENTATIVE E OF DRILL RIG: Geopi			START DATE:	9/18/20	END DATE: 9/18/20 DRIVE SAMPLER TYPE: Macrocore	WEATHEI	K: 0	60's, cloudy	
	ER SIZE AND TYPE: NA					INSIDE DIAMETER: 2"				
	RBURDEN SAMPLING			-		OTHER:				
(FEET S)		SAMPLE					PIE			
DEPTH (FEET BGS)	SAMPLE RECOVERY	SAMPLE NO. AND	STRATA CHANGE (FEET		VISUAL C	CLASSIFICATION	SCRE (PPM	EN	REMAR	KS
	(FEET)	DEPTH	BGS)							
0	2.4/5'	S1 0-5	0.0' 0.3'	Asphalt Brown coarse to t	ine sand and gravel s	ome broken cobbles, moist, no odor.	0			
1			0.0	2.0111 000100 101	cana ana paron o					
2										
4										
3										
4										
5	3.6/4.5'	S2 5-9.5'	5.0'	Brown silt little of	and trace organics (i.o.	, roots), moist, no odor.				
5	3.0/4.5	32 5-9.5	5.0	brown siit, iittie s	and trace organics (i.e.	, 100(5), 110(5), 110 0001.				
6			6.0'	Brown silty sand	coarse to fine), trace s	ilt, moist, no odor.				
7										
8										
9					9.0	3' Refusal		R	Refusal on rock	
10						, Hordour		A	bout a 1/4 inc	h of soil
11									it bottom appea kely water just	
10								0	on bedrock.	
12										
13										
14										
15										
16										
17										
18										
19										
20										
				DEPTH (FT)	Γ	NOTES:				
	WATER LEVEL		BOTTOM OF	BOTTOM OF	GROUNDWATER					
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED					
NA	NA	NA	NA	9.6'	NA					
					IL TYPES, TRANSITIONS					
	2) WATER LEVEL REA	DINGS HAVE BEEN MA	DE AT TIMES AND	UNDER CONDITIC	INS STATED, FLUCTUAT	IONS OF GROUNDWATER				
	BGS = Below Ground S	Surface	and = 35 - 50%		C = Coarse	R = Rounded				
	NA = Not Applicable		some = 20 - 35%	6	M = Medium	A = Angular				
			little = 10 - 20%		F = Fine	SR = Subrounded		-		
			trace = 1 - 10%		VF = Very Fine	SA = Subangular		В	BORING:	SB - 04

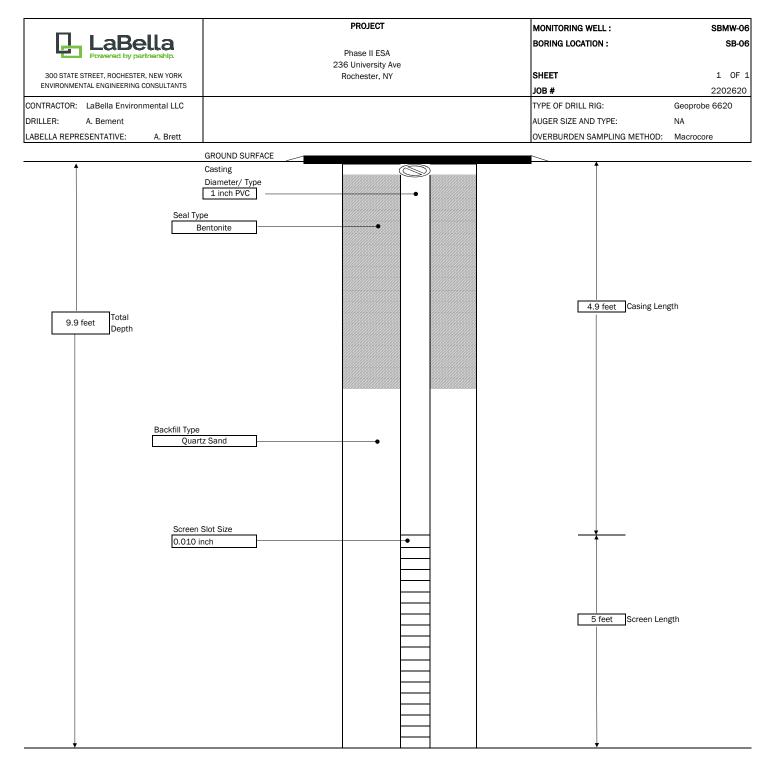
					PROJECT		BORING:	SB - 05		
– –					Phase II ES		SHEET	ЗВ-05 1 of 1		
		lella			236 Universit		JOB:	2202620		
	Powered by	/ partnership.						AAB		
	300 STATE STREET, RO	CHESTED NY			Rochester,	IN T	CHKD BY:	9/18/2020		
	SOU STATE STREET, RU									
		LaBella Env. LLC		BORING LOCATIO				NA		
		A. Bement		GROUND SURFAC		NA		NA		
	ELLA REPRESENTATIVI E OF DRILL RIG: Geop			START DATE:	9/18/20	END DATE: 9/18/20 DRIVE SAMPLER TYPE: Macrocore	WEATHER:	60's, cloudy		
	ER SIZE AND TYPE: NA					INSIDE DIAMETER: 2"				
	RBURDEN SAMPLING					OTHER:				
DEPTH (FEET BGS)		SAMPLE					PID FIELD			
BG	SAMPLE RECOVERY	SAMPLE NO. AND	STRATA		VISUAL C	CLASSIFICATION	SCREEN	REMARKS		
DEI	(FEET)	DEPTH	CHANGE (FEET				(PPM)			
0	3.6/5.0'	S1 0-5'	BGS) 0.0'	Asphalt			0			
			0.3		fine sand and gravel, m	oist, no odor.				
1										
2										
2										
3			3.5'	Small ash layer ~	1inch thick					
4			3.6'		fine sand and gravel, m	oist, no odor.				
5	3.2/5.0'	S2 5-9.6'	5.0'	Dark brown silt, li	ttle sand, trace organic	s (i.e., roots) moist, no odor.				
6			6.0'	Brown fine to me	dium sand, little gravel	moist, no odor.				
7										
8										
9					9.6	S' Refusal	↓ ↓	refusal on rock		
10						, Hordour				
11										
12										
13										
14										
15										
16										
17										
18										
19										
20				DEPTH (FT)	1	NOTES:				
	WATER LEVEL	DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER	1" diameter well installed 5-ft of screen,	riser to surface w/cur	bbox. Well depth 9.6'		
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED					
NA	NA	NA	9.6'	9.6'	NA					
GEN	IERAL NOTES									
					IL TYPES, TRANSITIONS ONS STATED, FLUCTUAT	S MAY BE GRADUAL. IONS OF GROUNDWATER				
	BGS = Below Ground	Surface	and = 35 - 50%		C = Coarse	R = Rounded				
	NA = Not Applicable		some = 20 - 35%		M = Medium	A = Angular				
			little = 10 - 20%		F = Fine	SR = Subrounded				
			trace = 1 - 10%		VF = Very Fine	SA = Subangular		BORING: SB - 05		

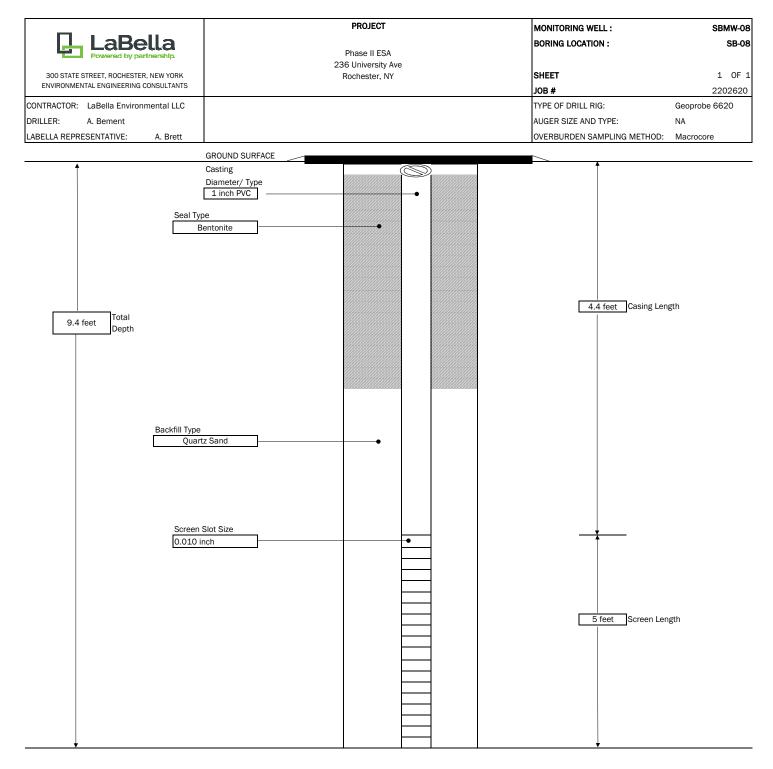

_	.				PROJECT		BORING:	SB - 06	
,	井 LaB	ella			Phase II E		SHEET	1 of 1	
		partnership.			236 Universit		JOB:	2202620	
					Rochester,	NY	CHKD BY:	AAB	
	300 STATE STREET, RO RONMENTAL ENGINEERI						DATE: 9/18/20 TIME: NA DATUM: NA		
		LaBella Env. LLC A. Bement		BORING LOCATIO		NA	TIME: DATUM:	NA NA	
	ELLA REPRESENTATIVE			START DATE:	9/18/20	END DATE: 9/18/20	WEATHER:	60's, cloudy	
	E OF DRILL RIG: Geopr			STAIL DATE.	3/18/20	DRIVE SAMPLER TYPE: Macrocore	WEATHEN.	003, 0000	
	ER SIZE AND TYPE: NA RBURDEN SAMPLING I		I			INSIDE DIAMETER: 2" OTHER:			
(FEET S)		SAMPLE					PID FIELD		
DEPTH (FEET BGS)	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET BGS)		VISUAL	CLASSIFICATION	SCREEN (PPM)	REMARKS	
0	2.3/5.0'	S1 0-5'	0.0'	Asphalt			0		
1			0.3'	Brown coarse to f	ïne sand and gravel, n	oist, no odor.			
2			2.0'	Brown silt, trace of	organics moist, no odo	:			
3									
4									
5	3.9/5.0'	S2 5-9.9'	-	Similar to above,	trace concrete pieces.				
	,								
6			6.0'	Brown fine to me	dium sand, moist, no c	dor.			
7									
8			-	Similar to above,	some gravel.				
9									
10					9.	9' Refusal		Refusal on rock	
11									
12									
13									
14									
15									
16									
17									
18									
19									
20				DEPTH (FT)		NOTES:			
	WATER LEVEL I	DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER	1" diameter well installed 5-ft of scree	en, riser to surface w/cu	rbbox. Well depth 9.9'	
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED		·		
NA	NA	NA	9.9'	9.9'	NA				
	ERAL NOTES								
					IL TYPES, TRANSITION INS STATED, FLUCTUA	S MAY BE GRADUAL. TIONS OF GROUNDWATER			
	BGS = Below Ground S	Surface	and = 35 - 50%		C = Coarse	R = Rounded			
	NA = Not Applicable		some = 20 - 35%	6	M = Medium	A = Angular			
			little = 10 - 20%		F = Fine	SR = Subrounded			

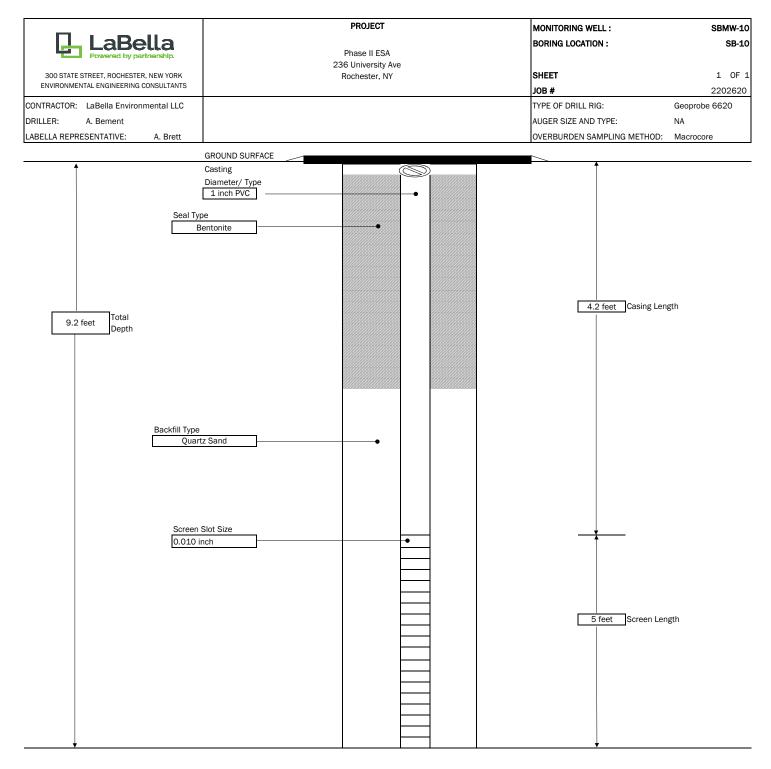
					PROJEC	r	BORING:	SB - 07	
Г					Phase II E		SHEET	36-07 1 of	1
		ella			236 Universit		JOB:	22026	
	Powered by	/ partnership.				-	CHKD BY:	AAE	
	300 STATE STREET, RO	CHESTER NY			Rochester,	111	DATE:	9/18/2	
	RONMENTAL ENGINEER						DATE:	5/ 10/ 2	020
		LaBella Env. LLC		BORING LOCATIO	N: See Figure		TIME:	NA	
DRI	LLER:	A. Bement		GROUND SURFAC	E ELEVATION	NA	DATUM:	NA	
	ELLA REPRESENTATIVI			START DATE:	9/18/20	END DATE: 9/18/20	WEATHER:	60's, cloudy	
	E OF DRILL RIG: Jackh					DRIVE SAMPLER TYPE: Macrocore			
	ER SIZE AND TYPE: NA RBURDEN SAMPLING		I	1		INSIDE DIAMETER: 2" OTHER:		1	
'TH (FEET BGS)		SAMPLE				CLASSIFICATION	PID FIELD	DEMAR	
DEPTH (FEET BGS)	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET BGS)		VISUAL		SCREEN (PPM)	REMAR	113
0	2.5/5.0'	S1 0-5	0.0'	Concrete			0		
1			0.4'	Brown coarse to t moist, no odor.	ine sand and gravel, tr	ace silt, trace asphalt and white rubble/debris			
2									
3									
5									
4									
5	2.2/3.4'	S2 5-8.4'	5.0'	Brown silt and sa	nd, moist, no odor.				
6									
7									
8									
0					8.	4' Refusal	↓		
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
	WATER LEVEL	ΠΔΤΔ	BOTTOM OF	DEPTH (FT) BOTTOM OF	GROUNDWATER	NOTES:			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED				
NA	NA	NA	NA	8.4'	NA	1			
	IERAL NOTES					1			
GEN	1) STRATIFICATION LI					S MAY BE GRADUAL. FIONS OF GROUNDWATER			
	BCC - Polow Crows -	Surfaco	and - 25 50%		C = Coarco	P - Pounded			
	BGS = Below Ground S NA = Not Applicable	SuildCe	and = 35 - 50% some = 20 - 35%	6	C = Coarse M = Medium	R = Rounded A = Angular			
	Not Applicable		iittle = 10 - 20%	v	F = Fine	SR = Subrounded			
			trace = 1 - 10%		VF = Very Fine	SA = Subangular		BORING:	SB - 0


					PROJECT		BORING:	SB - 08	
	🕂 LaB	lella			Phase II Es		SHEET	1 of 1	
		/ partnership.			236 Universit		JOB:	2202620	
					Rochester,	NY	CHKD BY:	AAB	
	300 STATE STREET, RO RONMENTAL ENGINEER						DATE: 9/18/20 TIME: NA		
		LaBella Env. LLC		BORING LOCATIO					
		A. Bement		GROUND SURFAC		NA	DATUM: WEATHER:	NA Sola alaudu	
	ELLA REPRESENTATIVI E OF DRILL RIG: Geop			START DATE:	9/18/20	END DATE: 9/18/20 DRIVE SAMPLER TYPE: Macrocore	WEATHER:	60's, cloudy	
	ER SIZE AND TYPE: NA					INSIDE DIAMETER: 2"			
	RBURDEN SAMPLING		l	T		OTHER:		T	
BGS)		SAMPLE			VICUAL	CLASSIFICATION	PID FIELD	REMARKS	
BG	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET BGS)		VISUAL		SCREEN (PPM)	ILEMARKS	
0	2.0/5.0'	S1 0-5'	0.0'	Asphalt			0 Q		
1			0.3'	Brown coarse to f	fine sand and gravel, m	noist, no odor.			
1									
2									
3									
5			3.5'	Brown coarse to f	fine sand and coarse to	o fine gravel, trace asphalt and brick, moist,			
4			4.01	no odor. Brown silty son in	aniat wa ad				
5	1.7/4.4'	S2 5-9.4'	4.0'	Brown silty san, n	noist, no oaor.				
	,								
6									
7									
0									
8									
9									
10					9.4	4' Refusal	•	refusal on rock	
11									
12									
13									
10									
14									
15									
10									
16									
17									
18									
19									
20				DEPTH (FT)	1	NOTES:			
	WATER LEVEL	DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER	1" diameter well installed 5-ft of screen, rise	er to surface w/cu	ırbbox. Well depth 9.4'	
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED				
NA	NA	NA	9.4'	9.4'	NA				
GEN	IERAL NOTES								
	1) STRATIFICATION LI				IL TYPES, TRANSITION	S MAY BE GRADUAL. TIONS OF GROUNDWATER			
	BGS = Below Ground S	Surface	and = 35 - 50%		C = Coarse	R = Rounded			
	NA = Not Applicable		some = 20 - 35%	6	M = Medium	A = Angular			
	P.P. 11.12		little = 10 - 20%		F = Fine	SR = Subrounded			
			trace = 1 - 10%		VF = Very Fine	SA = Subangular		BORING: SB - 0	

					PROJEC	т	BORING:	SB - 09
Г					Phase II I		SHEET	1 of 1
		ella			236 Univers		JOB:	2202620
	Powered by	partnership.			Rochester	•	CHKD BY:	AAB
	300 STATE STREET, RO	CHESTER, NY			Rochester	, · • ·	DATE:	9/18/2020
	RONMENTAL ENGINEERI						DATE.	-,,
		LaBella Env. LLC		BORING LOCATIO			TIME:	NA
		A. Bement		GROUND SURFAC			DATUM:	NA COloriala a la valor
	ELLA REPRESENTATIVE E OF DRILL RIG: Geopi			START DATE:	9/18/20	END DATE: 9/18/20 DRIVE SAMPLER TYPE: Macrocore	WEATHER:	60's, cloudy
	ER SIZE AND TYPE: NA					INSIDE DIAMETER: 2"		
OVE	RBURDEN SAMPLING	METHOD: Direct Push		r.		OTHER:		1
(FEET S)		SAMPLE					PID FIELD	2514121/0
DEPTH (FEET BGS)	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET		VISUAL	CLASSIFICATION	SCREEN (PPM)	REMARKS
0	2.5/5.0'	S1 0-5'	BGS) 0.0'	Asphalt			0	
1	2.07 0.0	01 00	0.3'		little gravel, trace asp	halt (pushed in from above), moist, no odor.	1	
2								
			-	Similar to above,	little broken concrete			
3								
4								
5	2.5/4.9'	S2 5-9.9	4.5' 5.0'		little gravel, broken c some silt, little gravel	obble, moist, no odor. . moist, no odor.		
	-, -			,				
6								
7								
8								
9								
10					9	.9' Refusal	•	refusal on rock
11								
12								
13								
14								
15								
16								
17								
18								
19								
20						NOTES.		
<u> </u>	WATER LEVEL	DATA	BOTTOM OF	DEPTH (FT) BOTTOM OF	GROUNDWATER	NOTES:		
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
NA	NA	NA	NA	9.9'	NA			
GEN	IERAL NOTES							
	 STRATIFICATION LI WATER LEVEL REAL 					IS MAY BE GRADUAL. ITIONS OF GROUNDWATER		
	BGS = Below Ground S	Surface	and = 35 - 50%		C = Coarse	R = Rounded		
	NA = Not Applicable		some = 20 - 35%	6	M = Medium	A = Angular		
			little = 10 - 20%		F = Fine	SR = Subrounded		
			trace = 1 - 10%		VF = Very Fine	SA = Subangular		BORING: SB - 09


					PROJECT		BORING:	SB - 10
Γ] _R	ella			Phase II E	SA	SHEET	1 of 1
Ļ		partnership.			236 Universit	y Ave	JOB:	2202620
					Rochester,	NY	CHKD BY:	AAB
	300 STATE STREET, RO						DATE:	9/18/2020
	RONMENTAL ENGINEER							
		LaBella Env. LLC		BORING LOCATIO		NA	TIME: DATUM:	NA NA
	LLER: ELLA REPRESENTATIVI	A. Bement F: A Brett		GROUND SURFAC START DATE:	9/18/20	NA END DATE: 9/18/20	WEATHER:	60's, cloudy
	E OF DRILL RIG: Geop			0.000 0.000	0/ 20/ 20	DRIVE SAMPLER TYPE: Macrocore		000,0000
AUG	ER SIZE AND TYPE: NA	N N				INSIDE DIAMETER: 2"		
OVE	RBURDEN SAMPLING	METHOD: Direct Push		1		OTHER:	T	1
- H		SAMPLE					PID	
DEPTH (FEET BGS)				-	VISUAL 0	CLASSIFICATION	FIELD	REMARKS
E L B	SAMPLE RECOVERY	SAMPLE NO. AND	STRATA CHANGE (FEET				SCREEN (PPM)	
Ē	(FEET)	DEPTH	BGS)				(FFWI)	
0	3.3/5.0'	S1 0-5'	0.0'	Asphalt			0	
1			0.3'	Brown coarse to f Similar to above,		ace building debris, trace silt, moist, no odor.		
2								
3								
4								
-								
5	2.8/4.2'	S2 5-9.2'	5.0'	Brown silty sand,	trace organics (i.e., roo	ots), trace gravel, moist, no odor.		
6								
7								
8								
9			9.0'	Brown fine to me	dium sand, moist, no o	dor		
5			5.0	Brown nine to nie		2' Refusal		Refusal on rock
10								
11								
10								
12								
13								
14								
15								
16								
17								
18								
19								
20								
				DEPTH (FT)		NOTES:	1	1
	WATER LEVEL	DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER	1" diameter well installed 5-ft of screen, rise	r to surface w/cu	urbbox. Well depth 9.2'
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	1		
NA	NA	NA	9.2'	9.2'	NA			
GEN	IERAL NOTES							
					IL TYPES, TRANSITIONS	S MAY BE GRADUAL. IONS OF GROUNDWATER		
	BGS = Below Ground	Surface	and = 35 - 50%		C = Coarse	R = Rounded		
	NA = Not Applicable		some = 20 - 35%	6	M = Medium	A = Angular		
			little = 10 - 20%		F = Fine	SR = Subrounded		
			trace = 1 - 10%		VF = Very Fine	SA = Subangular		BORING: SB - 1




Hole Diameter

Hole Diameter

APPENDIX 3

Laboratory Report

ANALYTICAL REPORT

Lab Number:	L2039421
Client:	LaBella Associates, P.C.
	300 State Street
	Suite 201
	Rochester, NY 14614
ATTN:	Ann Barber
Phone:	(585) 454-6110
Project Name:	236 UNIVERSITY AVE
Project Number:	P2002266
Report Date:	09/25/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09252019:30

Project Name:236 UNIVERSITY AVEProject Number:P2002266

 Lab Number:
 L2039421

 Report Date:
 09/25/20

Alpha				Sample	Collection	
Samp		Client ID	Matrix	Sample Location	Date/Time	Receive Date
L2039	421-01	SB-05	SOIL	ROCHESTER, NY	09/18/20 11:30	09/18/20
L2039	421-02	DUPLICATE	SOIL	ROCHESTER, NY	09/18/20 00:00	09/18/20
L2039	421-03	SB-06	SOIL	ROCHESTER, NY	09/18/20 12:00	09/18/20
L2039	421-04	SB-08	SOIL	ROCHESTER, NY	09/18/20 13:00	09/18/20
L2039	421-05	SB-01	SOIL	ROCHESTER, NY	09/18/20 09:35	09/18/20
L2039	421-06	SB-03	SOIL	ROCHESTER, NY	09/18/20 10:25	09/18/20
L2039	421-07	SB-07	SOIL	ROCHESTER, NY	09/18/20 12:25	09/18/20

Project Name: 236 UNIVERSITY AVE Project Number: P2002266 Lab Number: L2039421 Report Date: 09/25/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: 236 UNIVERSITY AVE Project Number: P2002266
 Lab Number:
 L2039421

 Report Date:
 09/25/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

L2039421-06: The sample has elevated detection limits due to the dilution required by the sample matrix.

Total Metals

The WG1413591-3 MS/MSD recoveries, performed on L2039421-03, are outside the acceptance criteria for lead (166% / 266%). A post digestion spike was performed and yielded unacceptable recoveries for lead (72% / 72%). The serial dilution recovery was not applicable; therefore, this element fails the matrix test and the result reported in the native sample should be considered estimated.

The WG1413591-4 MS/MSD RPD for lead (35%), performed on L2039421-03, is above the acceptance criteria.

Total Mercury

The WG1413593-3 MS recovery, performed on L2039421-03, is outside the acceptance criteria for mercury (160%). A post digestion spike was performed and was within acceptance criteria.

The WG1413593-3/-4 MS/MSD RPD for mercury (28%), performed on L2039421-03, is above the acceptance criteria.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Cattlin Wallier Caitlin Walukevich

Title: Technical Director/Representative

Date: 09/25/20

ORGANICS

VOLATILES

			Serial_N	o:09252019:30
Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID:	L2039421-01		Date Collected:	09/18/20 11:30
Client ID:	SB-05		Date Received:	09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	09/24/20 12:13			
Analyst:	MKS			
Percent Solids:	90%			
Matrix: Analytical Method: Analytical Date: Analyst:	1,8260C 09/24/20 12:13 MKS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lov	w - Westborough Lab					
Methylene chloride	ND		ug/kg	4.2	1.9	1
1,1-Dichloroethane	ND		ug/kg	0.85	0.12	1
Chloroform	ND		ug/kg	1.3	0.12	1
Carbon tetrachloride	ND		ug/kg	0.85	0.20	1
1,2-Dichloropropane	ND		ug/kg	0.85	0.11	1
Dibromochloromethane	ND		ug/kg	0.85	0.12	1
1,1,2-Trichloroethane	ND		ug/kg	0.85	0.23	1
Tetrachloroethene	ND		ug/kg	0.42	0.17	1
Chlorobenzene	ND		ug/kg	0.42	0.11	1
Trichlorofluoromethane	ND		ug/kg	3.4	0.59	1
1,2-Dichloroethane	ND		ug/kg	0.85	0.22	1
1,1,1-Trichloroethane	ND		ug/kg	0.42	0.14	1
Bromodichloromethane	ND		ug/kg	0.42	0.09	1
trans-1,3-Dichloropropene	ND		ug/kg	0.85	0.23	1
cis-1,3-Dichloropropene	ND		ug/kg	0.42	0.13	1
Bromoform	ND		ug/kg	3.4	0.21	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.42	0.14	1
Benzene	ND		ug/kg	0.42	0.14	1
Toluene	ND		ug/kg	0.85	0.46	1
Ethylbenzene	ND		ug/kg	0.85	0.12	1
Chloromethane	ND		ug/kg	3.4	0.79	1
Bromomethane	ND		ug/kg	1.7	0.49	1
Vinyl chloride	ND		ug/kg	0.85	0.28	1
Chloroethane	ND		ug/kg	1.7	0.38	1
1,1-Dichloroethene	ND		ug/kg	0.85	0.20	1
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.12	1
Trichloroethene	ND		ug/kg	0.42	0.12	1
1,2-Dichlorobenzene	ND		ug/kg	1.7	0.12	1

					;	Serial_No	p:09252019:30
Project Name:	236 UNIVERSITY AVE				Lab Nu	mber:	L2039421
Project Number:	P2002266				Report	Date:	09/25/20
•		SAMPL		6	•		00/20/20
Lab ID: Client ID: Sample Location:	L2039421-01 SB-05 ROCHESTER, NY				Date Col Date Ree Field Pre	ceived:	09/18/20 11:30 09/18/20 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by EPA 5035 Low - Westbo	rough Lab					
1,3-Dichlorobenzene		ND		ug/kg	1.7	0.12	1
1,4-Dichlorobenzene		ND		ug/kg ug/kg	1.7	0.12	1
Methyl tert butyl ether		ND		ug/kg ug/kg	1.7	0.17	1
p/m-Xylene		ND		ug/kg	1.7	0.48	1
o-Xylene		ND		ug/kg	0.85	0.25	1
cis-1,2-Dichloroethene		ND		ug/kg	0.85	0.15	1
Styrene		ND		ug/kg	0.85	0.17	1
Dichlorodifluoromethane		ND		ug/kg	8.5	0.78	1
Acetone		ND		ug/kg	8.5	4.1	1
Carbon disulfide		ND		ug/kg	8.5	3.9	1
2-Butanone		ND		ug/kg	8.5	1.9	1
4-Methyl-2-pentanone		ND		ug/kg	8.5	1.1	1
2-Hexanone		ND		ug/kg	8.5	1.0	1
1,2-Dibromoethane		ND		ug/kg	0.85	0.24	1
n-Butylbenzene		ND		ug/kg	0.85	0.14	1
sec-Butylbenzene		ND		ug/kg	0.85	0.12	1
tert-Butylbenzene		ND		ug/kg	1.7	0.10	1
1,2-Dibromo-3-chloroprop	pane	ND		ug/kg	2.5	0.85	1
Isopropylbenzene		ND		ug/kg	0.85	0.09	1
p-Isopropyltoluene		ND		ug/kg	0.85	0.09	1
Naphthalene		ND		ug/kg	3.4	0.55	1
n-Propylbenzene		ND		ug/kg	0.85	0.14	1
1,2,4-Trichlorobenzene		ND		ug/kg	1.7	0.23	1
1,3,5-Trimethylbenzene		ND		ug/kg	1.7	0.16	1
1,2,4-Trimethylbenzene		ND		ug/kg	1.7	0.28	1
Methyl Acetate		ND		ug/kg	3.4	0.81	1
Cyclohexane		ND		ug/kg	8.5	0.46	1
Freon-113		ND		ug/kg	3.4	0.59	1
Methyl cyclohexane		ND		ug/kg	3.4	0.51	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	95	70-130	

			Serial_No	p:09252019:30
Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID:	L2039421-02		Date Collected:	09/18/20 00:00
Client ID:	DUPLICATE		Date Received:	09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	09/24/20 12:34			
Analyst:	MKS			
Percent Solids:	89%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low	v - Westborough Lab					
Methylene chloride	ND		ug/kg	4.2	1.9	1
1,1-Dichloroethane	ND		ug/kg	0.85	0.12	1
Chloroform	ND		ug/kg	1.3	0.12	1
Carbon tetrachloride	ND		ug/kg	0.85	0.20	1
1,2-Dichloropropane	ND		ug/kg	0.85	0.11	1
Dibromochloromethane	ND		ug/kg	0.85	0.12	1
1,1,2-Trichloroethane	ND		ug/kg	0.85	0.23	1
Tetrachloroethene	ND		ug/kg	0.42	0.17	1
Chlorobenzene	ND		ug/kg	0.42	0.11	1
Trichlorofluoromethane	ND		ug/kg	3.4	0.59	1
1,2-Dichloroethane	ND		ug/kg	0.85	0.22	1
1,1,1-Trichloroethane	ND		ug/kg	0.42	0.14	1
Bromodichloromethane	ND		ug/kg	0.42	0.09	1
trans-1,3-Dichloropropene	ND		ug/kg	0.85	0.23	1
cis-1,3-Dichloropropene	ND		ug/kg	0.42	0.13	1
Bromoform	ND		ug/kg	3.4	0.21	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.42	0.14	1
Benzene	ND		ug/kg	0.42	0.14	1
Toluene	ND		ug/kg	0.85	0.46	1
Ethylbenzene	ND		ug/kg	0.85	0.12	1
Chloromethane	ND		ug/kg	3.4	0.79	1
Bromomethane	ND		ug/kg	1.7	0.49	1
Vinyl chloride	ND		ug/kg	0.85	0.28	1
Chloroethane	ND		ug/kg	1.7	0.38	1
1,1-Dichloroethene	ND		ug/kg	0.85	0.20	1
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.12	1
Trichloroethene	ND		ug/kg	0.42	0.12	1
1,2-Dichlorobenzene	ND		ug/kg	1.7	0.12	1

					0,	Serial_No	:09252019:30
Project Name:	236 UNIVERSITY AVE				Lab Nu	mber:	L2039421
Project Number:	P2002266				Report	Date:	09/25/20
··· , ····	1 2002200	SAMPL	E RESULT	6			00/20/20
Lab ID: Client ID: Sample Location:	L2039421-02 DUPLICATE ROCHESTER, NY				Date Col Date Rec Field Pre	ceived:	09/18/20 00:00 09/18/20 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y EPA 5035 Low - Westbo	rough Lab					
	,	-					
1,3-Dichlorobenzene		ND		ug/kg	1.7	0.12	1
1,4-Dichlorobenzene		ND		ug/kg	1.7	0.14	1
Methyl tert butyl ether		ND		ug/kg	1.7	0.17	1
p/m-Xylene		ND		ug/kg	1.7	0.48	1
o-Xylene		ND		ug/kg	0.85	0.25	1
cis-1,2-Dichloroethene		ND		ug/kg	0.85	0.15	1
Styrene		ND		ug/kg	0.85	0.17	1
Dichlorodifluoromethane		ND		ug/kg	8.5	0.78	1
Acetone		ND		ug/kg	8.5	4.1	1
Carbon disulfide		ND		ug/kg	8.5	3.9	1
2-Butanone		ND		ug/kg	8.5	1.9	1
4-Methyl-2-pentanone		ND		ug/kg	8.5	1.1	1
2-Hexanone		ND		ug/kg	8.5	1.0	1
1,2-Dibromoethane		ND		ug/kg	0.85	0.24	1
n-Butylbenzene		ND		ug/kg	0.85	0.14	1
sec-Butylbenzene		ND		ug/kg	0.85	0.12	1
tert-Butylbenzene		ND		ug/kg	1.7	0.10	1
1,2-Dibromo-3-chloroprop	pane	ND		ug/kg	2.6	0.85	1
Isopropylbenzene		ND		ug/kg	0.85	0.09	1
p-Isopropyltoluene		ND		ug/kg	0.85	0.09	1
Naphthalene		ND		ug/kg	3.4	0.55	1
n-Propylbenzene		ND		ug/kg	0.85	0.14	1
1,2,4-Trichlorobenzene		ND		ug/kg	1.7	0.23	1
1,3,5-Trimethylbenzene		ND		ug/kg	1.7	0.16	1
1,2,4-Trimethylbenzene		ND		ug/kg	1.7	0.28	1
Methyl Acetate		ND		ug/kg	3.4	0.81	1
Cyclohexane		ND		ug/kg	8.5	0.46	1
Freon-113		ND		ug/kg	3.4	0.59	1
Methyl cyclohexane		ND		ug/kg	3.4	0.51	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	93		70-130	

			Serial_N	o:09252019:30
Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID:	L2039421-03		Date Collected:	09/18/20 12:00
Client ID:	SB-06		Date Received:	09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	09/24/20 12:55			
Analyst:	MKS			
Percent Solids:	91%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lov	w - Westborough Lab					
Methylene chloride	ND	U	ug/kg	3.8	1.7	1
1,1-Dichloroethane	ND		ug/kg	0.76	0.11	1
Chloroform	ND		ug/kg	1.1	0.11	1
Carbon tetrachloride	ND		ug/kg	0.76	0.18	1
1,2-Dichloropropane	ND		ug/kg	0.76	0.10	1
Dibromochloromethane	ND		ug/kg	0.76	0.11	1
1,1,2-Trichloroethane	ND		ug/kg	0.76	0.20	1
Tetrachloroethene	ND		ug/kg	0.38	0.15	1
Chlorobenzene	ND	U	ug/kg	0.38	0.10	1
Trichlorofluoromethane	ND		ug/kg	3.0	0.53	1
1,2-Dichloroethane	ND	U	ug/kg	0.76	0.20	1
1,1,1-Trichloroethane	ND	U	ug/kg	0.38	0.13	1
Bromodichloromethane	ND	U	ug/kg	0.38	0.08	1
trans-1,3-Dichloropropene	ND	U	ug/kg	0.76	0.21	1
cis-1,3-Dichloropropene	ND	L	ug/kg	0.38	0.12	1
Bromoform	ND	U	ug/kg	3.0	0.19	1
1,1,2,2-Tetrachloroethane	ND	U	ug/kg	0.38	0.13	1
Benzene	ND	U	ug/kg	0.38	0.13	1
Toluene	ND	L	ug/kg	0.76	0.41	1
Ethylbenzene	ND	u	ug/kg	0.76	0.11	1
Chloromethane	ND	L	ug/kg	3.0	0.71	1
Bromomethane	ND	L	ug/kg	1.5	0.44	1
Vinyl chloride	ND	L	ug/kg	0.76	0.26	1
Chloroethane	ND	L	ug/kg	1.5	0.34	1
1,1-Dichloroethene	ND	L	ug/kg	0.76	0.18	1
trans-1,2-Dichloroethene	ND	L	ug/kg	1.1	0.10	1
Trichloroethene	ND	L	ug/kg	0.38	0.10	1
1,2-Dichlorobenzene	ND	U	ug/kg	1.5	0.11	1

		Serial_No:09252019:30					
Project Name:	236 UNIVERSITY AVE				Lab Nu	mber:	L2039421
Project Number:	P2002266				Report	Date:	09/25/20
•		SAMPL	E RESULTS	6	•		00,20,20
Lab ID: Client ID:	L2039421-03 SB-06				Date Col Date Red		09/18/20 12:00 09/18/20
Sample Location:	ROCHESTER, NY				Field Pre		Not Specified
Campie Location.						φ.	Not Opechied
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y EPA 5035 Low - Westbo	rough Lab					
1,3-Dichlorobenzene		ND		ug/kg	1.5	0.11	1
1,4-Dichlorobenzene		ND		ug/kg	1.5	0.13	1
Methyl tert butyl ether		ND		ug/kg	1.5	0.15	1
p/m-Xylene		ND		ug/kg	1.5	0.43	1
o-Xylene		ND		ug/kg	0.76	0.22	1
cis-1,2-Dichloroethene		ND		ug/kg	0.76	0.13	1
Styrene		ND		ug/kg	0.76	0.15	1
Dichlorodifluoromethane		ND		ug/kg	7.6	0.70	1
Acetone		ND		ug/kg	7.6	3.7	1
Carbon disulfide		ND		ug/kg	7.6	3.5	1
2-Butanone		ND		ug/kg	7.6	1.7	1
4-Methyl-2-pentanone		ND		ug/kg	7.6	0.98	1
2-Hexanone		ND		ug/kg	7.6	0.90	1
1,2-Dibromoethane		ND		ug/kg	0.76	0.21	1
n-Butylbenzene		ND		ug/kg	0.76	0.13	1
sec-Butylbenzene		ND		ug/kg	0.76	0.11	1
tert-Butylbenzene		ND		ug/kg	1.5	0.09	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	2.3	0.76	1
Isopropylbenzene		ND		ug/kg	0.76	0.08	1
p-Isopropyltoluene		ND		ug/kg	0.76	0.08	1
Naphthalene		ND		ug/kg	3.0	0.50	1
n-Propylbenzene		ND		ug/kg	0.76	0.13	1
1,2,4-Trichlorobenzene		ND		ug/kg	1.5	0.21	1
1,3,5-Trimethylbenzene		ND		ug/kg	1.5	0.15	1
1,2,4-Trimethylbenzene		ND		ug/kg	1.5	0.25	1
Methyl Acetate		ND		ug/kg	3.0	0.72	1
Cyclohexane		ND		ug/kg	7.6	0.42	1
Freon-113		ND		ug/kg	3.0	0.53	1
Methyl cyclohexane		ND		ug/kg	3.0	0.46	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	98		70-130	

			Serial_N	0:09252019:30
Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID:	L2039421-04		Date Collected:	09/18/20 13:00
Client ID:	SB-08		Date Received:	09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	09/25/20 07:41			
Analyst:	MV			
Percent Solids:	87%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 L	ow - Westborough Lab					
Methylene chloride	ND		ug/kg	3.6	1.6	1
1,1-Dichloroethane	ND		ug/kg	0.72	0.10	1
Chloroform	ND		ug/kg	1.1	0.10	1
Carbon tetrachloride	ND		ug/kg	0.72	0.17	1
1,2-Dichloropropane	ND		ug/kg	0.72	0.09	1
Dibromochloromethane	ND		ug/kg	0.72	0.10	1
1,1,2-Trichloroethane	ND		ug/kg	0.72	0.19	1
Tetrachloroethene	ND		ug/kg	0.36	0.14	1
Chlorobenzene	ND		ug/kg	0.36	0.09	1
Trichlorofluoromethane	ND		ug/kg	2.9	0.50	1
1,2-Dichloroethane	ND		ug/kg	0.72	0.19	1
1,1,1-Trichloroethane	ND		ug/kg	0.36	0.12	1
Bromodichloromethane	ND		ug/kg	0.36	0.08	1
trans-1,3-Dichloropropene	ND		ug/kg	0.72	0.20	1
cis-1,3-Dichloropropene	ND		ug/kg	0.36	0.11	1
Bromoform	ND		ug/kg	2.9	0.18	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.36	0.12	1
Benzene	0.16	J	ug/kg	0.36	0.12	1
Toluene	0.47	J	ug/kg	0.72	0.39	1
Ethylbenzene	ND		ug/kg	0.72	0.10	1
Chloromethane	ND		ug/kg	2.9	0.68	1
Bromomethane	ND		ug/kg	1.4	0.42	1
Vinyl chloride	ND		ug/kg	0.72	0.24	1
Chloroethane	ND		ug/kg	1.4	0.33	1
1,1-Dichloroethene	ND		ug/kg	0.72	0.17	1
trans-1,2-Dichloroethene	ND		ug/kg	1.1	0.10	1
Trichloroethene	ND		ug/kg	0.36	0.10	1
1,2-Dichlorobenzene	ND		ug/kg	1.4	0.10	1

Project Number: P2002266 Report Date: 09/25/20 SAMPLE RESULTS				Serial_No:09252019:30					
Lab ID: L2039421-04 SB-08	Project Name:	236 UNIVERSITY AVE				Lab Nu	mber:	L2039421	
Lab ID: L2039421-04 SB-08	Project Number:	P2002266				Report	Date:	09/25/20	
Client D: SB-08 ROCHESTER, NY Data Rec://without Subscription Data Rec://without Subscription Dist Rec://without Subscription Image Rec://without Subscription Subscriptin Subscription Subscription Subscription Subscription Subscripti	-		SAMPL	E RESULT	S	•			
ParameterResultQualifierUnitsRLMDLDiution PactorVolatile Organics by EPA 5035 Low - Westborugh Lab1.4 DichlorobenzeneNDug/kg1.40.1211.4 DichlorobenzeneNDug/kg1.40.1211.4 DichlorobenzeneNDug/kg1.40.121Metry Ieth bury Ieth Ieth Ieth Ieth Ieth Ieth Ieth Ieth		SB-08				Date Re	ceived:	09/18/20	
ParameterResultQualifierUnitsRLMDLDiution PactorVolatile Organics by EPA 5035 Low - Westborugh Lab1.4 DichlorobenzeneNDug/kg1.40.1211.4 DichlorobenzeneNDug/kg1.40.1211.4 DichlorobenzeneNDug/kg1.40.121Metry Ieth bury Ieth Ieth Ieth Ieth Ieth Ieth Ieth Ieth	Sample Depth:								
Valatile Organics by EPA 5035 Low - Westborough Lab 1.3-Dichlorobenzene ND ug/kg 1.4 0.11 1 1.4-Dichlorobenzene ND ug/kg 1.4 0.12 1 Methyl tert buryl ether ND ug/kg 1.4 0.40 1 prm-Xylene 0.47 J ug/kg 0.72 0.21 1 ox/lene ND ug/kg 0.72 0.21 1 ox/lene ND ug/kg 0.72 0.13 1 Dichlorodifluoromethane ND ug/kg 7.2 0.66 1 Dichlorodifluoromethane ND ug/kg 7.2 3.5 1 Carbon disuffide ND ug/kg 7.2 0.66 1 2-Butanone ND ug/kg 7.2 0.3 1 2-Hexanone ND ug/kg 0.72 0.30 1 1.2-Ditromothane ND ug/kg 0.72 0.12 1 1.2-Ditromo-3-chloroprop			Result	Qualifier	Units	RI	МОІ	Dilution Factor	
1.3-Dichlorobenzene ND ug/kg 1.4 0.11 1 1.4-Dichlorobenzene ND ug/kg 1.4 0.12 1 Methyl terb utyl ether ND ug/kg 1.4 0.14 1 p/m-Xylene 0.47 J ug/kg 0.72 0.21 1 o:Xylene ND ug/kg 0.72 0.13 1 o:Xylene ND ug/kg 0.72 0.14 1 Dichlorobfthorothene ND ug/kg 0.72 0.13 1 Dichlorodifluoromethane ND ug/kg 7.2 0.66 1 Acetone 7.5 ug/kg 7.2 3.5 1 Carbon disulfide ND ug/kg 7.2 0.86 1 4-Methyl-zpentanone ND ug/kg 7.2 0.93 1 2-Haxanone ND ug/kg 7.2 0.86 1 1.2-Dibromoethane ND ug/kg 0.72 0.86 1 1.2-Dibromoethane ND ug/kg 0.72 0.81		Nestbo		Quanter	Units				
I.A. Dicklorobenzene ND ug/kg 1.4 0.12 1 Methyl terb utyl ether ND ug/kg 1.4 0.14 1 p/m-Xylene 0.47 J ug/kg 0.72 0.21 1 o:Xylene ND ug/kg 0.72 0.21 1 o:Xylene ND ug/kg 0.72 0.21 1 cis-1.2.Dichoroethene ND ug/kg 0.72 0.14 1 Styrene ND ug/kg 7.2 0.66 1 Carbon disulfide ND ug/kg 7.2 3.5 1 Carbon disulfide ND ug/kg 7.2 3.3 1 2-Butanone ND ug/kg 0.72 0.93 1 2-Hexanone ND ug/kg 0.72 0.93 1 1.2-Ditoromethane ND ug/kg 0.72 0.93 1 1.2-Ditoromethane ND ug/kg 0.72 0.12 1	volatile Organics t								
ND ug/kg 1.4 0.14 1 p/m-Xylene 0.47 J ug/kg 1.4 0.40 1 or-Xylene ND ug/kg 0.72 0.21 1 or-Xylene ND ug/kg 0.72 0.13 1 cis-1,2.2bichloroethene ND ug/kg 0.72 0.14 1 Styrene ND ug/kg 0.72 0.13 1 Styrene ND ug/kg 0.72 0.14 1 Dichlorodifluoromethane ND ug/kg 7.2 0.5 1 Carbon disulfide ND ug/kg 7.2 0.33 1 2-Butanone ND ug/kg 7.2 0.33 1 2-Hexanone ND ug/kg 7.2 0.33 1 12-Dibromoethane ND ug/kg 0.72 0.66 1 12-Dibromoethane ND ug/kg 0.72 0.10 1 12-Dibromoet	1,3-Dichlorobenzene		ND		ug/kg	1.4	0.11	1	
pm:Xylene 0.47 J ug/kg 1.4 0.40 1 o-Xylene ND ug/kg 0.72 0.21 1 oik-1,2-Dichloroethene ND ug/kg 0.72 0.13 1 Styrene ND ug/kg 0.72 0.14 1 Dichloroethene ND ug/kg 7.2 0.66 1 Acetone 7.5 ug/kg 7.2 0.66 1 Acetone 7.5 ug/kg 7.2 3.5 1 2-Butanone ND ug/kg 7.2 0.93 1 2-Hexanone ND ug/kg 7.2 0.86 1 1.2-Dioromoethane ND ug/kg 0.72 0.20 1 n-Butylbenzene ND ug/kg 0.72 0.12 1 1.2-Dioromoethane ND ug/kg 0.72 0.10 1 1.2-Dioromoethane ND ug/kg 0.72 0.10 1	1,4-Dichlorobenzene		ND		ug/kg	1.4	0.12	1	
o-Xylene ND ug/kg 0.72 0.21 1 cis-1,2-Dichloroethene ND ug/kg 0.72 0.13 1 Styrene ND ug/kg 0.72 0.14 1 Dichlorodtfluoromethane ND ug/kg 7.2 0.66 1 Acetone 7.5 ug/kg 7.2 3.5 1 Carbon disulfide ND ug/kg 7.2 3.5 1 2-Butanone ND ug/kg 7.2 0.33 1 2-Hexanone ND ug/kg 7.2 0.93 1 1.2-Dibromothane ND ug/kg 0.72 0.93 1 1.2-Dibromothane ND ug/kg 0.72 0.12 1 sec-Butylbenzene ND ug/kg 0.72 0.10 1 1.2-Dibromo-3-chloropropane ND ug/kg 0.72 0.12 1 1.2-Dibromo-3-chloropropane ND ug/kg 0.72 0.08 1 </td <td>Methyl tert butyl ether</td> <td></td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.4</td> <td>0.14</td> <td>1</td>	Methyl tert butyl ether		ND		ug/kg	1.4	0.14	1	
Image: 1.2-Dichloroethene ND ug/kg 0.72 0.13 1 Styrene ND ug/kg 0.72 0.14 1 Dichlorodifluoromethane ND ug/kg 7.2 0.66 1 Acetone 7.5 ug/kg 7.2 3.5 1 Carbon disulfide ND ug/kg 7.2 3.3 1 2-Butanone ND ug/kg 7.2 0.86 1 4-Methyl-2-pentanone ND ug/kg 7.2 0.93 1 2-Hexanone ND ug/kg 7.2 0.86 1 1.2-Dibromothane ND ug/kg 0.72 0.10 1 ec-Butylbenzene ND ug/kg 0.72 0.12 1 sec-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.08 1 1.2-Dibromo-S-chloropropane ND ug/kg 0.72 0.08	p/m-Xylene		0.47	J	ug/kg	1.4	0.40	1	
Styrene ND ug/kg 0.72 0.14 1 Dichlorodffluoromethane ND ug/kg 7.2 0.66 1 Acetone 7.5 ug/kg 7.2 3.5 1 Carbon disulfide ND ug/kg 7.2 3.3 1 2-Butanone ND ug/kg 7.2 0.93 1 4-Methyl-2-pentanone ND ug/kg 7.2 0.86 1 1.2-Dibromoethane ND ug/kg 0.72 0.20 1 n-Butylbenzene ND ug/kg 0.72 0.20 1 n-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.10 1 1.2-Dibromo-3-chloropropane ND ug/kg 0.72 0.08 1<	o-Xylene		ND		ug/kg	0.72	0.21	1	
Dichlorodifluoromethane ND ug/kg 7.2 0.66 1 Acetone 7.5 ug/kg 7.2 3.5 1 Carbon disulfide ND ug/kg 7.2 3.3 1 2-Butanone ND ug/kg 7.2 3.3 1 2-Butanone ND ug/kg 7.2 0.93 1 2-Hexanone ND ug/kg 7.2 0.86 1 1,2-Dibromoethane ND ug/kg 0.72 0.20 1 n-Butylbenzene ND ug/kg 0.72 0.12 1 sec-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.12 1 1,2-Dibrom-3-chloropropane ND ug/kg 0.72 0.08 1	cis-1,2-Dichloroethene		ND		ug/kg	0.72	0.13	1	
Acetone 7.5 ug/kg 7.2 3.5 1 Carbon disulfide ND ug/kg 7.2 3.3 1 2-Butanone ND ug/kg 7.2 3.3 1 4-Methyl-2-pentanone ND ug/kg 7.2 0.93 1 2-Hexanone ND ug/kg 7.2 0.86 1 1.2-Dibromoethane ND ug/kg 0.72 0.20 1 n-Butylbenzene ND ug/kg 0.72 0.10 1 sec-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.10 1 1.2-Dibromo-3-chloropropane ND ug/kg 0.72 0.10 1 1.2-Dibromo-3-chloropropane ND ug/kg 0.72 0.08 1 1.2-Dibromo-3-chloropropane ND ug/kg 0.72 0.08 1 1.2-Dibromo-3-chloropropane ND ug/kg 0.72	Styrene		ND		ug/kg	0.72	0.14	1	
Carbon disulfide ND ug/kg 7.2 3.3 1 2-Butanone ND ug/kg 7.2 1.6 1 4-Methyl-2-pentanone ND ug/kg 7.2 0.93 1 2-Hexanone ND ug/kg 7.2 0.86 1 1,2-Dibromoethane ND ug/kg 0.72 0.20 1 n-Butylbenzene ND ug/kg 0.72 0.12 1 sec-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 0.72 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 0.72 0.08 1 1,2-Dibromo-3-chloropropane ND ug/kg 0.72 0.08 1 1,2-Dibromo-3-chloropropane ND ug/kg 0.72 0.08 1 1,2-Dibromo-3-chloropropane ND ug/kg <	Dichlorodifluoromethane		ND		ug/kg	7.2	0.66	1	
Participand ND ug/kg 7.2 1.6 1 4-Methyl-2-pentanone ND ug/kg 7.2 0.93 1 2-Hexanone ND ug/kg 7.2 0.86 1 1,2-Dibromoethane ND ug/kg 0.72 0.20 1 n-Butylbenzene ND ug/kg 0.72 0.12 1 sec-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.08 1 tert-Butylbenzene ND ug/kg 0.72 0.08 1 tert-Butylbenzene ND ug/kg 0.72 0.08 1 tert-Butylbenzene ND ug/kg 0.47 1 1<	Acetone		7.5		ug/kg	7.2	3.5	1	
4-Methyl-2-pentanone ND ug/kg 7.2 0.93 1 2-Hexanone ND ug/kg 7.2 0.86 1 1,2-Dibromoethane ND ug/kg 0.72 0.20 1 n-Butylbenzene ND ug/kg 0.72 0.12 1 sec-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.08 1 tert-Butylbenzene ND ug/kg 0.72 0.08 1 lsopropyltoluene 0.09 J ug/kg 0.72 0.08 1 1,2-4-Trichlorobenzene ND ug/kg 1.4	Carbon disulfide		ND		ug/kg	7.2	3.3	1	
2-Hexanone ND ug/kg 7.2 0.86 1 1,2-Dibromoethane ND ug/kg 0.72 0.20 1 n-Butylbenzene ND ug/kg 0.72 0.12 1 sec-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 0.72 0.08 1 1,2-Dibromo-3-chloropropane ND ug/kg 0.72 0.12 1 1,2-Dibromo-3-chloropropane ND	2-Butanone		ND		ug/kg	7.2	1.6	1	
ND ug/kg 0.72 0.20 1 n-Butylbenzene ND ug/kg 0.72 0.12 1 sec-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 1.4 0.09 1 1,2-Dibromo-3-chloropropane ND ug/kg 0.72 0.08 1 1,2-Dibromo-3-chloropropane ND ug/kg 0.72 0.08 1 sopropylbenzene ND ug/kg 0.72 0.08 1 p-lsopropylbenzene ND ug/kg 0.72 0.08 1 Naphthalene ND ug/kg 0.72 0.08 1 1,2,4-Trichlorobenzene ND ug/kg 1.4 0.20 1 1,3,5-Trimethylbenzene 0.31 J ug/kg 1.4 0.14 1 1,2,4-Trichlorobenzene ND ug/kg 1.4 <	4-Methyl-2-pentanone		ND		ug/kg	7.2	0.93	1	
n-Butylbenzene ND ug/kg 0.72 0.12 1 sec-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 1.4 0.09 1 1,2-Dibromo-3-chloropropane ND ug/kg 0.72 0.08 1 Isopropylbenzene ND ug/kg 0.72 0.08 1 p-lsopropyltoluene 0.09 J ug/kg 0.72 0.08 1 Naphthalene ND ug/kg 0.72 0.08 1 n-Propylbenzene ND ug/kg 0.72 0.08 1 1,2,4-Trichlorobenzene ND ug/kg 1.4 0.20 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.14 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 1,2,4-Trimethylbenzene	2-Hexanone		ND		ug/kg	7.2	0.86	1	
Image: Sec-Butylbenzene ND ug/kg 0.72 0.10 1 tert-Butylbenzene ND ug/kg 1.4 0.09 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.2 0.72 1 Isopropylbenzene ND ug/kg 0.72 0.08 1 p-Isopropylbenzene 0.09 J ug/kg 0.72 0.08 1 Naphthalene ND ug/kg 0.72 0.08 1 1,2,4-Trichlorobenzene ND ug/kg 0.72 0.12 1 1,2,4-Trimethylbenzene 0.31 J ug/kg 1.4 0.20 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.14 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.14 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24	1,2-Dibromoethane		ND		ug/kg	0.72	0.20	1	
tert-Butylbenzene ND ug/kg 1.4 0.09 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.2 0.72 1 Isopropylbenzene ND ug/kg 0.72 0.08 1 p-Isopropylbenzene 0.09 J ug/kg 0.72 0.08 1 Naphthalene ND ug/kg 0.72 0.08 1 n-Propylbenzene ND ug/kg 0.72 0.08 1 1,2,4-Trichlorobenzene ND ug/kg 0.72 0.12 1 1,3,5-Trimethylbenzene 0.31 J ug/kg 1.4 0.14 1 1,2,4-Trichlorobenzene 0.31 J ug/kg 1.4 0.14 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 1,2,4-Trimethylbenzene ND ug/kg 2.9 0.69 1 Kethyl Acetate ND ug/kg 7.2 0.39 1 Fr	n-Butylbenzene		ND		ug/kg	0.72	0.12	1	
1,2-Dibromo-3-chloropropane ND ug/kg 2.2 0.72 1 Isopropylbenzene ND ug/kg 0.72 0.08 1 p-Isopropylbonzene 0.09 J ug/kg 0.72 0.08 1 Naphthalene ND ug/kg 0.72 0.08 1 n-Propylbenzene ND ug/kg 0.72 0.08 1 1,2,4-Trichlorobenzene ND ug/kg 0.72 0.12 1 1,3,5-Trimethylbenzene 0.31 J ug/kg 1.4 0.20 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.14 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 1,2,4-Trimethylbenzene ND ug/kg 2.9 0.69 1 Cyclohexane ND ug/kg 7.2 0.39 1	sec-Butylbenzene		ND		ug/kg	0.72	0.10	1	
Isopropylbenzene ND ug/kg 0.72 0.08 1 p-Isopropylboluene 0.09 J ug/kg 0.72 0.08 1 Naphthalene ND ug/kg 2.9 0.47 1 n-Propylbenzene ND ug/kg 0.72 0.12 1 1,2,4-Trichlorobenzene ND ug/kg 1.4 0.20 1 1,3,5-Trimethylbenzene 0.31 J ug/kg 1.4 0.14 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 Methyl Acetate ND ug/kg 2.9 0.69 1 Cyclohexane ND ug/kg 7.2 0.39 1 Freon-113 ND ug/kg 2.9 0.50 1	tert-Butylbenzene		ND		ug/kg	1.4	0.09	1	
p-lsopropyltoluene 0.09 J ug/kg 0.72 0.08 1 Naphthalene ND ug/kg 2.9 0.47 1 n-Propylbenzene ND ug/kg 0.72 0.12 1 1,2,4-Trichlorobenzene ND ug/kg 1.4 0.20 1 1,3,5-Trimethylbenzene 0.31 J ug/kg 1.4 0.14 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 Methyl Acetate ND ug/kg 2.9 0.69 1 Cyclohexane ND ug/kg 7.2 0.39 1 Freon-113 ND ug/kg 2.9 0.50 1	1,2-Dibromo-3-chloropro	pane	ND		ug/kg	2.2	0.72	1	
Naphthalene ND ug/kg 2.9 0.47 1 n-Propylbenzene ND ug/kg 0.72 0.12 1 1,2,4-Trichlorobenzene ND ug/kg 1.4 0.20 1 1,3,5-Trimethylbenzene 0.31 J ug/kg 1.4 0.14 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.14 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 Methyl Acetate ND ug/kg 1.4 0.24 1 Cyclohexane ND ug/kg 2.9 0.69 1 Freon-113 ND ug/kg 2.9 0.50 1	Isopropylbenzene		ND		ug/kg	0.72	0.08	1	
n-Propylbenzene ND ug/kg 0.72 0.12 1 1,2,4-Trichlorobenzene ND ug/kg 1.4 0.20 1 1,3,5-Trimethylbenzene 0.31 J ug/kg 1.4 0.14 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 Methyl Acetate ND ug/kg 1.4 0.24 1 Cyclohexane ND ug/kg 7.2 0.39 1 Freon-113 ND ug/kg 2.9 0.50 1	p-Isopropyltoluene		0.09	J	ug/kg	0.72	0.08	1	
1,2,4-Trichlorobenzene ND ug/kg 1.4 0.20 1 1,3,5-Trimethylbenzene 0.31 J ug/kg 1.4 0.14 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 Methyl Acetate ND ug/kg 2.9 0.69 1 Cyclohexane ND ug/kg 7.2 0.39 1 Freon-113 ND ug/kg 2.9 0.50 1	Naphthalene		ND		ug/kg	2.9	0.47	1	
1,3,5-Trimethylbenzene 0.31 J ug/kg 1.4 0.14 1 1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 Methyl Acetate ND ug/kg 2.9 0.69 1 Cyclohexane ND ug/kg 7.2 0.39 1 Freon-113 ND ug/kg 2.9 0.50 1	n-Propylbenzene		ND		ug/kg	0.72	0.12	1	
1,2,4-Trimethylbenzene 0.42 J ug/kg 1.4 0.24 1 Methyl Acetate ND ug/kg 2.9 0.69 1 Cyclohexane ND ug/kg 7.2 0.39 1 Freon-113 ND ug/kg 2.9 0.50 1	1,2,4-Trichlorobenzene		ND		ug/kg	1.4	0.20	1	
Methyl Acetate ND ug/kg 2.9 0.69 1 Cyclohexane ND ug/kg 7.2 0.39 1 Freon-113 ND ug/kg 2.9 0.50 1	1,3,5-Trimethylbenzene		0.31	J	ug/kg	1.4	0.14	1	
Cyclohexane ND ug/kg 7.2 0.39 1 Freon-113 ND ug/kg 2.9 0.50 1	1,2,4-Trimethylbenzene		0.42	J	ug/kg	1.4	0.24	1	
Freon-113 ND ug/kg 2.9 0.50 1	Methyl Acetate		ND		ug/kg	2.9	0.69	1	
	Cyclohexane		ND		ug/kg	7.2	0.39	1	
Methyl cyclohexane 2.7 J ug/kg 2.9 0.44 1	Freon-113		ND		ug/kg	2.9	0.50	1	
	Methyl cyclohexane		2.7	J	ug/kg	2.9	0.44	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	97		70-130	

			Serial_No:09252019:30			
Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421		
Project Number:	P2002266		Report Date:	09/25/20		
		SAMPLE RESULTS				
Lab ID:	L2039421-05		Date Collected:	09/18/20 09:35		
Client ID:	SB-01		Date Received:	09/18/20		
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified		
Sample Depth:						
Matrix:	Soil					
Analytical Method:	1,8260C					
Analytical Date:	09/24/20 13:59					
Analyst:	MKS					
Percent Solids:	85%					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lo	ow - Westborough Lab					
Methylene chloride	ND		ug/kg	4.8	2.2	1
1,1-Dichloroethane	ND		ug/kg	0.96	0.14	1
Chloroform	ND		ug/kg	1.4	0.13	1
Carbon tetrachloride	ND		ug/kg	0.96	0.22	1
1,2-Dichloropropane	ND		ug/kg	0.96	0.12	1
Dibromochloromethane	ND		ug/kg	0.96	0.13	1
1,1,2-Trichloroethane	ND		ug/kg	0.96	0.26	1
Tetrachloroethene	ND		ug/kg	0.48	0.19	1
Chlorobenzene	ND		ug/kg	0.48	0.12	1
Trichlorofluoromethane	ND		ug/kg	3.8	0.67	1
1,2-Dichloroethane	ND		ug/kg	0.96	0.25	1
1,1,1-Trichloroethane	ND		ug/kg	0.48	0.16	1
Bromodichloromethane	ND		ug/kg	0.48	0.10	1
trans-1,3-Dichloropropene	ND		ug/kg	0.96	0.26	1
cis-1,3-Dichloropropene	ND		ug/kg	0.48	0.15	1
Bromoform	ND		ug/kg	3.8	0.24	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.48	0.16	1
Benzene	ND		ug/kg	0.48	0.16	1
Toluene	ND		ug/kg	0.96	0.52	1
Ethylbenzene	ND		ug/kg	0.96	0.14	1
Chloromethane	ND		ug/kg	3.8	0.90	1
Bromomethane	ND		ug/kg	1.9	0.56	1
Vinyl chloride	ND		ug/kg	0.96	0.32	1
Chloroethane	ND		ug/kg	1.9	0.44	1
1,1-Dichloroethene	ND		ug/kg	0.96	0.23	1
trans-1,2-Dichloroethene	ND		ug/kg	1.4	0.13	1
Trichloroethene	ND		ug/kg	0.48	0.13	1
1,2-Dichlorobenzene	ND		ug/kg	1.9	0.14	1

			Serial_No:09252019:30					
Project Name:	236 UNIVERSITY AVE				Lab Nu	mber:	L2039421	
Project Number:	P2002266				Report	Date:	09/25/20	
SAMPLE RESULTS								
Lab ID: Client ID: Sample Location:	L2039421-05 SB-01 ROCHESTER, NY				Date Col Date Ree Field Pre	ceived:	09/18/20 09:35 09/18/20 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	by EPA 5035 Low - Westbo	orough Lab						
1,3-Dichlorobenzene		ND		ug/kg	1.9	0.14	1	
1,4-Dichlorobenzene		ND		ug/kg	1.9	0.16	1	
Methyl tert butyl ether		ND		ug/kg	1.9	0.19	1	
p/m-Xylene		ND		ug/kg	1.9	0.54	1	
o-Xylene		ND		ug/kg	0.96	0.28	1	
cis-1,2-Dichloroethene		ND		ug/kg	0.96	0.17	1	
Styrene		ND		ug/kg	0.96	0.19	1	
Dichlorodifluoromethane		ND		ug/kg	9.6	0.88	1	
Acetone		ND		ug/kg	9.6	4.6	1	
Carbon disulfide		ND		ug/kg	9.6	4.4	1	
2-Butanone		ND		ug/kg	9.6	2.1	1	
4-Methyl-2-pentanone		ND		ug/kg	9.6	1.2	1	
2-Hexanone		ND		ug/kg	9.6	1.1	1	
1,2-Dibromoethane		ND		ug/kg	0.96	0.27	1	
n-Butylbenzene		ND		ug/kg	0.96	0.16	1	
sec-Butylbenzene		ND		ug/kg	0.96	0.14	1	
tert-Butylbenzene		ND		ug/kg	1.9	0.11	1	
1,2-Dibromo-3-chloroprop	pane	ND		ug/kg	2.9	0.96	1	
Isopropylbenzene		ND		ug/kg	0.96	0.10	1	
p-Isopropyltoluene		ND		ug/kg	0.96	0.10	1	
Naphthalene		ND		ug/kg	3.8	0.63	1	
n-Propylbenzene		ND		ug/kg	0.96	0.16	1	
1,2,4-Trichlorobenzene		ND		ug/kg	1.9	0.26	1	
1,3,5-Trimethylbenzene		ND		ug/kg	1.9	0.18	1	
1,2,4-Trimethylbenzene		ND		ug/kg	1.9	0.32	1	
Methyl Acetate		ND		ug/kg	3.8	0.92	1	
Cyclohexane		ND		ug/kg	9.6	0.52	1	
Freon-113		ND		ug/kg	3.8	0.67	1	
Methyl cyclohexane		ND		ug/kg	3.8	0.58	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	91		70-130	

			Serial_N	0:09252019:30
Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID:	L2039421-06		Date Collected:	09/18/20 10:25
Client ID:	SB-03		Date Received:	09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	09/24/20 14:20			
Analyst:	MKS			
Percent Solids:	84%			

Parameter	Result	Qualifier Unit	s RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lo	ow - Westborough Lab				
Methylene chloride	ND	ug/k	a 4.7	2.2	1
1,1-Dichloroethane	ND	ug/k		0.14	1
Chloroform	ND	ug/k	0	0.13	1
Carbon tetrachloride	ND	ug/k	0	0.22	1
1,2-Dichloropropane	ND	ug/k	-	0.12	1
Dibromochloromethane	ND	ug/k		0.13	1
1,1,2-Trichloroethane	ND	ug/k	-	0.25	1
Tetrachloroethene	ND	ug/k	-	0.18	1
Chlorobenzene	ND	ug/k		0.12	1
Trichlorofluoromethane	ND	ug/k		0.66	1
1,2-Dichloroethane	ND	ug/k	-	0.24	1
1,1,1-Trichloroethane	ND	ug/k	g 0.47	0.16	1
Bromodichloromethane	ND	ug/k	g 0.47	0.10	1
trans-1,3-Dichloropropene	ND	ug/k	g 0.95	0.26	1
cis-1,3-Dichloropropene	ND	ug/k	g 0.47	0.15	1
Bromoform	ND	ug/k	g 3.8	0.23	1
1,1,2,2-Tetrachloroethane	ND	ug/k	g 0.47	0.16	1
Benzene	ND	ug/k	g 0.47	0.16	1
Toluene	ND	ug/k	g 0.95	0.51	1
Ethylbenzene	ND	ug/k	g 0.95	0.13	1
Chloromethane	ND	ug/k	g 3.8	0.88	1
Bromomethane	ND	ug/k	g 1.9	0.55	1
Vinyl chloride	ND	ug/k	g 0.95	0.32	1
Chloroethane	ND	ug/k	g 1.9	0.43	1
1,1-Dichloroethene	ND	ug/k	g 0.95	0.22	1
trans-1,2-Dichloroethene	ND	ug/k	g 1.4	0.13	1
Trichloroethene	ND	ug/k	g 0.47	0.13	1
1,2-Dichlorobenzene	ND	ug/k	g 1.9	0.14	1

					Ş	Serial_No	:09252019:30
Project Name:	236 UNIVERSITY AVE				Lab Nu	mber:	L2039421
Project Number:	P2002266				Report	Date:	09/25/20
		SAMPL	E RESULT	5			00/20/20
Lab ID: Client ID: Sample Location:	L2039421-06 SB-03 ROCHESTER, NY				Date Col Date Rec Field Pre	ceived:	09/18/20 10:25 09/18/20 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y EPA 5035 Low - Westbo	rough Lab					
1,3-Dichlorobenzene		ND		ug/kg	1.9	0.14	1
1,4-Dichlorobenzene		ND		ug/kg	1.9	0.16	1
Methyl tert butyl ether		ND		ug/kg	1.9	0.19	1
p/m-Xylene		ND		ug/kg	1.9	0.53	1
o-Xylene		ND		ug/kg	0.95	0.28	1
cis-1,2-Dichloroethene		ND		ug/kg	0.95	0.16	1
Styrene		ND		ug/kg	0.95	0.18	1
Dichlorodifluoromethane		ND		ug/kg	9.5	0.87	1
Acetone		ND		ug/kg	9.5	4.6	1
Carbon disulfide		ND		ug/kg	9.5	4.3	1
2-Butanone		ND		ug/kg	9.5	2.1	1
4-Methyl-2-pentanone		ND		ug/kg	9.5	1.2	1
2-Hexanone		ND		ug/kg	9.5	1.1	1
1,2-Dibromoethane		ND		ug/kg	0.95	0.26	1
n-Butylbenzene		ND		ug/kg	0.95	0.16	1
sec-Butylbenzene		ND		ug/kg	0.95	0.14	1
tert-Butylbenzene		ND		ug/kg	1.9	0.11	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	2.8	0.94	1
Isopropylbenzene		ND		ug/kg	0.95	0.10	1
p-Isopropyltoluene		ND		ug/kg	0.95	0.10	1
Naphthalene		ND		ug/kg	3.8	0.62	1
n-Propylbenzene		ND		ug/kg	0.95	0.16	1
1,2,4-Trichlorobenzene		ND		ug/kg	1.9	0.26	1
1,3,5-Trimethylbenzene		ND		ug/kg	1.9	0.18	1
1,2,4-Trimethylbenzene		ND		ug/kg	1.9	0.32	1
Methyl Acetate		ND		ug/kg	3.8	0.90	1
Cyclohexane		ND		ug/kg	9.5	0.52	1
Freon-113		ND		ug/kg	3.8	0.66	1
Methyl cyclohexane		ND		ug/kg	3.8	0.57	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	98	70-130	

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266

002266

 Lab Number:
 L2039421

 Report Date:
 09/25/20

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	09/24/20 05:54
Analyst:	MV

arameter	Result	Qualifier Un	its	RL	MDL	
platile Organics by EPA 5035	Low - Westboro	ugh Lab for sa	mple(s):	01-03,05-06	Batch:	WG141428
Methylene chloride	ND	ug	ı/kg	5.0	2.3	
1,1-Dichloroethane	ND	ug	ı/kg	1.0	0.14	
Chloroform	ND	ug	ı/kg	1.5	0.14	
Carbon tetrachloride	ND	ug	ı/kg	1.0	0.23	
1,2-Dichloropropane	ND	ug	ı/kg	1.0	0.12	
Dibromochloromethane	ND	ug	ı/kg	1.0	0.14	
1,1,2-Trichloroethane	ND	ug	ı/kg	1.0	0.27	
Tetrachloroethene	ND	ug	ı/kg	0.50	0.20	
Chlorobenzene	ND	ug	ı/kg	0.50	0.13	
Trichlorofluoromethane	ND	ug	ı/kg	4.0	0.70	
1,2-Dichloroethane	ND	ug	ı/kg	1.0	0.26	
1,1,1-Trichloroethane	ND	ug	ı/kg	0.50	0.17	
Bromodichloromethane	ND	ug	ı/kg	0.50	0.11	
trans-1,3-Dichloropropene	ND	ug	ı/kg	1.0	0.27	
cis-1,3-Dichloropropene	ND	ug	ı/kg	0.50	0.16	
Bromoform	ND	ug	ı/kg	4.0	0.25	
1,1,2,2-Tetrachloroethane	ND	ug	ı/kg	0.50	0.17	
Benzene	ND	ug	ı/kg	0.50	0.17	
Toluene	ND	ug	ı/kg	1.0	0.54	
Ethylbenzene	ND	ug	ı/kg	1.0	0.14	
Chloromethane	ND	ug	/kg	4.0	0.93	
Bromomethane	ND	ug	ı/kg	2.0	0.58	
Vinyl chloride	ND	ug	ı/kg	1.0	0.34	
Chloroethane	ND	ug	/kg	2.0	0.45	
1,1-Dichloroethene	ND	ug	/kg	1.0	0.24	
trans-1,2-Dichloroethene	ND	ug	/kg	1.5	0.14	
Trichloroethene	ND	ug	/kg	0.50	0.14	
1,2-Dichlorobenzene	ND	ug	/kg	2.0	0.14	
1,3-Dichlorobenzene	ND	ug	ı/kg	2.0	0.15	

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266

002266

 Lab Number:
 L2039421

 Report Date:
 09/25/20

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	09/24/20 05:54
Analyst:	MV

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by EPA 5035 L	ow - Westboro	ugh Lab fo	r sample(s):	01-03,05-06	Batch:	WG1414253
i i i i i i i i i i i i i i i i i i i						
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	
Methyl tert butyl ether	ND		ug/kg	2.0	0.20	
p/m-Xylene	ND		ug/kg	2.0	0.56	
o-Xylene	ND		ug/kg	1.0	0.29	
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	
Styrene	ND		ug/kg	1.0	0.20	
Dichlorodifluoromethane	ND		ug/kg	10	0.92	
Acetone	ND		ug/kg	10	4.8	
Carbon disulfide	ND		ug/kg	10	4.6	
2-Butanone	ND		ug/kg	10	2.2	
4-Methyl-2-pentanone	ND		ug/kg	10	1.3	
2-Hexanone	ND		ug/kg	10	1.2	
1,2-Dibromoethane	ND		ug/kg	1.0	0.28	
n-Butylbenzene	ND		ug/kg	1.0	0.17	
sec-Butylbenzene	ND		ug/kg	1.0	0.15	
tert-Butylbenzene	ND		ug/kg	2.0	0.12	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0	
Isopropylbenzene	ND		ug/kg	1.0	0.11	
p-Isopropyltoluene	ND		ug/kg	1.0	0.11	
Naphthalene	ND		ug/kg	4.0	0.65	
n-Propylbenzene	ND		ug/kg	1.0	0.17	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33	
Methyl Acetate	ND		ug/kg	4.0	0.95	
Cyclohexane	ND		ug/kg	10	0.54	
Freon-113	ND		ug/kg	4.0	0.69	
Methyl cyclohexane	ND		ug/kg	4.0	0.60	

 Project Name:
 236 UNIVERSITY AVE
 Lab Number:
 L2039421

 Project Number:
 P2002266
 Report Date:
 09/25/20

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/24/20 05:54Analyst:MV

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by EPA 5035 Low 5	- Westboro	ugh Lab fo	r sample(s):	01-03,05-06	Batch:	WG1414253-

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	102		70-130
Toluene-d8	99		70-130
4-Bromofluorobenzene	102		70-130
Dibromofluoromethane	90		70-130

L2039421

09/25/20

Lab Number:

Report Date:

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266

12266

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/25/20 06:58Analyst:MV

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035	Low - Westboro	ugh Lab fo	r sample(s):	04	Batch:	WG1414657-5
Methylene chloride	ND		ug/kg	5.0		2.3
1,1-Dichloroethane	ND		ug/kg	1.0		0.14
Chloroform	ND		ug/kg	1.5		0.14
Carbon tetrachloride	ND		ug/kg	1.0		0.23
1,2-Dichloropropane	ND		ug/kg	1.0		0.12
Dibromochloromethane	ND		ug/kg	1.0		0.14
1,1,2-Trichloroethane	ND		ug/kg	1.0		0.27
Tetrachloroethene	ND		ug/kg	0.50		0.20
Chlorobenzene	ND		ug/kg	0.50		0.13
Trichlorofluoromethane	ND		ug/kg	4.0		0.70
1,2-Dichloroethane	ND		ug/kg	1.0		0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50		0.17
Bromodichloromethane	ND		ug/kg	0.50		0.11
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.27
cis-1,3-Dichloropropene	ND		ug/kg	0.50		0.16
Bromoform	ND		ug/kg	4.0		0.25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		0.17
Benzene	ND		ug/kg	0.50		0.17
Toluene	ND		ug/kg	1.0		0.54
Ethylbenzene	ND		ug/kg	1.0		0.14
Chloromethane	ND		ug/kg	4.0		0.93
Bromomethane	ND		ug/kg	2.0		0.58
Vinyl chloride	ND		ug/kg	1.0		0.34
Chloroethane	ND		ug/kg	2.0		0.45
1,1-Dichloroethene	ND		ug/kg	1.0		0.24
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.14
Trichloroethene	ND		ug/kg	0.50		0.14
1,2-Dichlorobenzene	ND		ug/kg	2.0		0.14
1,3-Dichlorobenzene	ND		ug/kg	2.0		0.15

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266

 Lab Number:
 L2039421

 Report Date:
 09/25/20

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/25/20 06:58Analyst:MV

arameter	Result	Qualifier	Units	RL		MDL
platile Organics by EPA 5035	Low - Westboro	ugh Lab fo	r sample(s):	04	Batch:	WG1414657-5
1,4-Dichlorobenzene	ND		ug/kg	2.0		0.17
Methyl tert butyl ether	ND		ug/kg	2.0		0.20
p/m-Xylene	ND		ug/kg	2.0		0.56
o-Xylene	ND		ug/kg	1.0		0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0		0.18
Styrene	ND		ug/kg	1.0		0.20
Dichlorodifluoromethane	ND		ug/kg	10		0.92
Acetone	ND		ug/kg	10		4.8
Carbon disulfide	ND		ug/kg	10		4.6
2-Butanone	ND		ug/kg	10		2.2
4-Methyl-2-pentanone	ND		ug/kg	10		1.3
2-Hexanone	ND		ug/kg	10		1.2
1,2-Dibromoethane	ND		ug/kg	1.0		0.28
n-Butylbenzene	ND		ug/kg	1.0		0.17
sec-Butylbenzene	ND		ug/kg	1.0		0.15
tert-Butylbenzene	ND		ug/kg	2.0		0.12
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Isopropylbenzene	ND		ug/kg	1.0		0.11
p-Isopropyltoluene	ND		ug/kg	1.0		0.11
Naphthalene	ND		ug/kg	4.0		0.65
n-Propylbenzene	ND		ug/kg	1.0		0.17
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		0.33
Methyl Acetate	ND		ug/kg	4.0		0.95
Cyclohexane	ND		ug/kg	10		0.54
Freon-113	ND		ug/kg	4.0		0.69
Methyl cyclohexane	ND		ug/kg	4.0		0.60

Project Name:	236 UNIVERSITY AVE	Lab Number:	L2039421
Project Number:	P2002266	Report Date:	09/25/20

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/25/20 06:58Analyst:MV

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 Low	- Westboro	ugh Lab foi	r sample(s):	04	Batch:	WG1414657-5

Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	91		70-130	

Project Number: P2002266

Lab Number: L2039421

arameter	LCS %Recovery	Qual %	LCSD &Recovery	Qual	%Recovery Limits	RPD	RPD imits
/olatile Organics by EPA 5035 Low - We	estborough Lab Asso	ociated sample(s)	: 01-03,05-06	Batch:	WG1414253-3	WG1414253-4	
Methylene chloride	87		88		70-130	1	30
1,1-Dichloroethane	87		87		70-130	0	30
Chloroform	84		84		70-130	0	30
Carbon tetrachloride	82		82		70-130	0	30
1,2-Dichloropropane	89		89		70-130	0	30
Dibromochloromethane	89		90		70-130	1	30
1,1,2-Trichloroethane	91		91		70-130	0	30
Tetrachloroethene	84		85		70-130	1	30
Chlorobenzene	88		87		70-130	1	30
Trichlorofluoromethane	82		80		70-139	2	30
1,2-Dichloroethane	87		89		70-130	2	30
1,1,1-Trichloroethane	83		82		70-130	1	30
Bromodichloromethane	84		84		70-130	0	30
trans-1,3-Dichloropropene	89		88		70-130	1	30
cis-1,3-Dichloropropene	87		89		70-130	2	30
Bromoform	77		78		70-130	1	30
1,1,2,2-Tetrachloroethane	99		101		70-130	2	30
Benzene	85		85		70-130	0	30
Toluene	86		87		70-130	1	30
Ethylbenzene	89		89		70-130	0	30
Chloromethane	65		63		52-130	3	30
Bromomethane	124		114		57-147	8	30
Vinyl chloride	79		77		67-130	3	30

Project Number: P2002266

Lab Number: L2039421

arameter	LCS %Recovery	Qual %	LCSD &Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by EPA 5035 Low - We	estborough Lab Ass	ociated sample(s)	: 01-03,05-06	Batch:	WG1414253-3	WG1414253-4		
Chloroethane	89		86		50-151	3		30
1,1-Dichloroethene	80		80		65-135	0		30
trans-1,2-Dichloroethene	82		82		70-130	0		30
Trichloroethene	86		85		70-130	1		30
1,2-Dichlorobenzene	93		90		70-130	3		30
1,3-Dichlorobenzene	91		90		70-130	1		30
1,4-Dichlorobenzene	92		90		70-130	2		30
Methyl tert butyl ether	85		86		66-130	1		30
p/m-Xylene	89		88		70-130	1		30
o-Xylene	88		88		70-130	0		30
cis-1,2-Dichloroethene	83		84		70-130	1		30
Styrene	90		90		70-130	0		30
Dichlorodifluoromethane	61		60		30-146	2		30
Acetone	100		107		54-140	7		30
Carbon disulfide	80		80		59-130	0		30
2-Butanone	94		99		70-130	5		30
4-Methyl-2-pentanone	97		100		70-130	3		30
2-Hexanone	93		96		70-130	3		30
1,2-Dibromoethane	91		92		70-130	1		30
n-Butylbenzene	95		93		70-130	2		30
sec-Butylbenzene	94		92		70-130	2		30
tert-Butylbenzene	92		90		70-130	2		30
1,2-Dibromo-3-chloropropane	90		93		68-130	3		30

Project Number: P2002266

Lab Number: L2039421

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 Low - West	borough Lab Associ	iated sample(s):	01-03,05-06	Batch:	WG1414253-3	WG1414253-4		
Isopropylbenzene	92		90		70-130	2		30
p-Isopropyltoluene	92		90		70-130	2		30
Naphthalene	91		93		70-130	2		30
n-Propylbenzene	93		92		70-130	1		30
1,2,4-Trichlorobenzene	87		86		70-130	1		30
1,3,5-Trimethylbenzene	92		90		70-130	2		30
1,2,4-Trimethylbenzene	93		92		70-130	1		30
Methyl Acetate	92		99		51-146	7		30
Cyclohexane	85		85		59-142	0		30
Freon-113	83		82		50-139	1		30
Methyl cyclohexane	83		84		70-130	1		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	95	95	70-130
Toluene-d8	101	100	70-130
4-Bromofluorobenzene	105	102	70-130
Dibromofluoromethane	91	89	70-130

Project Number: P2002266

Lab Number: L2039421

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - Wo	estborough Lab Asso	ciated sample((s): 04 Batc	n: WG1414657-3 WG14146	57-4	
Methylene chloride	98		90	70-130	9	30
1,1-Dichloroethane	97		92	70-130	5	30
Chloroform	94		88	70-130	7	30
Carbon tetrachloride	95		88	70-130	8	30
1,2-Dichloropropane	97		92	70-130	5	30
Dibromochloromethane	97		92	70-130	5	30
1,1,2-Trichloroethane	96		93	70-130	3	30
Tetrachloroethene	100		94	70-130	6	30
Chlorobenzene	99		93	70-130	6	30
Trichlorofluoromethane	97		90	70-139	7	30
1,2-Dichloroethane	94		90	70-130	4	30
1,1,1-Trichloroethane	95		90	70-130	5	30
Bromodichloromethane	90		86	70-130	5	30
trans-1,3-Dichloropropene	96		92	70-130	4	30
cis-1,3-Dichloropropene	94		90	70-130	4	30
Bromoform	80		80	70-130	0	30
1,1,2,2-Tetrachloroethane	102		101	70-130	1	30
Benzene	96		91	70-130	5	30
Toluene	99		92	70-130	7	30
Ethylbenzene	103		95	70-130	8	30
Chloromethane	74		68	52-130	8	30
Bromomethane	132		119	57-147	10	30
Vinyl chloride	93		84	67-130	10	30

Project Number: P2002266

arameter	LCS %Recovery Q	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low -	Westborough Lab Associate	ed sample(s): 04 Batch	n: WG1414657-3 WG14146	57-4	
Chloroethane	102	93	50-151	9	30
1,1-Dichloroethene	93	88	65-135	6	30
trans-1,2-Dichloroethene	94	88	70-130	7	30
Trichloroethene	99	94	70-130	5	30
1,2-Dichlorobenzene	100	97	70-130	3	30
1,3-Dichlorobenzene	100	97	70-130	3	30
1,4-Dichlorobenzene	100	96	70-130	4	30
Methyl tert butyl ether	87	86	66-130	1	30
p/m-Xylene	102	94	70-130	8	30
o-Xylene	100	93	70-130	7	30
cis-1,2-Dichloroethene	93	87	70-130	7	30
Styrene	100	95	70-130	5	30
Dichlorodifluoromethane	66	61	30-146	8	30
Acetone	96	94	54-140	2	30
Carbon disulfide	94	87	59-130	8	30
2-Butanone	89	87	70-130	2	30
4-Methyl-2-pentanone	99	96	70-130	3	30
2-Hexanone	92	91	70-130	1	30
1,2-Dibromoethane	94	92	70-130	2	30
n-Butylbenzene	109	103	70-130	6	30
sec-Butylbenzene	109	103	70-130	6	30
tert-Butylbenzene	105	99	70-130	6	30
1,2-Dibromo-3-chloropropane	94	90	68-130	4	30

Project Number: P2002266

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 Low - Westbo	prough Lab Asso	ociated sample	(s): 04 Batch:	: WG141465	57-3 WG14146	57-4		
Isopropylbenzene	105		101		70-130	4		30
p-Isopropyltoluene	106		100		70-130	6		30
Naphthalene	93		91		70-130	2		30
n-Propylbenzene	108		102		70-130	6		30
1,2,4-Trichlorobenzene	93		89		70-130	4		30
1,3,5-Trimethylbenzene	103		99		70-130	4		30
1,2,4-Trimethylbenzene	105		99		70-130	6		30
Methyl Acetate	92		90		51-146	2		30
Cyclohexane	101		95		59-142	6		30
Freon-113	99		91		50-139	8		30
Methyl cyclohexane	100		93		70-130	7		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	94	95	70-130
Toluene-d8	102	100	70-130
4-Bromofluorobenzene	104	102	70-130
Dibromofluoromethane	91	89	70-130

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5 SB-08	035 Low - West	borough Lab	Associated	sample(s): 04	QC Bato	h ID: WG1	414657-6 WG	141465	57-7 QC Sa	mple: L	203942 <i>′</i>	I-04 Client ID:
Methylene chloride	ND	98.9	64	65	Q	46	61	Q	70-130	33	Q	30
1,1-Dichloroethane	ND	98.9	68	68	Q	51	67	Q	70-130	28		30
Chloroform	ND	98.9	62	63	Q	46	61	Q	70-130	30		30
Carbon tetrachloride	ND	98.9	66	67	Q	53	71		70-130	21		30
1,2-Dichloropropane	ND	98.9	63	64	Q	46	61	Q	70-130	31	Q	30
Dibromochloromethane	ND	98.9	54	55	Q	38	50	Q	70-130	37	Q	30
1,1,2-Trichloroethane	ND	98.9	64	65	Q	44	59	Q	70-130	36	Q	30
Tetrachloroethene	ND	98.9	61	62	Q	49	64	Q	70-130	22		30
Chlorobenzene	ND	98.9	57	57	Q	42	56	Q	70-130	29		30
Trichlorofluoromethane	ND	98.9	70	71		55	73		70-139	23		30
1,2-Dichloroethane	ND	98.9	57	58	Q	40	53	Q	70-130	36	Q	30
1,1,1-Trichloroethane	ND	98.9	68	68	Q	53	70		70-130	25		30
Bromodichloromethane	ND	98.9	57	58	Q	41	54	Q	70-130	33	Q	30
trans-1,3-Dichloropropene	ND	98.9	54	54	Q	38	50	Q	70-130	34	Q	30
cis-1,3-Dichloropropene	ND	98.9	59	59	Q	42	56	Q	70-130	34	Q	30
Bromoform	ND	98.9	41	42	Q	29	38	Q	70-130	36	Q	30
1,1,2,2-Tetrachloroethane	ND	98.9	53	53	Q	36	48	Q	70-130	37	Q	30
Benzene	0.16J	98.9	67	67	Q	50	66	Q	70-130	28		30
Toluene	0.47J	98.9	63	64	Q	48	64	Q	70-130	26		30
Ethylbenzene	ND	98.9	62	62	Q	48	63	Q	70-130	25		30
Chloromethane	ND	98.9	55	56		41	54		52-130	29		30
Bromomethane	ND	98.9	92	93		66	87		57-147	33	Q	30
Vinyl chloride	ND	98.9	70	71		47	62	Q	67-130	40	Q	30

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266 Lab Number: L2039421

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 SB-08	5 Low - West	oorough Lab	Associated	sample(s): 04	QC Bate	ch ID: WG14	414657-6 WG	141465	7-7 QC Sa	mple: L	2039421	-04 Client ID:
Chloroethane	ND	98.9	73	74		57	75		50-151	25		30
1,1-Dichloroethene	ND	98.9	69	70		54	71		65-135	25		30
trans-1,2-Dichloroethene	ND	98.9	66	66	Q	51	67	Q	70-130	26		30
Trichloroethene	ND	98.9	67	67	Q	52	69	Q	70-130	25		30
1,2-Dichlorobenzene	ND	98.9	45	45	Q	32	42	Q	70-130	33	Q	30
1,3-Dichlorobenzene	ND	98.9	47	48	Q	34	46	Q	70-130	31	Q	30
1,4-Dichlorobenzene	ND	98.9	46	46	Q	33	44	Q	70-130	31	Q	30
Methyl tert butyl ether	ND	98.9	52	53	Q	36	47	Q	66-130	38	Q	30
p/m-Xylene	0.47J	198	120	60	Q	91	60	Q	70-130	26		30
o-Xylene	ND	198	120	58	Q	86	57	Q	70-130	29		30
cis-1,2-Dichloroethene	ND	98.9	62	62	Q	46	61	Q	70-130	29		30
Styrene	ND	198	110	56	Q	81	53	Q	70-130	31	Q	30
Dichlorodifluoromethane	ND	98.9	49	50		31	41		30-146	45	Q	30
Acetone	7.5	98.9	51	44	Q	40	43	Q	54-140	23		30
Carbon disulfide	ND	98.9	67	68		53	70		59-130	24		30
2-Butanone	ND	98.9	44	45	Q	29	38	Q	70-130	42	Q	30
4-Methyl-2-pentanone	ND	98.9	50	51	Q	34	45	Q	70-130	38	Q	30
2-Hexanone	ND	98.9	46	47	Q	30	40	Q	70-130	43	Q	30
1,2-Dibromoethane	ND	98.9	52	52	Q	35	47	Q	70-130	38	Q	30
n-Butylbenzene	ND	98.9	53	53	Q	41	54	Q	70-130	25		30
sec-Butylbenzene	ND	98.9	57	57	Q	45	60	Q	70-130	23		30
tert-Butylbenzene	ND	98.9	57	58	Q	45	60	Q	70-130	24		30
1,2-Dibromo-3-chloropropane	ND	98.9	39	40	Q	28	36	Q	68-130	35	Q	30

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 503 SB-08	35 Low - West	oorough Lab	Associated	sample(s): 04	QC Batc	h ID: WG1	414657-6 WG	141465	7-7 QC Sa	mple: L	2039421	-04 Client ID:
Isopropylbenzene	ND	98.9	61	61	Q	49	64	Q	70-130	22		30
p-Isopropyltoluene	0.09J	98.9	54	55	Q	43	56	Q	70-130	24		30
Naphthalene	ND	98.9	32	32	Q	22	30	Q	70-130	35	Q	30
n-Propylbenzene	ND	98.9	59	60	Q	47	62	Q	70-130	23		30
1,2,4-Trichlorobenzene	ND	98.9	31	31	Q	21	28	Q	70-130	36	Q	30
1,3,5-Trimethylbenzene	0.31J	98.9	56	57	Q	44	58	Q	70-130	25		30
1,2,4-Trimethylbenzene	0.42J	98.9	55	56	Q	41	55	Q	70-130	29		30
Methyl Acetate	ND	98.9	56	57		41	54		51-146	33	Q	30
Cyclohexane	ND	98.9	69	70		57	75		59-142	20		30
Freon-113	ND	98.9	68	68		55	73		50-139	20		30
Methyl cyclohexane	2.7J	98.9	69	69	Q	57	76		70-130	18		30

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
- 1,2-Dichloroethane-d4	101	101	70-130	_
4-Bromofluorobenzene	103	106	70-130	
Dibromofluoromethane	91	90	70-130	
Toluene-d8	100	101	70-130	

SEMIVOLATILES

			Serial_No:09252019:30		
Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421	
Project Number:	P2002266		Report Date:	09/25/20	
		SAMPLE RESULTS			
Lab ID:	L2039421-01		Date Collected:	09/18/20 11:30	
Client ID:	SB-05		Date Received:	09/18/20	
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method	l: EPA 3546	
Analytical Method:	1,8270D		Extraction Date:	09/23/20 03:49	
Analytical Date:	09/23/20 21:45				
Analyst:	EK				
Percent Solids:	90%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS	Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	580		ug/kg	150	19.	1		
Fluoranthene	4700		ug/kg	110	21.	1		
Benzo(a)anthracene	2200		ug/kg	110	21.	1		
Benzo(a)pyrene	1900		ug/kg	150	45.	1		
Benzo(b)fluoranthene	2000		ug/kg	110	31.	1		
Benzo(k)fluoranthene	830		ug/kg	110	29.	1		
Chrysene	1800		ug/kg	110	19.	1		
Acenaphthylene	280		ug/kg	150	28.	1		
Anthracene	1600		ug/kg	110	36.	1		
Benzo(ghi)perylene	760		ug/kg	150	22.	1		
Fluorene	900		ug/kg	180	18.	1		
Phenanthrene	5600		ug/kg	110	22.	1		
Dibenzo(a,h)anthracene	230		ug/kg	110	21.	1		
Indeno(1,2,3-cd)pyrene	930		ug/kg	150	26.	1		
Pyrene	3600		ug/kg	110	18.	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	73	23-120	
2-Fluorobiphenyl	67	30-120	
4-Terphenyl-d14	61	18-120	

			Serial_No	:09252019:30
Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID: Client ID:	L2039421-02 DUPLICATE		Date Collected: Date Received:	09/18/20 00:00 09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8270D 09/23/20 21:21 EK 89%		Extraction Method Extraction Date:	: EPA 3546 09/23/20 03:49

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - W	Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	19	J	ug/kg	140	19.	1			
Fluoranthene	420		ug/kg	110	21.	1			
Benzo(a)anthracene	130		ug/kg	110	20.	1			
Benzo(a)pyrene	150		ug/kg	140	44.	1			
Benzo(b)fluoranthene	190		ug/kg	110	30.	1			
Benzo(k)fluoranthene	73	J	ug/kg	110	29.	1			
Chrysene	140		ug/kg	110	19.	1			
Acenaphthylene	ND		ug/kg	140	28.	1			
Anthracene	54	J	ug/kg	110	35.	1			
Benzo(ghi)perylene	120	J	ug/kg	140	21.	1			
Fluorene	22	J	ug/kg	180	18.	1			
Phenanthrene	230		ug/kg	110	22.	1			
Dibenzo(a,h)anthracene	24	J	ug/kg	110	21.	1			
Indeno(1,2,3-cd)pyrene	110	J	ug/kg	140	25.	1			
Pyrene	320		ug/kg	110	18.	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	58		23-120	
2-Fluorobiphenyl	50		30-120	
4-Terphenyl-d14	43		18-120	

			Serial_No:09252019:30		
Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421	
Project Number:	P2002266		Report Date:	09/25/20	
		SAMPLE RESULTS			
Lab ID:	L2039421-03		Date Collected:	09/18/20 12:00	
Client ID:	SB-06		Date Received:	09/18/20	
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method	: EPA 3546	
Analytical Method:	1,8270D		Extraction Date:	09/23/20 10:33	
Analytical Date:	09/24/20 07:45				
Analyst:	IM				
Percent Solids:	91%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - We	Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	ND		ug/kg	140	19.	1		
Fluoranthene	630		ug/kg	110	21.	1		
Benzo(a)anthracene	380		ug/kg	110	20.	1		
Benzo(a)pyrene	390		ug/kg	140	44.	1		
Benzo(b)fluoranthene	500		ug/kg	110	30.	1		
Benzo(k)fluoranthene	140		ug/kg	110	29.	1		
Chrysene	350		ug/kg	110	19.	1		
Acenaphthylene	29	J	ug/kg	140	28.	1		
Anthracene	45	J	ug/kg	110	35.	1		
Benzo(ghi)perylene	260		ug/kg	140	21.	1		
Fluorene	ND		ug/kg	180	18.	1		
Phenanthrene	210		ug/kg	110	22.	1		
Dibenzo(a,h)anthracene	60	J	ug/kg	110	21.	1		
Indeno(1,2,3-cd)pyrene	270		ug/kg	140	25.	1		
Pyrene	600		ug/kg	110	18.	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	79	23-120	
2-Fluorobiphenyl	68	30-120	
4-Terphenyl-d14	62	18-120	

			Serial_No	:09252019:30
Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID:	L2039421-06 D		Date Collected:	09/18/20 10:25
Client ID:	SB-03		Date Received:	09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3546
Analytical Method: Analytical Date: Analyst: Percent Solids:	1,8270D 09/25/20 04:44 IM 84%		Extraction Date:	09/23/20 03:49

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Acenaphthene	ND		ug/kg	790	100	5
Fluoranthene	590		ug/kg	590	110	5
Benzo(a)anthracene	210	J	ug/kg	590	110	5
Benzo(a)pyrene	ND		ug/kg	790	240	5
Benzo(b)fluoranthene	300	J	ug/kg	590	170	5
Benzo(k)fluoranthene	ND		ug/kg	590	160	5
Chrysene	270	J	ug/kg	590	100	5
Acenaphthylene	ND		ug/kg	790	150	5
Anthracene	ND		ug/kg	590	190	5
Benzo(ghi)perylene	160	J	ug/kg	790	120	5
Fluorene	ND		ug/kg	990	96.	5
Phenanthrene	300	J	ug/kg	590	120	5
Dibenzo(a,h)anthracene	ND		ug/kg	590	110	5
Indeno(1,2,3-cd)pyrene	150	J	ug/kg	790	140	5
Pyrene	490	J	ug/kg	590	98.	5

Surrogate	% Recovery	ceptance Criteria
Nitrobenzene-d5	71	23-120
2-Fluorobiphenyl	56	30-120
4-Terphenyl-d14	55	18-120

Project Name:	236 UNIVERSITY AVE	Lab Number:	L2039421
Project Number:	P2002266	Report Date:	09/25/20

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8
Analytical Date:	09
Analyst:	IM

1,8270D 09/23/20 11:01 M Extraction Method: EPA 3546 Extraction Date: 09/23/20 00:49

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/MS	- Westborough	h Lab for sa	mple(s):	01-02,06	Batch: WG1413242-1
Acenaphthene	ND		ug/kg	130	17.
Fluoranthene	ND		ug/kg	100	19.
Benzo(a)anthracene	ND		ug/kg	100	19.
Benzo(a)pyrene	ND		ug/kg	130	40.
Benzo(b)fluoranthene	ND		ug/kg	100	28.
Benzo(k)fluoranthene	ND		ug/kg	100	26.
Chrysene	ND		ug/kg	100	17.
Acenaphthylene	ND		ug/kg	130	26.
Anthracene	ND		ug/kg	100	32.
Benzo(ghi)perylene	ND		ug/kg	130	20.
Fluorene	ND		ug/kg	170	16.
Phenanthrene	ND		ug/kg	100	20.
Dibenzo(a,h)anthracene	ND		ug/kg	100	19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	23.
Pyrene	ND		ug/kg	100	16.

Surrogate	%Recovery Qualif	Acceptance ier Criteria
2-Fluorophenol	81	25-120
Phenol-d6	78	10-120
Nitrobenzene-d5	71	23-120
2-Fluorobiphenyl	76	30-120
2,4,6-Tribromophenol	81	10-136
4-Terphenyl-d14	87	18-120

Project Name:	236 UNIVERSITY AVE	Lab Number:	L2039421
Project Number:	P2002266	Report Date:	09/25/20

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 09/24/20 02:34 IM Extraction Method: EPA 3546 Extraction Date: 09/23/20 10:33

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	n Lab for s	ample(s):	03	Batch:	WG1413470-1	
Acenaphthene	ND		ug/kg		130	17.	
Fluoranthene	ND		ug/kg		99	19.	
Benzo(a)anthracene	ND		ug/kg		99	19.	
Benzo(a)pyrene	ND		ug/kg		130	40.	
Benzo(b)fluoranthene	ND		ug/kg		99	28.	
Benzo(k)fluoranthene	ND		ug/kg		99	26.	
Chrysene	ND		ug/kg		99	17.	
Acenaphthylene	ND		ug/kg		130	26.	
Anthracene	ND		ug/kg		99	32.	
Benzo(ghi)perylene	ND		ug/kg		130	19.	
Fluorene	ND		ug/kg		160	16.	
Phenanthrene	ND		ug/kg		99	20.	
Dibenzo(a,h)anthracene	ND		ug/kg		99	19.	
Indeno(1,2,3-cd)pyrene	ND		ug/kg		130	23.	
Pyrene	ND		ug/kg		99	16.	

%Recovery Qu	Acceptance alifier Criteria
90	25-120
95	10-120
93	23-120
91	30-120
101	10-136
101	18-120
	90 95 93 91 101

Project Number: P2002266

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - W	Vestborough Lab Associa	ated sample(s):	: 01-02,06 E	Batch: WG1	413242-2 WG14	13242-3		
Acenaphthene	84		94		31-137	11		50
Fluoranthene	88		98		40-140	11		50
Benzo(a)anthracene	83		94		40-140	12		50
Benzo(a)pyrene	90		100		40-140	11		50
Benzo(b)fluoranthene	93		100		40-140	7		50
Benzo(k)fluoranthene	89		101		40-140	13		50
Chrysene	86		92		40-140	7		50
Acenaphthylene	89		99		40-140	11		50
Anthracene	92		102		40-140	10		50
Benzo(ghi)perylene	94		106		40-140	12		50
Fluorene	86		96		40-140	11		50
Phenanthrene	89		99		40-140	11		50
Dibenzo(a,h)anthracene	100		113		40-140	12		50
Indeno(1,2,3-cd)pyrene	94		101		40-140	7		50
Pyrene	89		100		35-142	12		50

	LCS	LCSD	Acceptance Criteria
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria
2-Fluorophenol	93	90	25-120
Phenol-d6	91	88	10-120
Nitrobenzene-d5	85	81	23-120
2-Fluorobiphenyl	89	90	30-120
2,4,6-Tribromophenol	109	111	10-136
4-Terphenyl-d14	109	108	18-120
			WITH.

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS -	Westborough Lab Associ	ated sample(s):	03 Batch:	WG1413470-2	2 WG1413470-3	5		
Acenaphthene	64		64		31-137	0	50	
Fluoranthene	63		65		40-140	3	50	
Benzo(a)anthracene	68		66		40-140	3	50	
Benzo(a)pyrene	67		67		40-140	0	50	
Benzo(b)fluoranthene	69		71		40-140	3	50	
Benzo(k)fluoranthene	65		64		40-140	2	50	
Chrysene	66		67		40-140	2	50	
Acenaphthylene	67		70		40-140	4	50	
Anthracene	66		64		40-140	3	50	
Benzo(ghi)perylene	67		68		40-140	1	50	
Fluorene	63		62		40-140	2	50	
Phenanthrene	65		66		40-140	2	50	
Dibenzo(a,h)anthracene	64		66		40-140	3	50	
Indeno(1,2,3-cd)pyrene	68		68		40-140	0	50	
Pyrene	65		66		35-142	2	50	

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
Carrogato	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
2-Fluorophenol	69	70	25-120
Phenol-d6	71	74	10-120
Nitrobenzene-d5	72	75	23-120
2-Fluorobiphenyl	70	71	30-120
2,4,6-Tribromophenol	72	75	10-136
4-Terphenyl-d14	70	70	18-120
			weeks

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	, Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC SB-06	/MS - Westbor	ough Lab	Associated sam	nple(s): 03 (QC Batch I): WG141:	3470-6 WG14	13470-7	QC Samp	le: L203	39421-0	3 Client ID:
Acenaphthene	ND	1460	1000	68		910	63		31-137	9		50
Fluoranthene	630	1460	2100	100		1600	67		40-140	27		50
Benzo(a)anthracene	380	1460	1700	90		1300	63		40-140	27		50
Benzo(a)pyrene	390	1460	1700	90		1300	63		40-140	27		50
Benzo(b)fluoranthene	500	1460	1900	96		1500	69		40-140	24		50
Benzo(k)fluoranthene	140	1460	1200	73		980	58		40-140	20		50
Chrysene	350	1460	1600	86		1300	65		40-140	21		50
Acenaphthylene	29J	1460	1100	75		990	68		40-140	11		50
Anthracene	45J	1460	1100	75		920	63		40-140	18		50
Benzo(ghi)perylene	260	1460	1400	78		1100	58		40-140	24		50
Fluorene	ND	1460	980	67		840	58		40-140	15		50
Phenanthrene	210	1460	1300	75		1200	68		40-140	8		50
Dibenzo(a,h)anthracene	60J	1460	1000	68		870	60		40-140	14		50
Indeno(1,2,3-cd)pyrene	270	1460	1500	84		1200	64		40-140	22		50
Pyrene	600	1460	2000	96		1600	69		35-142	22		50

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
2-Fluorobiphenyl	73	66	30-120	
4-Terphenyl-d14	64	59	18-120	
Nitrobenzene-d5	85	75	23-120	

PCBS

			Serial_No	:09252019:30
Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID:	L2039421-01		Date Collected:	09/18/20 11:30
Client ID:	SB-05		Date Received:	09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	I: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	09/23/20 08:14
Analytical Date:	09/23/20 20:36		Cleanup Method:	EPA 3665A
Analyst:	AD		Cleanup Date:	09/23/20
Percent Solids:	90%		Cleanup Method:	EPA 3660B
			Cleanup Date:	09/23/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Vestborough Lab						
Aroclor 1016	ND		ug/kg	35.0	3.10	1	A
Aroclor 1221	ND		ug/kg	35.0	3.50	1	А
Aroclor 1232	ND		ug/kg	35.0	7.41	1	А
Aroclor 1242	ND		ug/kg	35.0	4.71	1	А
Aroclor 1248	ND		ug/kg	35.0	5.24	1	А
Aroclor 1254	ND		ug/kg	35.0	3.82	1	А
Aroclor 1260	ND		ug/kg	35.0	6.46	1	А
Aroclor 1262	ND		ug/kg	35.0	4.44	1	А
Aroclor 1268	ND		ug/kg	35.0	3.62	1	А
PCBs, Total	ND		ug/kg	35.0	3.10	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	37		30-150	А
Decachlorobiphenyl	48		30-150	А
2,4,5,6-Tetrachloro-m-xylene	39		30-150	В
Decachlorobiphenyl	45		30-150	В

			Serial_No	09252019:30
Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID:	L2039421-02		Date Collected:	09/18/20 00:00
Client ID:	DUPLICATE		Date Received:	09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	I: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	09/23/20 08:14
Analytical Date:	09/23/20 20:42		Cleanup Method:	EPA 3665A
Analyst:	AD		Cleanup Date:	09/23/20
Percent Solids:	89%		Cleanup Method:	EPA 3660B
			Cleanup Date:	09/23/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/kg	36.7	3.26	1	А			
Aroclor 1221	ND		ug/kg	36.7	3.67	1	A			
Aroclor 1232	ND		ug/kg	36.7	7.77	1	А			
Aroclor 1242	ND		ug/kg	36.7	4.94	1	А			
Aroclor 1248	ND		ug/kg	36.7	5.50	1	А			
Aroclor 1254	ND		ug/kg	36.7	4.01	1	А			
Aroclor 1260	ND		ug/kg	36.7	6.78	1	А			
Aroclor 1262	ND		ug/kg	36.7	4.66	1	А			
Aroclor 1268	ND		ug/kg	36.7	3.80	1	А			
PCBs, Total	ND		ug/kg	36.7	3.26	1	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	69		30-150	А
Decachlorobiphenyl	86		30-150	А
2,4,5,6-Tetrachloro-m-xylene	76		30-150	В
Decachlorobiphenyl	74		30-150	В

			Serial_No:	:09252019:30
Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID:	L2039421-07		Date Collected:	09/18/20 12:25
Client ID:	SB-07		Date Received:	09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	09/23/20 04:27
Analytical Date:	09/23/20 20:15		Cleanup Method:	EPA 3665A
Analyst:	AD		Cleanup Date:	09/23/20
Percent Solids:	86%		Cleanup Method:	EPA 3660B
			Cleanup Date:	09/23/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	/estborough Lab						
Aroclor 1016	ND		ug/kg	36.5	3.24	1	A
Aroclor 1221	ND		ug/kg	36.5	3.66	1	А
Aroclor 1232	ND		ug/kg	36.5	7.74	1	А
Aroclor 1242	ND		ug/kg	36.5	4.92	1	А
Aroclor 1248	ND		ug/kg	36.5	5.48	1	А
Aroclor 1254	ND		ug/kg	36.5	4.00	1	А
Aroclor 1260	ND		ug/kg	36.5	6.75	1	А
Aroclor 1262	ND		ug/kg	36.5	4.64	1	А
Aroclor 1268	ND		ug/kg	36.5	3.78	1	А
PCBs, Total	ND		ug/kg	36.5	3.24	1	А

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	75		30-150	А			
Decachlorobiphenyl	95		30-150	А			
2,4,5,6-Tetrachloro-m-xylene	84		30-150	В			
Decachlorobiphenyl	89		30-150	В			

Project Name:	236 UNIVERSITY AVE	Lab Number:	L2039421
Project Number:	P2002266	Report Date:	09/25/20

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8082A 09/23/20 08:21 CW

Extraction Method:	EPA 3546
Extraction Date:	09/23/20 00:58
Cleanup Method:	EPA 3665A
Cleanup Date:	09/23/20
Cleanup Method:	EPA 3660B
Cleanup Date:	09/23/20

Parameter	Result	Qualifier L	Inits	RL	MC	L	Column
Polychlorinated Biphenyls by GC -	Westborough	n Lab for sam	nple(s):	01-02,07	Batch:	WG14	13243-1
Aroclor 1016	ND	ι	ug/kg	32.8	2.	92	А
Aroclor 1221	ND	ι	ug/kg	32.8	3.	29	А
Aroclor 1232	ND	l	ug/kg	32.8	6.	96	А
Aroclor 1242	ND	l	ug/kg	32.8	4.	43	А
Aroclor 1248	ND	ι	ug/kg	32.8	4.	93	А
Aroclor 1254	ND	ι	ug/kg	32.8	3.	59	А
Aroclor 1260	ND	ι	ug/kg	32.8	6.	07	А
Aroclor 1262	ND	ι	ug/kg	32.8	4.	17	А
Aroclor 1268	ND	ι	ug/kg	32.8	3.	40	А
PCBs, Total	ND	l	ug/kg	32.8	2.	92	А

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	60		30-150	А	
Decachlorobiphenyl	66		30-150	А	
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В	
Decachlorobiphenyl	74		30-150	В	

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266

 Lab Number:
 L2039421

 Report Date:
 09/25/20

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westb	orough Lab Associa	ited sample(s)	· 01-02.07 F	Batch: WG14	413243-2 WG141	3243-3			
						02100			
Aroclor 1016	55		65		40-140	17		50	А
Aroclor 1260	49		60		40-140	20		50	А

	LCS	LCSD		Acceptance	
Surrogate	%Recovery	Qual %Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	49	58		30-150	А
Decachlorobiphenyl	50	61		30-150	А
2,4,5,6-Tetrachloro-m-xylene	57	68		30-150	В
Decachlorobiphenyl	59	72		30-150	В

Matrix Spike Analysis

Project Name:	236 UNIVERSITY AVE	Batch Quality Control	Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSI Qual Fou		Reco ry Qual Lim		RPD Qual Limits	<u>Colum</u> n
Polychlorinated Biphenyls by C Client ID: SB-07	GC - Westbor	ough Lab	Associated san	nple(s): 01-02,07	7 QC Batch II): WG1413243-	4 WG1413243-5	QC Samp	le: L2039421-07	
Aroclor 1016	ND	230	256	111	215	91	40-1	40 17	50	А
Aroclor 1260	ND	230	202	88	199	84	40-1	40 1	50	А

	MS	MSD	Acceptance		
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	75	71	30-150	А	
Decachlorobiphenyl	93	94	30-150	А	
2,4,5,6-Tetrachloro-m-xylene	77	71	30-150	В	
Decachlorobiphenyl	80	73	30-150	В	

METALS

Serial_No:09252019:30

Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID:	L2039421-01		Date Collected:	09/18/20 11:30
Client ID:	SB-05		Date Received:	09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 90%

Percent Solids: Parameter	90% Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Arsenic, Total	3.78		mg/kg	0.418	0.087	1	09/24/20 13:23	3 09/25/20 16:50	EPA 3050B	1,6010D	GD
Barium, Total	60.2		mg/kg	0.418	0.073	1	09/24/20 13:23	3 09/25/20 16:50	EPA 3050B	1,6010D	GD
Cadmium, Total	0.451		mg/kg	0.418	0.041	1	09/24/20 13:23	3 09/25/20 16:50	EPA 3050B	1,6010D	GD
Chromium, Total	7.79		mg/kg	0.418	0.040	1	09/24/20 13:23	3 09/25/20 16:50	EPA 3050B	1,6010D	GD
Lead, Total	11.4		mg/kg	2.09	0.112	1	09/24/20 13:23	3 09/25/20 16:50	EPA 3050B	1,6010D	GD
Mercury, Total	0.136		mg/kg	0.081	0.053	1	09/24/20 14:00	0 09/24/20 21:40	EPA 7471B	1,7471B	AL
Selenium, Total	ND		mg/kg	0.836	0.108	1	09/24/20 13:23	3 09/25/20 16:50	EPA 3050B	1,6010D	GD
Silver, Total	ND		mg/kg	0.418	0.118	1	09/24/20 13:23	3 09/25/20 16:50	EPA 3050B	1,6010D	GD

Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID:	L2039421-02		Date Collected:	09/18/20 00:00
Client ID:	DUPLICATE		Date Received:	09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified

Sample Depth:

Matrix: Percent Solids:	Soil 89%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	2.48		mg/kg	0.433	0.090	1	09/24/20 13:2	3 09/25/20 16:54	EPA 3050B	1,6010D	GD
Barium, Total	73.8		mg/kg	0.433	0.075	1	09/24/20 13:2	3 09/25/20 16:54	EPA 3050B	1,6010D	GD
Cadmium, Total	0.567		mg/kg	0.433	0.042	1	09/24/20 13:2	3 09/25/20 16:54	EPA 3050B	1,6010D	GD
Chromium, Total	7.67		mg/kg	0.433	0.042	1	09/24/20 13:2	3 09/25/20 16:54	EPA 3050B	1,6010D	GD
Lead, Total	12.4		mg/kg	2.16	0.116	1	09/24/20 13:2	3 09/25/20 16:54	EPA 3050B	1,6010D	GD
Mercury, Total	0.111		mg/kg	0.075	0.049	1	09/24/20 14:0	0 09/24/20 21:43	EPA 7471B	1,7471B	AL
Selenium, Total	0.229	J	mg/kg	0.865	0.112	1	09/24/20 13:2	3 09/25/20 16:54	EPA 3050B	1,6010D	GD
Silver, Total	ND		mg/kg	0.433	0.122	1	09/24/20 13:2	3 09/25/20 16:54	EPA 3050B	1,6010D	GD

Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID:	L2039421-03		Date Collected:	09/18/20 12:00
Client ID:	SB-06		Date Received:	09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 91%

Percent Solids:	91%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Total Metals - Man	sfield Lab										
Arsenic, Total	2.07		mg/kg	0.420	0.087	1	09/24/20 13:23	3 09/25/20 16:31	EPA 3050B	1,6010D	GD
Barium, Total	20.4		mg/kg	0.420	0.073	1	09/24/20 13:23	3 09/25/20 16:31	EPA 3050B	1,6010D	GD
Cadmium, Total	0.286	J	mg/kg	0.420	0.041	1	09/24/20 13:23	3 09/25/20 16:31	EPA 3050B	1,6010D	GD
Chromium, Total	4.18		mg/kg	0.420	0.040	1	09/24/20 13:23	3 09/25/20 16:31	EPA 3050B	1,6010D	GD
Lead, Total	32.5		mg/kg	2.10	0.113	1	09/24/20 13:23	3 09/25/20 16:31	EPA 3050B	1,6010D	GD
Mercury, Total	0.142		mg/kg	0.082	0.053	1	09/24/20 14:00) 09/24/20 20:24	EPA 7471B	1,7471B	AL
Selenium, Total	ND		mg/kg	0.840	0.108	1	09/24/20 13:23	3 09/25/20 16:31	EPA 3050B	1,6010D	GD
Silver, Total	ND		mg/kg	0.420	0.119	1	09/24/20 13:23	3 09/25/20 16:31	EPA 3050B	1,6010D	GD

Project Name:	236 UNIVERSITY AVE		Lab Number:	L2039421
Project Number:	P2002266		Report Date:	09/25/20
		SAMPLE RESULTS		
Lab ID:	L2039421-06		Date Collected:	09/18/20 10:25
Client ID:	SB-03		Date Received:	09/18/20
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 84%

Percent Solids:	84%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Total Metals - Man	sfield Lab										
Arsenic, Total	5.01		mg/kg	0.451	0.094	1	09/24/20 13:23	3 09/25/20 16:59	EPA 3050B	1,6010D	GD
Barium, Total	198		mg/kg	0.451	0.079	1	09/24/20 13:23	3 09/25/20 16:59	EPA 3050B	1,6010D	GD
Cadmium, Total	0.668		mg/kg	0.451	0.044	1	09/24/20 13:23	3 09/25/20 16:59	EPA 3050B	1,6010D	GD
Chromium, Total	8.64		mg/kg	0.451	0.043	1	09/24/20 13:23	3 09/25/20 16:59	EPA 3050B	1,6010D	GD
Lead, Total	139		mg/kg	2.26	0.121	1	09/24/20 13:23	3 09/25/20 16:59	EPA 3050B	1,6010D	GD
Mercury, Total	0.420		mg/kg	0.088	0.057	1	09/24/20 14:00) 09/24/20 21:46	EPA 7471B	1,7471B	AL
Selenium, Total	ND		mg/kg	0.902	0.116	1	09/24/20 13:23	3 09/25/20 16:59	EPA 3050B	1,6010D	GD
Silver, Total	0.149	J	mg/kg	0.451	0.128	1	09/24/20 13:23	3 09/25/20 16:59	EPA 3050B	1,6010D	GD

Project Name: 236 UNIVERSITY AVE Project Number: P2002266
 Lab Number:
 L2039421

 Report Date:
 09/25/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	Id Lab for sample(s):	01-03,06	Batch:	WG141	3591-1				
Arsenic, Total	ND	mg/kg	0.400	0.083	1	09/24/20 13:23	09/25/20 16:22	1,6010D	GD
Barium, Total	ND	mg/kg	0.400	0.070	1	09/24/20 13:23	09/25/20 16:22	1,6010D	GD
Cadmium, Total	ND	mg/kg	0.400	0.039	1	09/24/20 13:23	09/25/20 16:22	1,6010D	GD
Chromium, Total	ND	mg/kg	0.400	0.038	1	09/24/20 13:23	09/25/20 16:22	1,6010D	GD
Lead, Total	ND	mg/kg	2.00	0.107	1	09/24/20 13:23	09/25/20 16:22	1,6010D	GD
Selenium, Total	ND	mg/kg	0.800	0.103	1	09/24/20 13:23	09/25/20 16:22	1,6010D	GD
Silver, Total	ND	mg/kg	0.400	0.113	1	09/24/20 13:23	09/25/20 16:22	1,6010D	GD

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfi	eld Lab for sample(s):	01-03,06	Batch:	WG141	3593-1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	09/24/20 14:00	09/24/20 20:17	1,7471B	AL

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266

Lab Number: L2039421 Report Date: 09/25/20

Parameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-03,06	Batch: WG	1413591-2	SRM Lot Numb	er: D109-540			
Arsenic, Total	108		-		70-130	-		
Barium, Total	106		-		75-125	-		
Cadmium, Total	103		-		75-125	-		
Chromium, Total	102		-		70-130	-		
Lead, Total	102		-		72-128	-		
Selenium, Total	103		-		68-132	-		
Silver, Total	105		-		68-131	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-03,06	Batch: WG	1413593-2	SRM Lot Numb	er: D109-540			
Mercury, Total	100		-		60-140	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266 Lab Number: L2039421 **Report Date:** 09/25/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-0	03,06 QC I	Batch ID: WG1	413591	-3 WG141	3591-4 QC S	ample:	L2039421-0)3 CI	ient ID:	SB-06
Arsenic, Total	2.07	10	12.5	104		13.3	111		75-125	6		20
Barium, Total	20.4	167	193	103		200	106		75-125	4		20
Cadmium, Total	0.286J	4.26	3.92	92		3.92	91		75-125	0		20
Chromium, Total	4.18	16.7	18.4	85		19.5	91		75-125	6		20
Lead, Total	32.5	42.6	103	166	Q	147	266	Q	75-125	35	Q	20
Selenium, Total	ND	10	8.90	89		8.89	88		75-125	0		20
Silver, Total	ND	25	23.5	94		23.8	94		75-125	1		20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-0	03,06 QC I	Batch ID: WG1	413593	-3 WG141	3593-4 QC S	ample:	L2039421-0)3 CI	ient ID:	SB-06
Mercury, Total	0.142	0.165	0.405	160	Q	0.305	103		80-120	28	Q	20

INORGANICS & MISCELLANEOUS

Serial No:09252019:30	Serial	No:09252019:30
-----------------------	--------	----------------

Project Name: Project Number:	236 UNIVERSITY P2002266	AVE						L2039421 09/25/20	
			SAMPLE	RESUL	TS				
Lab ID: Client ID: Sample Location:	L2039421-01 SB-05 ROCHESTER, NY						Received:	09/18/20 11:30 09/18/20 Not Specified	
Sample Depth: Matrix: Parameter	Soil Result Qualit	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys

Serial No:09252019:30	Serial	No:09252019:30
-----------------------	--------	----------------

UNIVER	SITY AV	E				Lab N	umber:	L2039421	
02266									
000						Repor	t Date:	09/25/20	
			SAMPLE	RESUL	TS				
39421-02	2					Date C	Collected:	09/18/20 00:00	
PLICATE						Date F	Received:	09/18/20	
CHESTE	R, NY					Field F	Prep:	Not Specified	
					B 11 / 1				
Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
F	PLICATE		39421-02 PLICATE CHESTER, NY	39421-02 PLICATE CHESTER, NY	39421-02 PLICATE CHESTER, NY	PLICATE CHESTER, NY Dilution	39421-02 Date C PLICATE Date F CHESTER, NY Field F Dilution Date	39421-02 Date Collected: PLICATE Date Received: CHESTER, NY Field Prep:	39421-02 Date Collected: 09/18/20 00:00 PLICATE Date Received: 09/18/20 CHESTER, NY Field Prep: Not Specified Dilution Date Date Date Analytical

Serial No:09252019:30	Serial	No:09252019:30
-----------------------	--------	----------------

Lab ID: L2039421-03 Date Collected: 09/18/20 12:00 Client ID: SB-06 Date Received: 09/18/20 Sample Location: ROCHESTER, NY Field Prep: Not Specified	Project Name: Project Number:	236 UNIVERSITY AV P2002266	Έ					lumber: rt Date:	L2039421 09/25/20	
Client ID:SB-06Date Received:09/18/20Sample Location:ROCHESTER, NYField Prep:Not Specified				SAMPLE	RESUL	ГS				
Sample Depth:	Client ID:	SB-06					Date I	Received:	09/18/20	I
Matrix: Soil Dilution Date Date Analytical Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method A	Matrix:		Units	RL	MDL					Analyst

Serial No:09252019:30	Serial	No:09252019:30
-----------------------	--------	----------------

Project Name: Project Number:	236 UNIVERSITY P2002266	AVE						L2039421 09/25/20	
			SAMPLE	RESUL	rs				
Lab ID: Client ID: Sample Location:	L2039421-04 SB-08 ROCHESTER, NY						Received:	09/18/20 13:00 09/18/20 Not Specified	
Sample Depth: Matrix:	Soil				Dilution	Date	Date	Analytical	
Parameter	Result Qualif	ier Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
eneral Chemistry - We	stborough Lab								
lids, Total	87.0	%	0.100	NA	1	-	09/19/20 12:2	9 121,2540G	RI

Serial No:09252019:30	Serial	No:09252019:30
-----------------------	--------	----------------

Project Name: Project Number:	236 UNIVERS P2002266	SITY AV	E						L2039421 09/25/20	
				SAMPLE	RESUL	rs				
Lab ID:	L2039421-05						Date	Collected:	09/18/20 09:35	
Client ID:	SB-01						Date	Received:	09/18/20	
Sample Location:	ROCHESTER	, NY					Field	Prep:	Not Specified	
Sample Depth: Matrix:	Soil									
Parameter	Result Q	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab									
blids, Total	85.1		%	0.100	NA	1	-	09/19/20 12:2	9 121,2540G	RI

Serial No:09252019:30	Serial	No:09252019:30
-----------------------	--------	----------------

Project Name: Project Number:	236 UNIVEF P2002266	RSITY AV	E						L2039421 09/25/20	
				SAMPLE	RESUL	rs				
Lab ID: Client ID: Sample Location:	L2039421-0 SB-03 ROCHESTE	-						Received:	09/18/20 10:25 09/18/20 Not Specified	
Sample Depth: Matrix:	Soil						Dete	-		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst

Serial No:09252019:30	Serial	No:09252019:30
-----------------------	--------	----------------

Project Name: Project Number:	236 UNIVERSITY P2002266	AVE						L2039421 09/25/20	
			SAMPLE	RESUL	ГS				
Lab ID: Client ID: Sample Location:	L2039421-07 SB-07 ROCHESTER, NY	/					Received:	09/18/20 12:25 09/18/20 Not Specified	
Sample Depth: Matrix:	Soil				Dilution	Date	Date	Analytical	
Parameter	Result Quali	fier Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analys
eneral Chemistry - We	stborough Lab								
olids, Total	86.2	%	0.100	NA	1	-	09/19/20 12:2	9 121,2540G	RI

Project Name:	236 UNIVERSITY AVE	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L2039421
Project Number:			Report Date:	09/25/20

Parameter	Native Sampl	e Duplicate San	nple Units	RPD	Qual RPD L	imits
General Chemistry - Westborough Lab	Associated sample(s): 06 QC	Batch ID: WG1411997-1	QC Sample: L203	9383-36 Cli	ent ID: DUP Samp	le
Solids, Total	63.8	70.0	%	9	2	0
General Chemistry - Westborough Lab	Associated sample(s): 01-05,07	QC Batch ID: WG1412	040-1 QC Sample:	L2039421-	03 Client ID: SB-0	6
Solids, Total	91.1	91.5	%	0	2	0

Project Name:236 UNIVERSITY AVEProject Number:P2002266

Serial_No:09252019:30 *Lab Number:* L2039421 *Report Date:* 09/25/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2039421-01A	Vial MeOH preserved	А	NA		4.1	Y	Absent		NYTCL-8260HLW-R2(14)
L2039421-01B	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-01C	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-01D	Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
L2039421-01E	Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
L2039421-01F	Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
L2039421-01G	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.1	Y	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2039421-01H	Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		NYCP51-PAH(14),NYTCL-8082(14)
L2039421-011	Glass 120ml/4oz unpreserved	А	NA		4.1	Y	Absent		NYCP51-PAH(14),NYTCL-8082(14)
L2039421-02A	Vial MeOH preserved	А	NA		4.1	Y	Absent		NYTCL-8260HLW-R2(14)
L2039421-02B	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-02C	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-02D	Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
L2039421-02E	Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
L2039421-02F	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.1	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2039421-02G	Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		NYCP51-PAH(14),NYTCL-8082(14)
L2039421-02H	Glass 120ml/4oz unpreserved	А	NA		4.1	Y	Absent		NYCP51-PAH(14),NYTCL-8082(14)
L2039421-03A	Vial MeOH preserved	А	NA		4.1	Y	Absent		NYTCL-8260HLW-R2(14)
L2039421-03B	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-03C	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-03D	Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)

Project Name:236 UNIVERSITY AVEProject Number:P2002266

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2039421-03E	Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
L2039421-03E1	Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
L2039421-03E2	Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
L2039421-03F	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.1	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2039421-03F1	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.1	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2039421-03F2	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.1	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2039421-03G	Glass 120ml/4oz unpreserved	А	NA		4.1	Y	Absent		NYCP51-PAH(14)
L2039421-03G1	Glass 120ml/4oz unpreserved	А	NA		4.1	Y	Absent		NYCP51-PAH(14)
L2039421-03G2	Glass 120ml/4oz unpreserved	А	NA		4.1	Y	Absent		NYCP51-PAH(14)
L2039421-04A	Vial MeOH preserved	А	NA		4.1	Y	Absent		NYTCL-8260HLW-R2(14)
L2039421-04A1	Vial MeOH preserved	А	NA		4.1	Y	Absent		NYTCL-8260HLW-R2(14)
L2039421-04A2	Vial MeOH preserved	А	NA		4.1	Y	Absent		NYTCL-8260HLW-R2(14)
L2039421-04B	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-04B1	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-04B2	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-04C	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-04C1	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-04C2	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-04D	Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
L2039421-04D1	Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
L2039421-04D2	Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
L2039421-05A	Vial MeOH preserved	А	NA		4.1	Y	Absent		NYTCL-8260HLW-R2(14)
L2039421-05B	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-05C	Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
L2039421-05D	Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
L2039421-06A	Vial MeOH preserved	А	NA		4.1	Y	Absent		NYTCL-8260HLW-R2(14)

Project Name:236 UNIVERSITY AVEProject Number:P2002266

Serial_No:09252019:30 *Lab Number:* L2039421 *Report Date:* 09/25/20

ormation		Initial	Final	Temp			Frozen	
Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
Vial water preserved	А	NA		4.1	Y	Absent	19-SEP-20 04:37	NYTCL-8260HLW-R2(14)
Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.1	Y	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		NYCP51-PAH(14)
Vial Large Septa unpreserved (4oz)	А	NA		4.1	Y	Absent		NYCP51-PAH(14)
Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
Plastic 2oz unpreserved for TS	А	NA		4.1	Y	Absent		TS(7)
Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		NYTCL-8082(14)
Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		NYTCL-8082(14)
Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		NYTCL-8082(14)
	Vial water preserved Vial water preserved Plastic 2oz unpreserved for TS Metals Only-Glass 60mL/2oz unpreserved Glass 60mL/2oz unpreserved Vial Large Septa unpreserved (4oz) Plastic 2oz unpreserved for TS Plastic 2oz unpreserved for TS Plastic 2oz unpreserved for TS Glass 60mL/2oz unpreserved Glass 60mL/2oz unpreserved	Container TypeCoolerVial water preservedAVial water preservedAPlastic 2oz unpreserved for TSAMetals Only-Glass 60mL/2oz unpreservedAGlass 60mL/2oz unpreserved (4oz)AVial Large Septa unpreserved (4oz)APlastic 2oz unpreserved for TSAPlastic 2oz unpreserved for TSAPlastic 2oz unpreserved for TSAGlass 60mL/2oz unpreserved for TSA	Container TypeCoolerPHVial water preservedANAVial water preservedANAPlastic 2oz unpreserved for TSANAMetals Only-Glass 60mL/2oz unpreservedANAGlass 60mL/2oz unpreserved (4oz)ANAPlastic 2oz unpreserved for TSANAPlastic 2oz unpreserved for TSANAGlass 60mL/2oz unpreservedANAGlass 60mL/2oz unpreservedANA	Container TypeCoolerPHPHVial water preservedANAVial water preservedANAPlastic 2oz unpreserved for TSANAMetals Only-Glass 60mL/2oz unpreservedANAGlass 60mL/2oz unpreserved (4oz)ANAPlastic 2oz unpreserved for TSANAPlastic 2oz unpreserved for TSANAGlass 60mL/2oz unpreservedANA	Container TypeCoolerPHPHdeg CVial water preservedANA4.1Vial water preservedANA4.1Plastic 2oz unpreserved for TSANA4.1Metals Only-Glass 60mL/2oz unpreservedANA4.1Glass 60mL/2oz unpreservedANA4.1Vial Large Septa unpreserved (4oz)ANA4.1Plastic 2oz unpreserved for TSANA4.1Plastic 2oz unpreserved for TSANA4.1Glass 60mL/2oz unpreservedANA4.1Glass 60mL/2oz unpreservedANA4.1	Container TypeCoolerPHPHdeg CPresVial water preservedANA4.1YVial water preservedANA4.1YPlastic 2oz unpreserved for TSANA4.1YMetals Only-Glass 60mL/2oz unpreservedANA4.1YGlass 60mL/2oz unpreserved (4oz)ANA4.1YPlastic 2oz unpreserved for TSANA4.1YPlastic 2oz unpreserved for TSANA4.1YGlass 60mL/2oz unpreserved for TSANA4.1YGlass 60mL/2oz unpreserved for TSANA4.1YGlass 60mL/2oz unpreserved for TSANA4.1YGlass 60mL/2oz unpreservedANA4.1YGlass 60mL/2oz unpreservedANA4.1Y	Container TypeCoolerPHPHdeg CPresSealVial water preservedANA4.1YAbsentVial water preservedANA4.1YAbsentPlastic 2oz unpreserved for TSANA4.1YAbsentMetals Only-Glass 60mL/2oz unpreservedANA4.1YAbsentGlass 60mL/2oz unpreserved (4oz)ANA4.1YAbsentPlastic 2oz unpreserved for TSANA4.1YAbsentPlastic 2oz unpreserved for TSANA4.1YAbsentGlass 60mL/2oz unpreservedANA4.1YAbsentGlass 60mL/2oz unpreservedANA4.1YAbsentGlass 60mL/2oz unpreservedANA4.1YAbsent	Container TypeCoolerPHP

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266

Lab Number: L2039421

Report Date: 09/25/20

GLOSSARY

Acronyms

Acronyins	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266

 Lab Number:
 L2039421

 Report Date:
 09/25/20

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: DU Report with 'J' Qualifiers

Project Name: 236 UNIVERSITY AVE

Project Number: P2002266

Lab Number: L2039421 Report Date: 09/25/20

Data Qualifiers

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: 236 UNIVERSITY AVE Project Number: P2002266
 Lab Number:
 L2039421

 Report Date:
 09/25/20

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene, 1,4-Diphenylhydrazine.
SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.
Mansfield Facility
SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 1-Methylnaphthalene.
EPA 3C Fixed gases
Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker	Way		Page	20.02		Date		1	.11		ALPHA Job #	
American	CUSTODY	Tonawanda, NY 14150: 275 C	ooper Ave, Suite 10	05				ini	Lab	-	1/19/	20	(2039421	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	A REAL PROPERTY.	A PROPERTY AND	- Easter	12 20	Deliv	erable	s	112		P. ASSAULT	Billing Information	TACK NAC
TEL: 508-896-9220	TEL: 508-822-9300	Project Name: 230	Univer	sity B				ASP-	A		ASI	P-B	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Q	ochester	NIV	- Kat			EQul	S (1 F	ile)	EQ	uIS (4 File)	PO#	
Client Information	a line of the other	Project # P20022	lala	(101				Other	соле нист Гој				10-40-039	
Client: LASEINA	ASSISTUTE	(Use Project name as P	parently in the local division of the local				Requ	latory	Requi	rement	1	100 000	Disposal Site Information	
Address: 300 S			N BAR	451				NY TO	nonom		pinning .	Part 375	Please identify below location	and the owner where the owner w
	NY 14604	ALPHAQuote #:	W Putre	2 pens			in	AWQ	Standa	rds		CP-51	applicable disposal facilities.	
Phone: 585-45		Turn-Around Time	To Street Ber	107-13D		ALL DESCRIPTION		NY Re	stricted	Use	Othe	ər	Disposal Facility:	
Fax:		Standar	d 🕅	Due Date		Contract of the local division of the local	Π	NY Ur	restrict	ed Use				
Email: A Bretta	1 a Color Places	Rush (only if pre approve		# of Days:						Discharg	0		Other:	
These samples have be	and the second se			ir or buys.			ANA	LYSIS		in a starting	-		Sample Filtration	T
Other project specific	the second s						0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30					- 0
Please specify Metals			*				2201 12	15 - 8270	2	2022			Done Lab to do Preservation Lab to do	t a I B
					_		à	50.00	140	1				0
			1 0 "		1		+ 1	515	4	2			(Please Specify below)	1
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	-	ection	Sample	Sampler's	15-27+771	100	CRA	PCC				- i
	60.5		Date	Time	Matrix	Initials		3	Q				Sample Specific Comments	and the owner where the
391424 -01	5B-05		9/18/20	1130	Soil	Airs	X	X	×	×				9
-02	Duplicate			-		AGB	X	×	X	X				8
- 03	53-06			1200		A69	X	X	X					7
-04	53-08			1300		ALS	X							A
	58-03 (MS/1450)		1300		AK3	×						MS/1450 for 513-06	8
-05	53-01			0935		A63	X							4
-06	53-03			1025		Nop	X	X	X					7
-07	63-07			1225		A63				X	i i			2
B LL LL LL LL	56007 (MS/MSD)		1225		A65				X			MS/ASD for SB-07	4
	53-06 (MS/MSO)		1200	4	A63		X	X				M3/1930 601 55-06	6
B = HCI C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification I Mansfield: Certification I				itainer Type Preservative	V	A	AA	AA	_		Please print clearly, leg and completely. Sample not be logged in and turnaround time clock w	ibly es can
	B = Bacteria Cup						5	<u> </u>		<u> </u>			start until any ambiguiti	
I HINNEY	C = Cube O = Other	Relinquished	By:	Date/			eceiv	ed By	2)		Da	te/Time	resolved. BY EXECUTI	1000000
$H = Na_2S_2O_3$	E = Encore D = BOD Bottle	Runzhem,	AAL	9/18/20 70/20	1746	Ref o	m	Au	M		9/18/3 9/19/30	61.20	THIS COC, THE CLIEN HAS READ AND AGRE TO BE BOUND BY ALF TERMS & CONDITION	EES PHA'S
Form No: 01-25 HC (rev. 30	-Sept-2013)					/			D				(See reverse side.)	0.

APPENDIX 2

Health and Safety Plan

Site Health and Safety Plan

Location:

236 University Avenue Rochester, New York 14607

Prepared For: Mr. Dennis Peck City of Rochester 30 Church Street Rochester, New York 14614

LaBella Project No. 2202620

November 2020

Table of Contents

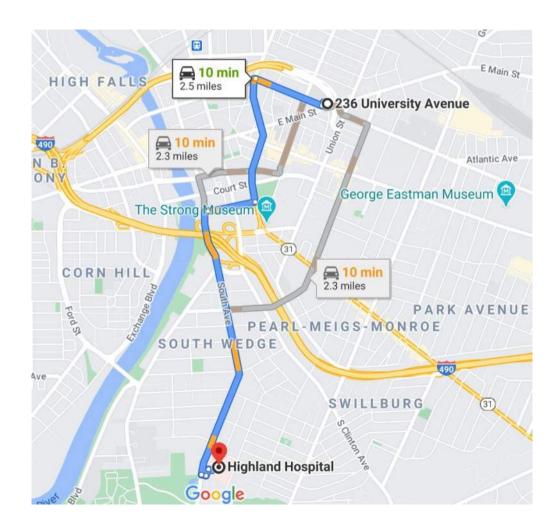
			Page
EMERG	ENCY C	ND SAFETY PLAN CONTACTS CTIONS TO THE MEDICAL FACILITY	2
1.0	Introdu	iction	4
2.0	Respor	nsibilities	4
3.0	Activitie	es Covered	4
4.0	Work A	rea Access and Site Control	4
5.0	Potenti 5.1 5.2 5.3 5.4 5.5	al Health and Safety Hazards Hazards Due to Heavy Machinery Excavation Hazards Cuts, Punctures and Other Injuries Injury Due to Exposure of Chemical Hazards Injuries Due to Extreme Hot or Cold Weather Conditions	5 5 5 6
6.0	Work Z	ones	6
7.0	Decont	amination Procedures	7
8.0	Person	al Protective Equipment	7
9.0	Air Mor	nitoring	7
10.0	Emerge	ency Action Plan	8
11.0	Medica	al Surveillance	8
12.0	Employ	/ee Training	8

SITE HEALTH AND SAFETY PLAN

Project Title:	236 University Avenue
Project Number:	2202620
Project Location (Site):	236 University Avenue Rochester, New York 14607
Project Manager:	To Be Determined
Site Safety Supervisor:	To Be Determined
Site Contact:	To Be Determined
Safety Director:	To Be Determined
Proposed Date(s) of Field Activities:	To Be Determined
Site Conditions:	0.43 acres; urban area
Site Environmental Information Provided By:	 Phase I ESA, June 5, 2020 Phase II ESA, LaBella, October, 2020
Air Monitoring Provided By:	LaBella Associates, DPC
Site Control Provided By:	LaBella Associates, DPC

EMERGENCY CONTACTS

	Name	Phone Number
Ambulance:	As Per Emergency Service	911
Hospital Emergency:	Highland Hospital	(585) 473-2200
Poison Control Center:	Finger Lakes Poison Control	585-273-5151
Police (local, state):	Rochester Police Department	911
Fire Department:	Rochester Fire Department	911
Site Contact:	To Be Determined	
Project Manager:	To Be Determined	
Site Safety Supervisor:	To Be Determined	
Safety Director	To Be Determined	



MAP AND DIRECTIONS TO THE MEDICAL FACILITY HIGHLAND HOSPITAL 1000 SOUTH AVENUE, ROCHESTER, NY 14620

Total Est. Time: 11 minutes Total Est. Distance: 3.1 miles

Head southwest toward University Ave (98 ft) Take South Ave to Bellevue Drive (2.4 mile) Drive to your destination (449 ft)

End at 1000 SOUTH AVE, ROCHESTER, NY 14620

1.0 Introduction

The purpose of this Health and Safety Plan (HASP) it to provide guidelines for responding to potential health and safety issues that may be encountered during intrusive activities at 236 University Avenue, Rochester, New York 14609 (the Site). This HASP only reflects the policies of LaBella Associates D.P.C. The requirements of this HASP are applicable to LaBella personnel at the work site. It is the responsibility of each sub-consultant and sub-contractor to follow their own company HASP. This document's project specifications should be consulted for guidance in preventing and quickly abating any threat to human safety or the environment. The provisions of the HASP were developed in general accordance with 29 CFR 1910 and 29 CFR 1926 and do not replace or supersede any regulatory requirements of the USEPA, NYSDEC, OSHA or and other regulatory body.

2.0 Responsibilities

This HASP presents guidelines to minimize the risk of injury to project personnel, and to provide rapid response in the event of injury. The HASP is applicable only to activities of approved LaBella personnel. It is the responsibility of LaBella employees to follow the requirements of this HASP, or HASPs specific to individual activities, and all applicable company safety procedures.

3.0 Activities Covered

The activities covered under this HASP are limited to the following:

- Environmental Monitoring associated with intrusive activities at the Site including but not limited to:
 - o Excavation
 - o Geoprobing
 - o Grading
- Soil, Surface Water, and Groundwater Characterization

4.0 Work Area Access and Site Control

Site control during the project will be the responsibility of the Contractor performing the work. LaBella will have primary responsibility for maintaining a safe work area for all activities conducted by LaBella personnel. Such work area controls will consist of:

- Temporary fencing.
- Air monitoring.
- Use of Personal Protective Equipment (PPE).

5.0 Potential Health and Safety Hazards

This section lists some potential health and safety hazards that project personnel may encounter at the project site and some actions to be implemented by approved personnel to control and reduce the associated risk to health and safety. This is not intended to be a complete listing of any and all potential health and safety hazards. New or different hazards may be encountered as site environmental and site work conditions change. The suggested actions to be taken under this plan are not to be substituted for good judgment on the part of project personnel. At all times, the Site Safety Officer has responsibility for site safety and his instructions must be followed.

5.1 Hazards Due to Heavy Machinery and Equipment

Potential Hazard:

Heavy machinery including trucks, drilling rigs, trailers, etc. will be in operation at the site. The presence of such equipment presents the danger of being struck or crushed. Use caution when working near heavy machinery.

Protective Action:

Make sure that operators are aware of your activities, and heed operator's instructions and warnings. Wear bright colored clothing and walk safe distances from heavy equipment. A hard hat, safety glasses and steel toe shoes are required.

5.2 Excavation Hazards

Potential Hazard:

Excavations and trenches can collapse, causing injury or death. Edges of excavations can be unstable and collapse. Toxic and asphyxiant gases can accumulate in confined spaces and trenches. Excavations that require working within the excavation will require air monitoring in the breathing zone (refer to Section 9.0).

Excavations left open create a fall hazard which can cause injury or death.

Protective Action:

Personnel must receive approval from the Project Manager to enter an excavation for any reason. Subsequently, approved personnel are to receive authorization for entry from the Site Safety Officer. Approved personnel are not to enter excavations over 4 feet in depth unless excavations are adequately sloped. Additional personal protective equipment may be required based on the air monitoring.

Personnel should exercise caution near all excavations at the site as it is expected that excavation sidewalls will be unstable. Do not proceed closer than 3 feet to an unsupported or non-sloped excavation side wall.

Fencing and/or barriers accompanied by "no trespassing" signs should be placed around all excavations when left open for any period of time when work is not being conducted.

5.3 Cuts, Punctures and Other Injuries

Potential Hazard:

In any excavation or construction work site there is the potential for the presence of sharp or jagged edges on rock, metal materials, and other sharp objects. Serious cuts and punctures can result in loss of blood and infection.

Protective Action:

The Project Manager is responsible for making First Aid supplies available at the work site to treat minor injuries. The Site Safety Officer is responsible for arranging the transportation of authorized on-site personnel to medical facilities when First Aid treatment in not sufficient. Do not move seriously injured workers. All injuries requiring treatment are to be reported to the Project Manager. Serious injuries are to be reported immediately to the Site Safety Officer.

5.4 Injury Due to Exposure of Chemical Hazards

Potential Hazards:

Contaminants identified in testing locations at the Site include various volatile organic compounds (VOCs), primarily VOCs associated with petroleum contamination. Volatile organic vapors, chlorinated solvents or other chemicals may be encountered during subsurface activities at the project work site. Inhalation of high concentrations of volatile organic vapors can cause headache, stupor, drowsiness, confusion and other health effects. Skin contact can cause irritation, chemical burn, or dermatitis. The Safety Data Sheet is included as Appendix 1 of the IRM Work Plan.

Protective Action:

The presence of organic vapors may be detected by their odor and by monitoring instrumentation. Approved employees will not work in environments where hazardous concentrations of organic vapors are present. Air monitoring will be performed in accordance with the NYSDOH Generic CAMP. Personnel are to leave the work area whenever PID measurements of ambient air exceed 25 ppm consistently for a 5 minute period. In the event that sustained total volatile organic compound (VOC) readings of 25 ppm is encountered personnel should upgrade personal protective equipment to Level C (refer to Section 8.0) and an Exclusion Zone should be established around the work area to limit and monitor access to this area (refer to Section 6.0).

5.5 Injuries Due to Extreme Hot or Cold Weather Conditions

Potential Hazards:

Extreme hot weather conditions can cause heat exhaustion, heat stress and heat stroke or extreme cold weather conditions can cause hypothermia.

Protective Action:

Precaution measures should be taken such as dress appropriately for the weather conditions and drink plenty of fluid. If personnel should suffer from any of the above conditions, proper techniques should be taken to cool down or heat up the body and taken to the nearest hospital if needed.

6.0 Work Zones

In the event that conditions warrant establishing various work zones (i.e., based on hazards - Section 5.4), the following work zones should be established:

Exclusion Zone (EZ):

The EZ will be established in the immediate vicinity and adjacent downwind direction of site activities that elevate breathing zone VOC concentrations to unacceptable levels based on field screening. These site activities include contaminated soil excavation and soil sampling activities. If access to the site is required to accommodate non-project related personnel then an EZ will be established by constructing a barrier around the work area (yellow caution tape and/or construction fencing). The EZ barrier shall encompass the work area and any equipment staging/soil staging areas necessary to perform the associated work. The contractor(s) will be responsible for establishing the EZ and limiting access to approved personnel. LaBella will not enter the EZ unless deemed necessary to do so. Depending on the condition for establishing the EZ, access to the EZ may require adequate PPE (e.g., Level C).

Contaminant Reduction Zone (CRZ):

The CRZ will be the area where personnel entering the EZ will don proper PPE prior to entering the EZ and the area where PPE may be removed. The CRZ will also be the area where decontamination of equipment and personnel will be conducted as necessary.

7.0 Decontamination Procedures

Upon leaving the work area, approved personnel shall decontaminate footwear as needed. Under normal work conditions, detailed personal decontamination procedures will not be necessary. Work clothing may become contaminated in the event of an unexpected splash or spill or contact with a contaminated substance. Minor splashes on clothing and footwear can be rinsed with clean water. Heavily contaminated clothing should be removed if it cannot be rinsed with water. Personnel assigned to this project should be prepared with a change of clothing whenever on site.

8.0 Personal Protective Equipment

Generally, site conditions at this work site require level of protection of Level D or modified Level D. However, air monitoring will be conducted to determine if up-grading to Level C PPE is required (refer to Section 9.0). Descriptions of the typical safety equipment associated with Level D and Level C are provided below:

Level D:

Hard hat, safety glasses, rubber nitrile sampling gloves, steel toe construction grade boots, etc.

Level C:

Level D PPE and full or ½-face respirator and tyvek suit (if necessary). [Note: Organic vapor cartridges are to be changed after each 8-hours of use or more frequently.]

9.0 Air Monitoring

According to 29 CFR 1910.120(h), air monitoring shall be used to identify and quantify airborne levels of hazardous substances and health hazards in order to determine the appropriate level of employee protection required for personnel working onsite. Air monitoring will consist at a minimum of the procedure listed below. Air monitoring instruments will be calibrated and maintained in accordance with the manufacturer's specifications.

The Air Monitor will utilize a photoionization detector (PID) to screen the ambient air in the work areas (drilling, excavation, soil staging, and soil grading areas) for total Volatile Organic Compounds (VOCs) and a DustTrak[™] Model 8520 aerosol monitor or equivalent for measuring particulates. Work area ambient air will generally be monitored in the work area and downwind of the work area. Air monitoring of the work areas and downwind of the work areas will be performed at least every 60 minutes using a PID and the DustTrak meter.

If sustained PID readings of greater than 25 ppm are recorded in the breathing zone, either personnel are to leave the work area until satisfactory readings are obtained or approved personnel may re-enter the work areas wearing at a minimum a ½ face respirator with organic vapor cartridges for an 8-hour duration (i.e., upgrade to Level C PPE). Organic vapor cartridges are to be changed after each 8-hour use or more frequently, if necessary. If PID readings are sustained, in the work

area, at levels above 50 ppm for a 5 minute average, work will be stopped immediately until safe levels of VOCs are encountered or additional PPE will be required (i.e., Level B).

If downwind PID measurements reach or exceed 25 ppm consistently for a 5 minute period downwind of the work area, PID readings will be taken within the buildings (if occupied) on Site to ensure that the vapors are not penetrating any occupied building and effecting the personnel working within. If the PID measurements reach or exceed 25 ppm within the nearby buildings, the personnel should be evacuated via a route in which they would not encounter the work area. The building should then be ventilated until the PID measurements within the building are at or below background levels. It should be noted that the site buildings are currently vacant.

10.0 Emergency Action Plan

In the event of an emergency, employees are to turn off and shut down all powered equipment and leave the work areas immediately. Employees are to walk or drive out of the Site as quickly as possible and wait at the assigned 'safe area'. Follow the instructions of the Site Safety Officer.

Employees are not authorized or trained to provide rescue and medical efforts. Rescue and medical efforts will be provided by local authorities.

11.0 Medical Surveillance

Medical surveillance will be provided to all employees who are injured due to overexposure from an emergency incident involving hazardous substances at this site.

12.0 Employee Training

Personnel who are not familiar with this site plan will receive training on its entire content and organization before working at the Site.

Individuals involved with the fieldwork must be 40-hour OSHA HAZWOPER trained with current 8-hour refresher certification.

J:\REN MANAGEMENT GROUP\2201843 - 786 N GOODMAN ST PH II ESA\REPORTS\EMP\APPENDIX 2 - HASP\HASP.DOC

Table 1 **Exposure Limits and Recognition Qualities**

Compound	PEL-TWA (ppm)(b)(d)	TLV-TWA (ppm)(c)(d)	STEL	LEL (%)(e)	UEL (%)(f)	IDLH (ppm)(g)(d)	Odor	Odor Threshold (ppm)	Ionization Potential
Acetone	750	500	NA	2.15	13.2	20,000	Sweet	4.58	9.69
Anthracene	0.2	0.2	NA	NA	NA	NA	Faint aromatic	NA	NA
Benzene	1	0.5	5	1.3	7.9	3000	Pleasant	8.65	9.24
Benzo (a) pyrene (coal tar pitch volatiles)	0.2	0.1	NA	NA	NA	700	NA	NA	NA
Benzo (a)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (b) Fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (g,h,i)perylene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (k) Fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromodichloromethane	NA	NA	NA	NA	NA	NA	NA	NA	10.88
Carbon Disulfide	20	1	NA	1.3	50	500	Odorless or strong garlic type	0.096	10.07
Chlorobenzene	75	10	NA	1.3	9.6	2,400	Faint almond	0.741	9.07
Chloroform	50	2	NA	NA	NA	1,000	ethereal odor	11.7	11.42
Chrysene	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethylene	200	200	NA	9.7	12.8	400	Acrid	NA	9.65
1,2-Dichlorobenzene	50	25	NA	2.2	9.2		Pleasant		9.07
Ethylbenzene	100	100	NA	1	6.7	2,000	Ether	2.3	8.76
Fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane	NA	NA	NA	5	15	NA	NA	NA	12.98
Methylene Chloride	500	50	NA	12	23	5,000	Chloroform-like	10.2	11.35
Naphthalene	10, Skin	10	NA	0.9	5.9	250	Moth Balls	0.3	8.12
n-propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	NA	NA	NA	NA	NA	NA	NA	NA	NA
p-lsopropylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethane	NA	NA	NA	NA	NA	NA	Sweet	NA	NA
Toluene	100	100	NA	0.9	9.5	2,000	Sweet	2.1	8.82
Trichloroethylene	100	50	NA	8	12.5	1,000	Chloroform	1.36	9.45
1,2,4-Trimethylbenzene	NA	25	NA	0.9	6.4	NA	Distinct	2.4	NA
1,3,5-Trimethylbenzene	NA	25	NA	NA	NA	NA	Distinct	2.4	NA
Vinyl Chloride	1	1	NA	NA	NA	NA	NA	NA	NA
Xylenes (o,m,p)	100	100	NA	1	7	1,000	Sweet	1.1	8.56
Metals		1							1
Arsenic	0.01	0.2	NA	NA	NA	100, Ca	Almond	NA	NA
Cadmium	0.2	0.5	NA	NA	NA	NA	NA	NA	NA
Chromium	1	0.5	NA	NA	NA	NA	NA	NA	NA
Lead	0.05	0.15	NA	NA	NA	700	NA	NA	NA
Mercury	0.05	0.05	NA	NA	NA	28	Odorless	NA	NA
Selenium	0.2	0.02	NA	NA	NA	Unknown	NA	NA	NA
Other							1	•··	
Asbestos a) Skin = Skin Absorption	0.1 (f/cc)	NA	1.0 (f/cc) (e)	NA Lower Exposure Lim	NA	NA	NA	NA	NA

(b) OSHA-PEL Permissible Exposure Limit (flame weighted average, 8-hour): NIOSH Guide, June 1990

(f) Upper Exposure Limit (%)

ACGIH – 8 hour time weighted average from Threshold Limit Values and Biological Exposure Indices for 2003 Metal compounds in mg/m3 (C) (g) (d)

mmediately Dangerous to Life or Health Level: NIOSH Guide, June 1990

Notes:

APPENDIX 3

Community Air Monitoring Plan

Appendix 1A New York State Department of Health Generic Community Air Monitoring Plan

Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical- specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

Continuous monitoring will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.

2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.

3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m^3) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.

2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

3. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009