PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

65 SULLIVAN STREET ROCHESTER, NEW YORK

Prepared For: City of Rochester Division of Environmental Quality 30 Church Street, Room 300B Rochester, New York 14614

Prepared By: Day Environmental, Inc. 1563 Lyell Avenue Rochester, New York 14606

Project No.: 5582S-19

Date: October 2019

TABLE OF CONTENTS

1.0	INTI	RODUCTION	1
	1.1	Background	1
	1.2	Objectives	3
2.0	РНА	SE II ESA SCOPE OF WORK	4
	2.1	Geophysical Survey	4
	2.2	Subsurface Soil/Fill Evaluation	5
		2.2.1 Test Pits	5
		2.2.2 Rotary-Drilled Test Borings	5
	2.2	2.2.3 Analysis of Soil/Fill Samples	6
	2.3	Groundwater Evaluation	
		2.3.1 Wonitoring well installation	······ / 7
		2.3.2 Wen Development 2.3.3 Groundwater Sampling and Analysis	······' 7
	2.4	Soil Vapor Evaluation	
	2.5	Study-Derived Wastes	8
3.0	FIN	DINGS	10
0.0	3.1	Subsurface Soil/Fill Evaluation	10
	• • •	3.1.1 Analytical Laboratory Test Results for Soil/Fill Samples	10
	3.2	Groundwater Evaluation	13
		3.2.1 Analytical Laboratory Test Results for Groundwater	
		Samples	14
	3.3	Soil Vapor Evaluation	15
4.0	CON	CLUSIONS AND RECOMMENDATIONS	16
	4.1	Summary of Findings	16
	4.2	Conclusions	
	4.2	Recommendations	18
5.0	ACR	ONYMS AND ABBREVIATIONS	20
<u>FIGI</u>	J RES		
Figu	re 1	Project Locus Map	
Figu	re 2	Test Location Plan with 2018 Aerial Overlay	
Figu	re 3	Test Location Plan with 2015 Aerial Overlay	
Figu	re 4	Test Location Plan with 1933 Sanborn Overlay	
Figu	re 5	Test Location Plan with 1959 Sanborn Overlay	
Figu	re 6	Test Location Plan with 1971 Sanborn Overlay	
Figu	re 7	Site Plan with Geophysical Survey Overlay and Test Pit Locations	
Figu	re 8	Bedrock Contour Map	
Figu	re 9	Test Location Plan with Soil/Fill Samples that Exceed UUSCOs	
Figu	re 10	Test Location Plan with Soil/Fill Samples that Exceed RSCOs, RRSCOs, and/or PGWSCOs	CSCOs
Figu	re 11	Potentiometric Groundwater Contour Map for June 6, 2019	
Figu	re 12	VOCs in June 6, 2019 Groundwater Samples	

TABLES

Table 1	Analytical Laboratory Testing Program
Table 2	Top of Competent Bedrock Elevation Data
Table 3	Summary of Detected VOC Results - Soil and Fill Samples
Table 4	Summary of Detected SVOC Results - Soil and Fill Samples
Table 5	Summary of Metals Results - Soil and Fill Samples
Table 6	Summary of PCB Results - Fill Samples
Table 7	Groundwater Elevation Data for June 6, 2019
Table 8	Summary of Detected VOC Results - Groundwater Samples
Table 9	Summary of Detected VOC Results – Soil Vapor and Outdoor Air Samples

APPENDICES

Appendix A	Photo Log
Appendix B	Field Logs and Construction Diagrams
Appendix C	Investigation-Derived Waste Disposal Documentation
Appendix D	Analytical Laboratory Reports

1.0 INTRODUCTION

On behalf of the City of Rochester (City), Day Environmental, Inc. (DAY) prepared this Phase II Environmental Site Assessment (Phase II ESA) at the property addressed as 65 Sullivan Street, Rochester, New York (Site). A Project Locus Map is included as Figure 1, and a Site Plan that includes an overlay of a 2018 aerial photograph depicting current site conditions is included as Figure 2. The work presented herein was completed in accordance with DAY's April 11, 2019 Work Plan.

1.1 Background

The Site consists of one 0.69-acre parcel (SBL #106.39-1-33) of vacant land that is currently zoned as R-2 (Medium Density Residential). The Site is privately owned and tax delinquent. The City obtained access to the Site for performance of this Phase II ESA through a Temporary Incidents of Ownership (TIO).

The City has been coordinating with a developer regarding construction of a potential multi-parcel in-fill residential housing project generally located northwest, west, and southwest of the Site. It is unknown whether the Site contained contamination, and whether contamination had adversely impacted any adjoining or nearby properties, including those currently proposed for the potential multi-parcel in-fill residential housing project.

In 2016, a one-story manufacturing building with a partial basement on the Site was demolished by the City. During this demolition, the foundation walls were removed with the exception of one foundation wall adjoining a neighboring building to the east. In addition, the basement slabs were cracked, but not removed. At the time of demolition, a sump crock and miscellaneous floor drains were observed in the basement of the building. The basement was subsequently backfilled with clean structural fill that was compacted with a vibratory roller. Existing material around the basement perimeter was borrowed and partially used to backfill the basement. Subsequent to backfilling, the Site was graded and a layer of topsoil and grass seed was applied. Wood bollards were then installed along the open perimeter (three sides) of the Site.

A Limited Due Diligence Assessment (LDDA) was performed by DAY on the Site on behalf of the City, which determined that the Site has over a 100-year history of commercial and manufacturing use. The manufacturing and commercial use of the Site is outlined below.

- Tailor Shop At least 1903 and 1909
- Clothing Manufacturing: At least 1924 to 1964
- Fighton Inc.: At least 1969
- Metal Stamping: At least 1974
- Metal Stamping Power Supplies and Transformers: At least 1979 through 1994
- Service Industrial Machine: At least 1999
- Vacuum Cleaners, Printers: At least 2009

The manufacturing building formerly located on the Site included a boiler room. The fuel type for the boiler room is unknown; thus, it was suspected that a fuel oil tank could have been associated with the boiler room. The operations conducted at the facility also involved an industrial oven (or possibly kiln) operation, and spraying or dipping operations in the former basement level.

Fire Department records show a long history of chemical, flammable, combustible material storage and use. There are records concerning storage of drums or containers of "Trichlor", waste oil, paints, flammable wastes, cutting oils, and corrosives. Fire Department records also indicated there was a paint spray booth, a flammable storage room, the presence of highly toxic materials, and drum storage at exterior locations and interior locations, including the basement and a garage. Waste disposal records identified paint solids/grease with metal, waste paint, chlorotribenzofluorides, and other wastes.

DAY completed a Phase I Environmental Site Assessment (Phase I ESA) of the Site. DAY's April 10, 2019 Draft Phase I ESA report identified the following recognized environmental conditions (RECs) for the Site:

1. <u>Historical Uses / Regulatory Listing of the Site:</u> The Site was used as a tailor shop; a clothing factory; metal stamping, and the apparent manufacture of transformers and vacuum cleaners; and an apparent printing operation. A freight elevator (i.e., including the potential for subsurface hydraulic equipment) was replaced in 1974. A boiler room (i.e., including the potential for fuel oil storage) was constructed on the property in 1918. A City representative stated, "City records indicate past industrial/chemical usage. Liquid in a pit set in the floor of the building had an unknown chemical odor". The analytical laboratory results of a sample of the liquid contents of the pit detected elevated concentrations of the volatile organic compounds (VOCs) acetone and methyl acetate, and the metals chromium, lead and selenium. In addition, the City observed an oven inside the partial basement of the former facility prior to its demolition. Labeling on the oven indicated it was capable of being used with flammable solvents. Approximate locations of the former pit and former oven are shown on Figure 2, Figure 3, and Figure 7 through Figure 12.

The Site is identified as inactive Resource Conservation and Recovery Act (RCRA) Generator of hazardous waste Site #NYD000233601. Based on a review of the New York State Department of Environmental Conservation (NYSDEC) Manifest website, Eltrex Industries, Inc. used this Generator number to dispose of waste from 1984 to 1999. The types of wastes generated during this time period included thinner paint-stripper; isopropanol; petroleum distillates; toluene, hexane, xylene; empty poly drums; empty drums; waste paint related material; waste 1,1,1-trichloroethane; waste flammable solids (butyl acetate, acetone); waste oxidizing liquid, corrosive; hypochlorite solutions; ferrous chloride; methylene chloride; waste chlorobenzotrifluorides; naptha solvent; oil; waste corrosive liquid (sulphuric acid, hydrochloric acid, phosphoric acid); waste phosphoric acid; etc. In addition, the City is identified as generating two 100-gallon shipments of "waste environmentally hazardous substance, liquid, n.o.s. (mineral spirits, selenium)" under this generator number on 3/6/2017.

2. <u>Historical Uses of Adjoining Properties:</u> Adjoining properties to the east have included an automobile repair garage in at least 1923 and at least 1933-34; a furniture store in at least 1928-29; a tailor (i.e., including the potential of dry cleaning operations) in at least 1933-34; a window shade manufacturing facility from at least 1938 to at least 1971; a heating and air conditioning company from at least 1958 to at least 1968; and a sheet metal facility from at least 1959 to at least 1971. In addition, Sanborn maps identify a gasoline tank (i.e., "G.T.") on the southern portion of the adjoining property to the east from at least 1933 to at least 1950.

Adjoining properties to the southeast across O'Brien Street have included an automobile repair garage/sales facility in at least 1923; a whitewasher in at least 1923; a tinsmith from at least 1923 to at least 1959; a sheet metal worker from at least 1928-29 to at least 1943; a tile setter in at least 1928-29; a bottling company from at least 1933-34 to at least 1959: a photographer in at least 1943; a plumbing and heating company from at least 1948 to at least 1953; a hardware store from at least 1963 to present; and a construction company from at least 1978 to at least 1983-84.

The adjoining property to the west was identified as a "Tailoring School" (i.e., including the potential for dry cleaning operations) from at least 1959 to at least 1971.

An adjoining property to the south has a documented closed spill file (NYSDEC Spill #9703396). The spill file indicates that #2 fuel oil contaminated soil was encountered during excavation of a foundation. Contaminated soil was removed and subsequent soil and groundwater sampling were non-detect. A review of a January 24, 2002 letter from the City to the NYSDEC concerning this spill indicated that no staining or odors were noted during the soil and groundwater sampling, but that a slight to moderate weathered petroleum odor was noted from the 8 to 10 foot depth interval at a monitoring well location. A Photoionization detector (PID) reading of 12.7 parts per million was also detected on this soil sample. It was unknown whether any of this residual contamination had migrated off-site.

1.2 Objectives

The objectives of the Phase II ESA were to:

- 1. Confirm the presence or absence of the RECs identified in the Phase I ESA;
- 2. Assess if sources of contamination exist on the Site in soil or groundwater;
- 3. Generally define the nature and extent of contamination, if present;
- 4. Evaluate if contamination attributable to the Site is migrating off-site;
- 5. Identify potential remedial actions that may be warranted; and
- 6. Aid the City on deciding whether to acquire the Site through foreclosure or other means.

2.0 PHASE II ESA SCOPE OF WORK

The following section describes the scope of work that was implemented to fulfill the objectives of the Phase II ESA. Figure 3 is a Site Plan that includes a 2015 aerial overlay showing the location of the former building in relation to the Phase II ESA test locations. Figure 3 also shows the approximate locations of a former pit and a former oven that were observed inside the former building prior to its demolition in 2016. Figure 4, Figure 5, and Figure 6 show the Phase II ESA test locations in relation to site features on 1933, 1959 and 1971 Sanborn maps, respectively. Figure 3 through Figure 6 also show adjoining and nearby parcels owned by the City (as of April 2019), some of which are associated with a developer's potential multi-parcel in-fill residential housing project. A photo log depicting various phases of the fieldwork is included in Appendix A.

Table 1 summarizes the analytical laboratory testing program, which includes sample locations, depths, dates collected, associated PID readings, if available, visual and olfactory observations and test parameters. Table 1 also includes details on quality assurance/quality control (QA/QC) samples, such as matrix spike/matrix spike duplicate (MS/MSD) samples and trip blank samples, that were tested as part of the Phase II ESA. The work conducted as part of the project, including sampling and analysis and QA/QC requirements, was generally consistent with the guidance in the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation.

ALS Environmental (ALS) performed the analytical laboratory testing associated with this project. ALS is a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified analytical laboratory (ELAP ID #s 10145 and 11221). ALS report test results in preliminary data packages, Analytical Services Protocol (ASP) Category B deliverable data packages, and NYSDEC EQUIS Excel files. Sample methods, preservation requirements, handling times, chain-of-custody, decontamination procedures for field equipment, field blanks, and trip blanks conformed with NYSDEC ASP.

2.1 Geophysical Survey

On April 13, 2019, Wood Environment & Infrastructure Solutions, Inc. (WOOD) completed a geophysical survey over the western portion of the Site. Specifically, the survey was conducted in areas of a former boiler room and a former house where a fuel oil tank would most likely be suspected. The purpose of the geophysical survey was to identify anomalies that suggest the location of suspected underground storage tank (UST) systems, which were considered during planning of intrusive work.

WOOD utilized electromagnetic techniques (EM61) to conduct the geophysical survey. Line spacing was approximately 3.3 feet. The portion of the Site where the geophysical survey was completed, and WOOD's findings (including color contours that show anomalies where abandoned USTs were suspected), are included on Figure 7. As shown, five anomalies (designated A through E) were identified on the surveyed area of the Site of a size that could be indicative of a buried tank. As shown on Figure 7, test pits TP-06, TP-07 and TP-08 presented in Section 2.2.1 were positioned to evaluate the subsurface conditions in proximity of anomaly areas A through E.

2.2 Subsurface Soil/Fill Evaluation

A subsurface soil/fill evaluation was performed as part of this Phase II ESA for the Site. The evaluation included the excavation of eight test pits, the advancement of eight rotary-drilled test borings, and the collection, field screening, field observation, and environmental laboratory analysis of soil/fill samples. Prior to the fieldwork, DAY used swing ties from permanent site features to mark-out the location of each test pit and test boring advanced during this study. Additional details concerning the subsurface evaluation work are provided in the subsections below.

2.2.1 Test Pits

On May 1, 2019, Nature's Way Environmental Consultants & Contractors, Inc. (Nature's Way) excavated eight test pits (designated as TP-01 through TP-08) to depths ranging between 8.0 feet (ft.) and 11.5 ft. below the ground surface (bgs) using a Kubota KX057-4 excavator. The locations of these test pits are shown on Figure 2 through Figure 7. Figure 7 also includes the geophysical survey findings overlay. Test pits were excavated in the following areas:

- Test Pit TP-01 was advanced in the general area of a former residential house (refer to Figure 4).
- Test Pits TP-02 and TP-04 were excavated in a former courtyard area (refer to Figure 3 through Figure 6).
- Test Pits TP-03 and TP-05 were advanced within the former footprint of the slab-on-grade portion of the building (refer to Figure 3 through Figure 6).
- Test pits TP-06, TP-07 and TP-08 were used to evaluate subsurface conditions in anomaly areas A though E (refer to Figure 7). In addition, test pits TP-07 and TP-08 were located in the areas of a former boiler room (refer to Figure 4 and Figure 5).

Personnel from DAY and the City observed the excavations and prepared a subsurface log of the test pits. DAY screened soil/fill during excavation with a PID equipped with a 10.6 eV lamp to assess the potential presence of VOC impact, and collected select samples for possible laboratory analysis. Pertinent information for each test pit is provided on logs included in Appendix B. Upon completion, the test pits were backfilled with excavated material, and compacted by tamping with the excavator bucket.

2.2.2 Rotary-Drilled Test Borings

Between May 7, 2019 and May 14, 2019, Nature's Way advanced nine test borings (designated as TB-01 through TB-03, TB-03A, MMW-01 though MW-05) using a Mobile B-57 rotary drill-rig. The locations of these test borings are shown on Figure 2 through Figure 6. Test borings were advanced in the following areas:

• Test Borings TB-01, TB-02, TB-03, TB-03A, MW-01, MW-03 and MW-05 were advanced within the former footprint of the portion of the building that the City reported had a basement (refer to Figure 3 through Figure 6). In addition, TB-01 was near the approximate location of an oven inside the former building that was reported by a City representative. TB-03A was advanced as an off-set boring since shallow equipment refusal was encountered at TB-03.

- Test Boring MW-02 was advanced within the former footprint of a slab-on-grade portion of the building near the approximate location of an oven inside the former building that was reported by a City representative (refer to Figure 3 through Figure 6).
- Test Boring MW-04 was advanced within the former footprint of a slab-on-grade garage portion of the building where a City representative reported observing the storage of chemicals (refer to Figure 3 through Figure 6).

During drilling, split-spoon samples were collected via Standard Penetration Test (SPT) methods in the overburden ahead of the hollow stem augers. Split-spoon soil samples were classified, logged, and also screened with the PID. Selected soil samples were retained for possible analytical laboratory testing. Each boring was advanced to auger refusal, which corresponds to depths ranging between 4.0 feet bgs (TB-03) and 14.3 feet bgs (MW-05). At test locations MW-01 through MW-05, between 4.0 and 5.3 ft. of bedrock was cored. Pertinent information for each test boring is provided on logs included in Appendix B.

2.2.3 Analysis of Soil/Fill Samples

Various soil or fill samples from test pits and rotary-drilled test borings were selected for analytical laboratory testing (refer to Table 1). Samples selected for analytical laboratory testing included:

- 1) Samples from test pits and test borings with the greatest apparent field evidence of impact (e.g., highest PID measurements, staining, suspect fill material, odors, etc.);
- 2) Samples collected from immediately above the water table, immediately above bedrock, or near the bottom of the test boring/test pit when evidence of impact was not encountered; and
- 3) Samples based on spatial relationship to overlying fill material and/or other test locations to evaluate vertical and lateral extents of potential impact.

The following samples were delivered under chain-of-custody control to ALS. The submitted samples were comprised of fill and native soil as follows:

- Fill Material Samples: TP-01(1-2), TP-02(2-4), TP-04(4-5), TP-07(8-8.5), TP-08(4-5), TB-01(6-8), TB-02(4-6), TB-03A(7.8-8.8), MW-01(2-4), MW-01(6-6.9), MW-03(4-6), and MW-05(4-6).
- Indigenous Soil Samples: TP-03(10-11), TP-05(8-8.5), TP-06(10-10.5), MW-02(10-12), MW-04(6-7) and MW-05(8-10).

Samples were analyzed for one or more of the following:

- Target Compound List (TCL) and Commissioner Policy 51 (CP-51)-list/NYSDEC Spill Technology and Remediation Series (STARS) list VOCs using United States Environmental Protection Agency (USEPA) Method 8260;
- TCL semi-volatile organic compounds (SVOCs) using USEPA Method 8270;
- Target Analyte List (TAL) metals using USEPA Methods 6010 and 7471;
- Polychlorinated Biphenyls (PCBs) using USEPA Method 8082;

Specific information on what parameters were tested for each sample are included on Table 1.

2.3 Groundwater Evaluation

A groundwater evaluation was performed as part of this project. This evaluation included: installation and development of five groundwater monitoring wells; survey of well locations using global positioning system (GPS) and laser level equipment in relation to City of Rochester datum; collection of one round of static water levels from the five monitoring wells; collection of one round of groundwater samples from the five monitoring wells; and analytical laboratory testing of the one round of groundwater samples that were collected from the wells. Additional details concerning the groundwater evaluation work is provided in the subsections below.

2.3.1 Monitoring Well Installation

Between May 8, 2019 and May 14, 2019, test borings MW-01 through MW-05 were converted to groundwater monitoring wells, refer to Figure 2 through Figure 6. Each groundwater monitoring well was constructed with a 2-inch inner diameter Schedule 40 polyvinyl chloride (PVC) screen attached to solid riser piping of the same material. The five monitoring wells were installed as overburden/bedrock interface wells where the screened intervals spanned the overburden and upper bedrock since the top of the uppermost groundwater table was generally observed at or near the top of the bedrock. Pertinent information for each monitoring well is included on monitoring well construction diagrams that are included in Appendix B.

2.3.2 Well Development

On May 17, 2019, the five groundwater monitoring wells were developed by removing groundwater from each well and taking water quality measurements using a YSI ProDSS water quality meter. DAY screened the ambient air inside each of the five wells with a PID upon being opened, and PID readings in parts per million (ppm) were recorded. The above information is summarized on well development logs that are included in Appendix B.

2.3.3 Groundwater Sampling and Analysis

On June 6, 2019, DAY obtained water level measurements and checked for light non-aqueous phase liquid (LNAPL) and dense aqueous phase liquid (DNAPL) using an oil/water interface probe in each of the five on-site monitoring wells. Groundwater samples were subsequently collected from each well using a conventional purge and sample technique. Monitoring well sampling logs are included in Appendix B. The groundwater samples were submitted to ALS, which analyzed the samples for TCL and CP-51 VOCs using USEPA Method 8260.

A trip blank sample accompanied the June 6, 2019 groundwater samples to ALS (designated as sample TB060619). The trip blank sample was analyzed by ALS for TCL and CP-51 list VOCs using USEPA Method 8260.

Marques and Associates, P.C. (Marques) surveyed the locations of each well in relation to NAD83/2011, NYS Plane Coordinate System. West Zone, Transverse Mercator Projection. Marques also surveyed the elevations of the ground and top of inner PVC casing at each monitoring well in relation to the NAVD 88 datum.

2.4 Soil Vapor Evaluation

On May 15, 2019, Nature's Way used the rotary drill-rig to install a soil vapor point SV-01 on the adjoining 59 Sullivan Street parcel, which is owned by the City. The location of the soil vapor point is depicted on Figure 2 through Figure 6 show. Split Spoon samples were collected in consecutive intervals from the ground surface to a depth of approximately eight feet bgs at the soil vapor point boring. A DAY representative observed the split spoon samples retrieved from SV-01 for field evidence of contamination (e.g., staining, free product, sheen, odors), screen samples of material for total VOCs using a PID, and logged the lithology and water content conditions. This information, as well as other pertinent information, is recorded on a test boring log (copy included in Appendix B).

Nature's Way then installed a temporary soil vapor point in the boring that consisted of a 0.5foot long screen tip fitted with a guide that was connected to solid tubing. The bottom of the screen was placed approximately six feet bgs in order to be above the groundwater table observed within the boring. The solid tubing extended above the ground surface. The annulus between the tubing and borehole walls was backfilled with clean sand, and the top of the borehole above the sand was backfilled with hydrated bentonite. Pertinent information is recorded on a soil vapor probe construction diagram (copy included in Appendix B).

On June 25, 2019, a tracer gas test (helium) was conducted to ensure the temporary soil vapor sampling point was tight. A soil vapor sample (designated as SV-01) was collected from the soil vapor point over a two-hour and nine-minute period using a summa canister connected to a pre-calibrated regulator. An upwind outdoor background air sample (designated as OA-01) was simultaneously collected over a two-hour and seven-minute period using a summa canister connected to a pre-calibrated regulator. Pertinent information is recorded on soil vapor sampling event logs included in Appendix B.

Following collection of the soil vapor sample SV-01, the temporary soil vapor point tubing was pulled from the ground, and the test boring was backfilled with sample cuttings that had no field evidence of impact.

The soil vapor sample and outdoor air sample were submitted to ALS under chain-of-custody control for analytical laboratory testing. As shown on Table 1, ALS tested soil vapor sample SV-01 and outdoor air sample OA-01 for USEPA TCL VOCs using USEPA Method TO-15.

2.5 Study-Derived Wastes

Solid investigation-derived waste (IDW) generated as a result of the Phase II ESA was placed in five New York State Department of Transportation (NYSDOT) approved 55-gallon drums, and liquid IDW as a result of the Phase II ESA was placed in four NYSDOT-approved 55gallon drums. The solid IDW consisted primarily of soil cuttings, with lesser amounts of drilling fines and decontamination sediments. The liquid IDW consisted of well development and purge waste and decontamination water. Based on the VOC groundwater test results, the liquid IDW was characterized as hazardous waste. On June 28, 2019, a composite sample of the solid IDW was collected from the five drums and tested for Toxicity Characteristic Leaching Procedure (TCLP) VOCs via Methods 1311 and 8260. Based on cumulative total analytical laboratory results for soil samples collected from monitoring well locations, as supplemented with the TCLP VOCs results, the solid IDW was characterized as a nonhazardous waste. On July 2, 2019, the solid IDW was consolidated into three 55-gallon drums, and the liquid IDW was consolidated into three 55-gallon drums. On July 17, 2019, the three drums of solid IDW and the three drums of liquid IDW were picked up at the Site by Sun Environmental Corp. (SUN), and transported to Cycle Chem, Inc. in Lewisberry, PA for disposal. A copy of disposal documentation for the IDW is included in Appendix C.

3.0 FINDINGS

The results and findings of this project are presented in this section of the report.

3.1 Subsurface Soil/Fill Evaluation

Based on the subsurface studies completed to date, much of the Site is covered by 0.5 foot or less layer of topsoil. Heterogeneous fill material is present beneath the topsoil. This fill generally consists of reworked soil (i.e., various mixtures of silt, sand, gravel, cobbles, boulders and clay) with trace to some amounts of brick, concrete, wood, metal, and rock Trace to little amounts of ash, cinders, asphalt, coal, glass, rubber, plastic, and slag were also occasionally observed in the fill material. Some of the fill was black in color, and this fill commonly contained higher amounts of cinders. It is presumed that much of the concrete, brick, cobbles, boulders, and cinders may be associated with former buildings located on the Site. In a few instances, fill material within the footprints of former buildings extended to apparent basement floors that were left in-place during their demolition. At other locations, the fill was underlain by indigenous soils. Test locations within the footprint of former buildings on the Site generally contained the greatest thickness of fill, with the greatest thickness of fill (9.5 ft.) being observed in TP-02, TB-01 and TB-03A which are located within the footprint of the former manufacturing building. The average fill thickness for the Site was calculated to be approximately 6.8 ft. Based on the average thickness, it is estimated that approximately 7,570 cubic yards (i.e., 12,490 tons) of fill material is present at the Site.

Indigenous soils beneath the fill material generally consists of various mixtures of sand and silt that occasionally contained trace to some gravel, cobbles, boulders, fractured rock (e.g., shale or dolomite) and/or clay with lesser amounts of gravel. In some locations, the overburden soil was underlain by gray fractured Shale, which was underlain by harder gray Dolomite of the Eramosa (Lockport) Formation. At other locations, the overburden appeared to be immediately underlain by the gray harder dolomite. Based on rock cores collected from monitoring well locations MW-01 through MW-05, Rock Quality Designation (RQD) calculations ranged between 30.2% (MW-02) and 69.8% (MW-03) for the upper 4.0 to 5.3 feet of bedrock. The average RQD is 52.5%, which is indicative of weathered bedrock.

As shown on Table 2, the depth to competent bedrock (i.e., the Dolomite) at the five monitoring well locations ranged from approximately 10.3 ft. bgs (MW-01) to 14.2 ft. bgs (MW-04). The average depth to bedrock in these test borings is approximately 12.4 ft. bgs. Ground surface elevations and depth to top of competent bedrock information were used to calculate elevations for the top of bedrock at the five monitoring wells, which was then used to create a bedrock contour map that is included as Figure 8. As shown, the top of bedrock at the Site appears to slope towards the southeast and the difference between the highest (MW-01) and lowest (MW-04) measured top of bedrock elevations is 2.24 ft.

3.1.1 Analytical Laboratory Test Results for Soil/Fill Samples

Soil/Fill sample test results for TCL VOCs, TCL SVOCs, TAL metals and PCBs are summarized on Table 3, Table 4, Table 5 and Table 6, respectively. Copies of the ALS laboratory reports are included in Appendix D. Although the Site is not currently within an environmental program mandated by the NYSDEC, the test results for the soil/fill samples that were tested as part of this study are compared to the following criteria referenced in the

NYSDEC document titled "6 NYCRR Part 375, Environmental Remediation Programs" dated December 14, 2006.

- Unrestricted Use Soil Cleanup Objectives (UUSCOs);
- Residential Use Soil Cleanup Objectives (RSCOs);
- Restricted Residential Use Soil Cleanup Objectives (RRSCOs);
- Commercial Use Soil Cleanup Objectives (CSCOs); and
- Protection of Groundwater Soil Cleanup Objectives (PGWSCOs).

The test results and comparison to the above criteria are further discussed below. Comparisons to UUSCOs and RSCOs also assist in evaluating potential re-use of soil and fill both on-site and off-site in accordance with Part-360 regulations and other applicable state and federal regulations.

<u>VOCs</u>

As shown on Table 3, VOCs were detected in each of the 16 samples that were tested. VOCs detected in one or more sample included: 1,1,1-trichloroethane; 1,1-dichloroethane; acetone; benzene; 2-butanone (MEK); sec-butylbenzene; carbon disulfide; chloroform; cyclohexane; ethylbenzene; methyl acetate;; methyl tert-butyl ether; isopropylbenzene; 4-isopropyltoluene; 4-methyl-2-pentanone (MIBK); methylcyclohexane; naphthalene; n-propylbenzene; tetrachloroethene; toluene; trichloroethene; trichlorofluoromethane (Freon 11); cis-1,2dichloroethene; trans-1,2-dichloroethene; 1,2,4-trimethylbenzene; 1,3,5-trimethylbenzene; m,p-xylene; n-butylbenzene; and o-xylene. Concentrations of specific VOCs detected ranged between 0.00017 and 6.5 milligram per kilogram (mg/kg) or ppm. Many of the detected concentrations were qualified as estimated (designated by a "J" next to constituent concentration on summary tables) by the analytical laboratory since they were detected below the method detection limit. [Note: The VOCs acetone and methyl acetate can be laboratory artifacts; thus, the concentrations detected in the field samples could be attributable (or partly attributable) to laboratory artifacts.]

As shown on Table 3, the VOCs acetone, trichloroethene, and/or 2-butanone (MEK) were detected in 14 of the 16 soil and fill samples at concentrations exceeding their respective UUSCOs and PGWSCOs (refer to Figure 9 and Figure 10). Nine of the samples consisted of fill material, and five of these samples consisted of apparent indigenous soil. The remaining two apparent indigenous soil samples tested did not contain a VOC concentration exceeding UUSCOs. No detected VOC concentrations exceeded RSCOs, RRSCOs or CSCOs. A summary of the detected VOCs exceeding one or more SCOs is as follows:

- Samples TP-01(1-2), TP-02(2-4), TP-06(10-10.5), TP07(8-8.5), TP-08(4-5), TB-02(4-6), TB-03A(7.8-8.8), TB-01(6-8), MW-04(6-7), MW-01(6-6.9) and MW-05(8-10) contained TB-07 (5.5) contained acetone at concentrations exceeding its UUSCO and PGWSCO. [Note: The acetone detected in these samples may be a laboratory artifact.]
- Sample TP-03(10-11) contained trichloroethene at a concentration exceeding its UUSCO and PGWSCO.

- Sample MW-02(10-12) contained acetone and trichloroethene at concentrations exceeding their UUSCOs and/or PGWSCOs. [Note: The acetone detected in this sample may be a laboratory artifact.]
- Sample MW-03(4-6) contained 2-butanone (MEK) at a concentration exceeding its UUSCO and PGWSCO.

The samples that exceeded one or more UUSCO for VOCs are identified on Figure 9. The samples that exceeded one or more PGWSCO for VOCs are identified on Figure 10.

SVOCs

As shown on Table 4, SVOCs were detected in each of the seven samples that were tested. SVOCs detected in one or more sample included: acenaphthene; acenaphthylene; anthracene; benzo(a)anthracene; benzo(a)pyrene; benzo(b)fluoranthene; benzo(g,h,i)perylene; benzo(k)fluoranthene; butyl benzyl phthalate; carbazole; chrysene; dibenzo(a,h)anthracene; dibenzofuran; di-n-butyl phthalate; fluoranthene; fluorene; indeno(1,2,3-cd)pyrene; naphthalene; phenanthrene; and pyrene. Concentrations of specific SVOCs detected ranged between 0.071and 35 mg/kg or ppm. Many of the detected concentrations were qualified as estimated by the analytical laboratory since they were detected below the method detection limit.

Samples TP-02(2-4), TB-03A(7.8-8.8), and MW-01(2-4) contained concentrations of SVOCs that exceeded one or more SCOs for one or more constituents. Each of these samples was comprised of fill material. The concentrations of the SVOCs detected in the other four samples were below their respective UUSCOs, RSCOs, RRSCOs, CSCOs, and PGWSCOs. A comparison of the detected SVOC concentrations to SCOs is summarized below:

- Sample TP-02(2-4), contained benzo(b)fluoranthene and indeno(1,2,3-cd)pyrene at concentrations exceeding their UUSCOs, RSCOs and RRSCOs. The concentrations of the other SVOCs detected in this sample were below their respective UUSCOs, RSCOs, RRSCOs, CSCOs, and PGWSCOs.
- Sample TB-03A(7.8-8.8) contained benzo(a)anthracene, benzo(a)pyrene; benzo(b)fluoranthene; chrysene; and indeno(1,2,3-cd)pyrene at concentrations that exceeded one or more of their respective UUSCOs, RSCOs, RRSCOs, CSCOs and/or PGWSCOs. The concentrations of the other SVOCs detected in this sample were below their respective UUSCOs, RSCOs, RRSCOs, CSCOs and PGWSCOs.
- Sample MW-01(2-4) contained benzo(a)anthracene, benzo(a)pyrene; benzo(b)fluoranthene; benzo(k)fluoranthene; chrysene; dibenzo(a,h)anthracene; and indeno(1,2,3-cd)pyrene at concentrations that exceeded one or more of their respective UUSCOs, RSCOs, RRSCOs, CSCOs and/or PGWSCOs. The concentrations of the other SVOCs detected in this sample were below their respective UUSCOs, RSCOs, RRSCOs, CSCOs and PGWSCOs.

The samples that exceeded one or more UUSCO for SVOCs are identified on Figure 9. The samples that exceeded one or more RSCO, RRSCO, CSCO and/or PGWSCO for SVOCs are identified on Figure 10.

Metals

As shown on Table 5, TAL metals were detected in each of the seven samples that were tested. A comparison of the detected concentrations of metals in these samples to SCOs is also provided on Table 5, and is summarized below:

- Sample TP-02(2-4) contained copper, lead and zinc at concentrations that exceeded their UUSCOs. The concentrations of the other metals detected in this sample were below their respective UUSCOs, RSCOs, RRSCOs, CSCOs and PGWSCOs.
- Sample TP-04(4-5) contained lead at a concentration that exceeded its UUSCO. The concentrations of the other metals detected in this sample were below their respective UUSCOs, RSCOs, RRSCOs, CSCOs and PGWSCOs.
- Sample TP-07(8-8.5) contained lead at a concentration that exceeded its UUSCO, and contained mercury at a concentration that exceeded its UUSCO, RSCO, RRSCO and PGWSCO. The concentrations of the other metals detected in this sample were below their respective UUSCOs, RSCOs, RRSCOs, CSCOs and PGWSCOs.
- Sample TB-03A(7.8-8.8) contained mercury at a concentration that exceeded its UUSCO. The concentrations of the other metals detected in this sample were below their respective UUSCOs, RSCOs, RRSCOs, CSCOs and PGWSCOs.
- Sample MW-01(2-4) contained lead at a concentration that exceeded its UUSCO. The concentrations of the other metals detected in this sample were below their respective UUSCOs, RSCOs, RRSCOs, CSCOs and PGWSCOs.
- Sample MW-05(406) contained silver at a concentration that exceeded its UUSCO. The concentrations of the other metals detected in this sample were below their respective UUSCOs, RSCOs, RRSCOs, CSCOs and PGWSCOs.

The samples that exceeded one or more UUSCO for metals are identified on Figure 9. The samples that exceeded one or more RSCO, RRSCO, CSCO and/or PGWSCO for metals are identified on Figure 10.

<u>PCBs</u>

As shown on Table 6, PCBs were detected in one of three samples that were tested. The PCB detected in the sample was aroclor-1260, and its detected concentration of 1.6 ppm exceeded its UUSCO, RSCO, RRSCO, and CSCO (Refer to Figure 9 and Figure 10).

3.2 Groundwater Evaluation

Using an oil/water interface probe, LNAPL and/or DNAPL were not detected within the five on-site wells during the May 17, 2019 well development work or the June 6, 2019 groundwater monitoring event. However, a sheen and petroleum-type odors were noted on purge water from monitoring well MW-04 during the above-mentioned well development and groundwater monitoring events.

Using the surveyed well elevations and static water level measurements from June 6, 2019, the groundwater elevation for each monitoring well was calculated (refer to Table 7). A potentiometric groundwater contour map for the June 6, 2019 monitoring event was developed and is included as Figure 11. As shown, groundwater flow on June 6, 2019 was generally to the east/northeast. The hydraulic gradient for June 6, 2019 is calculated to be approximately 0.01 ft./ft.

3.2.1 Analytical Laboratory Test Results for Groundwater Samples

The groundwater samples collected from wells MW-01 through MW-05 on June 6, 2019 were analyzed by ALS for TCL and CP-51 VOCs using USEPA Method 8260. A copy of the ALS laboratory report for the groundwater samples is included in Appendix D.

The VOC test results for the June 6, 2019 groundwater samples are summarized on Table 8, which also includes a comparison of the detected concentrations of VOCs to available groundwater standards or guidance values referenced in the NYSDEC document titled "Division of Water Technical and Operational Guidance Series 1.1.1; Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" dated June 1998 as amended with April 2000 and June 2004 addendum tables (TOGS 1.1.1). The VOC test results are also summarized on Figure 12. The results and comparison to the TOGS 1.1.1 groundwater standards and guidance values are summarized below:

- VOCs were detected in each of the five groundwater samples that were tested. VOCs detected in one or more sample included: acetone; benzene; 1,4-dichlorobenzene; 1,1-dichloroethene; cis-1,2-dichloroethene; trans-1,2-dichloroethene; methylcyclohexane; toluene; trichloroethene; vinyl chloride; and m,p-xylene. Concentrations of specific VOCs detected ranged between 0.2 and 3,400 micrograms per liter (ug/l) or parts per billion (ppb). Some of the detected concentrations were qualified as estimated (designated by a "J" next to constituent concentration on summary tables) by the analytical laboratory since they were detected below the method detection limit. [Note: The VOC acetone can be a laboratory artifact; thus, the concentrations detected in the field samples could be attributable (or partly attributable) to a laboratory artifact.]
- As shown on Table 8, the VOCs cis-1,2-dichloroethene, trans-1,2-dichloroethene; trichloroethene and/or vinyl chloride were detected in each of the five groundwater samples at concentrations exceeding their respective NYSDEC TOGS 1.1.1 groundwater standards or guidance values. As shown on Figure 12, the highest concentration of total VOCs (i.e., 4,109 ug/l or ppb, of which 3,400 ug/l was trichloroethene) was detected at monitoring well MW-01, which is within the footprint of the former manufacturing building that was demolished by the City in 2016. The lowest concentration of total VOCs (i.e., 119.83 ug/l or ppb) was detected at monitoring well MW-02, which is located on the southwest portion of the Site that was upgradient of the former manufacturing building.
- VOCs were not detected in the June 6, 2019 QA/QC Trip Blank (Sample TB060619 at concentrations above reported analytical laboratory detection limits. The QA/QC trip blank laboratory results can be found in Appendix D.

3.3 Soil Vapor Evaluation

As shown on Table 9, 30 VOCs were detected in soil vapor sample SV-01 and five VOCs were detected in outdoor air background sample OA-01.

- VOCs detected in soil vapor sample SV-01 included: 1,1,1-trichloroethane; acetone; acrylonitrile; acrolein; benzene; 2-butanone (MEK); dichlorodifluoromethane (Freon 12); ethanol; ethyl acetate; ethylbenzene; 4-ethyltoluene; heptane; hexane; 2-hexanone (MBK); 4-methyl-2-pentanone (MIBK); naphthalene; propene; propylbenzene; toluene; trichlorofluoromethane (Freon 11); 1,2,4-trimetheylbenzene; 1,3,5-trimethylbenzene; m,p-xylene; o-xylene; vinyl acetate; b-butyl acetate; n-octane; n-nonane; alpha-pinene; and d-limonene. Detected concentrations of these VOCs ranged between 0.96 (naphthalene) and 250.0 (acetone) micrograms per cubic meter (ug/m³).
- VOCs detected in outdoor air background sample OA-01 included: acetone; dichlorodifluoromethane (Freon 12); ethyl acetate; toluene; and trichlorofluoromethane (Freon 11). Detected concentrations of these VOCs ranged between 1.0 (Freon 12) and 11.0 (acetone) ug/m³.

The NYSDOH document titled Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006, as amended by NYSDOH Soil Vapor Intrusion Updates, does not include specific guidance criteria for soil vapor samples. However, the document does include matrices and tables summarizing "typical" indoor air values measured in commercial and residential structures, and no impacts were measured in this hydraulically upgradient soil vapor sample that warrant further action when compared to the matrices.

With the exception of ethyl acetate, the concentrations of VOCs detected in outdoor air sample OA-1 did not exceed their respective 90th percentile values for outdoor air referenced in Table C2 of the October 2016 NYSDOH document titled "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York".

Soil vapor sample SV-01 contained elevated concentrations of VOCs in relation to the concentrations of the VOCs that were detected in the soil vapor sample SV-01 (e.g., acetone detected in SV-01 at 250 ug/m³ and detected in OA-01 at 11 ug/m³). The higher number of VOCs and the higher detected concentrations of VOCs in the soil vapor sample in relation to the outdoor air sample suggest the VOCs are present in the soil vapor, and are not attributable to outdoor air conditions.

4.0 CONCLUSIONS AND RECOMMENDATIONS

This section of the report summarizes the findings of the Phase II ESA that was performed at the Site, and also provides conclusions and recommendations as they pertain to environmental conditions.

4.1 Summary of Findings

The geophysical survey of the western side of the Site identified five magnetic anomalies (designated as A though E on Figure 7). The subsequent excavation of test pits TP-06, TP-07 and TP-08 at these anomaly areas did not encounter USTs. However, fill material containing metallic debris was encountered in each of these test pits, which would explain the magnetic anomalies that were detected.

Based on observation of conditions at test locations, much of the Site is covered by an approximate 0.5 foot or less layer of topsoil. Heterogeneous fill material is present beneath the topsoil. This fill generally consists of reworked soil (i.e., various mixtures of silt, sand, gravel, cobbles, boulders and clay) with trace to some amounts of brick, concrete, wood, metal, and rock Trace to little amounts of ash, cinders, asphalt, coal, glass, rubber, plastic, and slag were also occasionally observed in the fill material. Some of the fill was black in color, and this fill commonly contained higher amounts of cinders. The average fill thickness for the Site was calculated to be approximately 6.8 ft.

Indigenous soils beneath the fill material generally consists of various mixtures of sands and silts that occasionally contained trace to some gravel, cobbles, boulders, fractured rock (e.g., shale or dolomite) and/or clay with lesser amounts of gravel. In some locations, the overburden soil was underlain by gray fractured shale, which was underlain by harder gray dolomite of the Eramosa (Lockport) Formation. Based on the bedrock elevations measured at the five monitoring well locations, the top of bedrock at the Site appears to slope toward the southeast. Based on groundwater elevation data from the five on-site overburden/bedrock interface monitoring wells, groundwater flow on June 6, 2019 was generally to the east/northeast.

Soil and fill sample test results were compared to various NYSDEC Part 375 SCOs on Table 3 though Table 6, Figure 9 and Figure 10, and the comparisons are summarized below.

- Seventeen of the eighteen soil and fill samples that were tested contained concentrations of one or more VOC, SVOC, Metal and/or PCB that exceeded UUSCOs.
- Fifteen of the eighteen soil and fill material samples that were tested contained concentrations of one or more VOCs, SVOCs, and/or Metals that exceeded one or more PGWSCOs.
- Four of the eighteen soil and fill material samples that were tested contained concentrations of one or more VOCs, SVOCs, and/or Metals that exceeded one or more RSCOs and RRSCOs.
- Three of the eighteen soil and fill material samples that were tested contained concentrations of one or more VOCs, SVOCs, and/or Metals that exceeded one or more CSCOs.

Note: The VOCs acetone and methyl acetate can be laboratory artifacts; thus, the concentrations detected in the field samples could be attributable (or partly attributable) to laboratory artifacts.

As shown on Figure 12 and Table 8, VOCs were detected in the June 6, 2019 groundwater samples from each of the five monitoring wells. The highest concentration of VOCs was detected in the groundwater sample from MW-01, which is located within the footprint of the former building on the Site. The lowest concentration of VOCs was detected in the groundwater sample from MW-02, which is located on the southeast (i.e., hydraulically upgradient) portion of the Site. The concentrations of the VOCs cis-1,2-dichloroethene, trans-1,2-dichloroethene, trichloroethene and/or vinyl chloride detected in the five groundwater samples exceeded NYSDEC TOGS 1.1.1 groundwater standards and guidance values.

A sheen and petroleum-type odors were noted on purge water from monitoring well MW-04 located on the southeast portion of the Site, but were not noted at the other four monitoring wells. The groundwater sample from MW-04 contained petroleum-related VOCs toluene and methylcyclohexane, but at concentrations below TOGS 1.1.1 groundwater standards or guidance values. The 1933 Sanborn Map shows a gas tank (GT) on the adjoining property to the east in proximity to monitoring well MW-04; thus, the petroleum-type impacts may be attributable to an off-site source.

4.2 Conclusions

The types of VOCs, SVOCs, metals and PCBs detected in soil, fill and groundwater samples at the Site could be attributable to past operations at the Site and/or the fill material that is present on the Site. The extent of chemical contaminants exceeding NYSDEC criteria has not been fully defined.

Based on the work completed, the magnitude of total VOC concentrations in groundwater across most of the Site is generally similar, which suggests a site-wide VOC contaminant condition (i.e., VOCs in groundwater are not localized).

VOCs were detected in an off-site soil vapor sample that was collected on the hydraulically upgradient adjoining 59 Sullivan Street parcel to the west. The specific VOCs detected in the soil vapor sample do not fully correlate with the specific VOCs detected in soil, fill or groundwater samples on the Site.

It is unknown whether VOCs in soil, fill or groundwater at the Site are migrating off-site via groundwater or soil vapor intrusion. However, based on the VOC concentrations measured and the apparent groundwater flow patterns, off-site migration of chlorinated VOCs in groundwater appears possible. Further, the highest trichloroethene concentration was measured in a groundwater samples collected from the northwest portion of the Site, and downgradient wells containing higher concentrations of apparent breakdown products suggest a possible on-site chlorinated VOC source area with contaminant migration away from the source.

Based on detected concentrations of VOC, SVOC, metals and PCBs above various NYSDEC SCOs, some of the soil and fill material at the Site could be considered a regulated waste if disturbed or displaced, will require special handling, and has re-use restrictions. Such disturbed/displaced soil/fill would require disposal at an appropriate approved regulated disposal facility (e.g., landfill), with the exception that some types of the non-hazardous disturbed/displaced soil/fill could possibly be re-used on-site or off-site if a NYSDEC Part 360 Beneficial Use Determination (BUD) can be obtained.

Based on the Phase II ESA work completed, the following continue to be identified as RECs for the Site:

- 1. Historical Uses / Regulatory Listing of the Site; and
- 2. Historical Uses of Adjoining Properties

4.3 Recommendations

- 1. It is recommended that the findings of this report be provided to the NYSDEC.
- 2. It is recommended that additional on-site and off-site investigation be completed to evaluate the nature and extent of environmental impacts. Types of investigation include:
 - a) Further on-site evaluation of VOCs, SVOCs, Metals and PCBs in soil, fill material, groundwater and/or soil vapor; and
 - b) Evaluation of potential VOC migration in off-site groundwater and soil vapor.
- 3. Remedial actions should be completed to the extent deemed warranted. Based on current data and information, these could include, but are not limited to, the following:
 - Physical remediation of impacted soil and groundwater via removal and disposal, containment, in-situ or ex-situ treatment, etc.
 - Installation of a cover system as an engineering control, if warranted.
 - Mitigation of soil vapor intrusion into any new or existing structures on the Site or adjoining/nearby properties if a potential soil vapor intrusion is suspected or if soil vapor intrusion has been confirmed. An example soil vapor mitigation system is a sub-slab depressurization system (SSDS) that can be installed on an existing or new building as an engineering control.
 - Preparation and implementation of a site-specific Remedial Action Work Plan (RAWP) and/or Environmental Management Plan (EMP) to address Site contaminants in soil, fill material, groundwater, soil vapor, etc. at the Site. The RAWP and/or EMP will provide guidance on health and safety monitoring, characterization, handling, and disposal/re-use of material that requires remediation, disturbance or displacement, including during potential redevelopment of the Site. In addition, it is recommended that a site-specific Health and Safety Plan (HASP) be developed and included with the RAWP and EMP to protect construction workers, the nearby community, and future on-site occupants from exposures to residual environmental constituents in soil, fill material, groundwater, soil vapor, etc. should these media be disturbed (i.e. during remediation activities, redevelopment activities, construction activities, utility

trenching, site grading, etc.). It is also recommended that an environmental project monitor (EPM) be on-site on a full-time basis to assist with implementation of the RAWP and//or EMP during activities that have the potential to disturb subsurface impacted media. Examples include earthwork (trenching, grading, etc.) during remediation or redevelopment of the Site. The EPM can visually observe and field screen Site materials as they are disturbed/excavated, provide guidance on segregation, management and characterization of potentially impacted materials, provide guidance if unanticipated subsurface environmental conditions are encountered, and help with implementation of other EMP requirements.

5.0 ACRONYMS AND ABBREVIATIONS

ALS	ALS Environmental
ASP	Analytical Services protocol
BGS	Below Ground Surface
BUD	Beneficial Use Determination
City	City of Rochester
CP-51	Commissioner Policy 51
CSCO	Commercial Soil Cleanup Objective
DAY	Dav Environmental, Inc.
DNAPL	Dense Non-Aqueous Phase Liquid
ELAP	Environmental Laboratory Approval Program
EMP	Environmental Management Plan
EPM	Environmental Project Monitor
Ft	Feet
GPS	Geographic Positioning System
HASP	Health and Safety Plan
IDW	Investigation-Derived Waste
	Limited Due Diligence Assessment
ΙΝΔΡΙ	Light Non-Aqueous Phase Liquid
Marques	Margues and Associates PC
MEK	2 Butanone
Mø/kø	Milligram per Kilogram
MIBK	4-Methyl-2-pentanone
MS/MSD	Matrix Spike/Matrix Spike Duplicate
Nature's Way	Nature Way Environmental Consultants and Contractors Inc.
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
NYSDOT	New York State Department of Transportation
PCB	Poly-Chlorinated Biphenyl
PGWSCO	Protection of Groundwater Soil Cleanup Objective
Phase I ESA	Phase I Environmental Site Assessment
Phase II ESA	Phase II Environmental Site Assessment
PID	Photoionization Detector
PPB	Parts Per Billion
PPM	Parts Per Million
PVC	Polyvinyl Chloride
QA/QC	Quality Assurance/Quality Control
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
REC	Recognized Environmental Concern
RQD	Rock Quality Designation
RSCO	Residential Soil Cleanup Objective
RRSCO	Restricted Residential Soil Cleanup Objective
SPT	Standard Penetration Test
SSDS	Sub-Slab Depressurization System
STARS	Spill Technology and Remediation Series
SUN	Sun Environmental Corp.
SVOC	Semi-Volatile Organic Compound
TAL	Target Analyte List
TCL	Target Compound List
TCLP	Toxicity Characteristic Leaching Procedure
TIO	Temporary Incident of Ownership
TOGS	Technical and Operational Guidance Series 1.1.1
Ug/l	Microgram per Liter
Ug/m ³	Microgram per cubic Meter of air
USEPA	United States Environmental Protection Agency
UST	Underground Storage Tank
UUSCO	Unrestricted Use Soil Cleanup Objective
VOC	Volatile Organic Compound
WOOD	WOOD Environment & Infrastructure Solutions, Inc.

FIGURES

- Test boring advanced May 2019 Monitoring well installed May 2019 Soil vapor point installed May 2019
- Test pit completed on May 1, 2019
- Area for geophysical survey
 - Parcel boundary of 65 Sullivan Street

CUBA PLACE

Properties owned by the City of Rochester

NOTES:

Former oven and former pit observed inside former building by the City of Rochester prior to demolition.

Property boundaries provided by City of Rochester dated January 2018.

Aerial imagery provided by the New York State GIS Clearinghouse, dated 2015. This imagery may not reflect the most recent conditions in the area.

60

30

120

Feet

No. of Lot of Lo			A STATE OF S	A. C.	
	Proj	Project Title		PROJECT MANAGER	DATE
FI	ect No. 5	65 SULLIVAN STREET ROCHESTER. NEW YORK		JAD	09-2019
G	58			DRAWNBY	DATE DRAWN
UR	2S-	PHASE II ENVIRONMENTAL SITE ASSESSMENT	DAY ENVIRONMENTAL, INC.	S d C	09-2019
E (-19	Drawing Title	Environmental Consultants Rochester. New York 14606	SCALE	DATE ISSUED
3		Test Location Plan with 2015 Aerial Overlay	New York, New York 10170	AS NOTED	09-09-2019

- Test boring advanced May 2019 Monitoring well installed May 2019 Soil vapor point installed May 2019
- Test pit completed on May 1, 2019
- Area for geophysical survey
 - Parcel boundary of 65 Sullivan Street

496-520

30

NOTES:

0

Properties owned by the City of Rochester

						A REAL PROPERTY OF A REAL PROPER
		Pro	RojectTite		PROJECT MANAGER	DATE
FIC	5	ject No.	65 SULLIVAN STREET ROCHESTER. NEW YORK		JAD	08-2019
Jد 	58	_			DRAWN BY	DATE DRAWN
JR	2S	a -	PHASE II ENVIRONMENTAL SITE ASSESSMENT	DAY ENVIRONMENTAL, INC.	VDV VDV	08-2019
É	-1		Drawine Title	Environmental Consultants	5	
10	9		Test I ocation Dian with Soil/Fill Samulas that Evceed RSCOS RRSCOs	Rochester, New York 14606	SCALE	DATE ISSUED
0	_			New York, New York 10170	AS NOTED	09-09-2019

MW-01

MW-02 Acetone: 2.7 ug/l Benzene: 0.23 ug/l

Toluene: 0.49 ug/l Trichloroethene: 67 ug/l Vinyl Chloride: 0.9 ug/l

1,1-Dichloroethene: 0.26 ug/l cis-1,2-Dichloroethene: 47 ug/l trans-1,2-Dichloroethene: 0.3 ug/l

m,p-Xylene: 0.43 ug/l Methylcyclohexane: 0.52 ug/l

Total VOCs: 119.83 ug/l

cis-1,2-Dichloroethene: 620 ug/l trans-1,2-Dichloroethene: 11 ug/l Trichloroethene: 3,400 ug/l Vinyl Chloride: 78 ug/l

Total VOCs: 4,109 ug/l

SULLIVAN STREET

Former Oven

OBRIEN STREET

MW-03

 \bullet

1,1-Dichloroethene: 3.2 ug/l cis-1,2-Dichloroethene: 1,300 ug trans-1,2-Dichloroethene: 15 ug/ Trichloroethene: 520 ug/l Vinyl Chloride: 39 ug/l

Total VOCs: 1,877.2 ug/l

MW-05 1,1-Dichloroethene: 3.2 ug/l cis-1,2-Dichloroethene: 1,400 ug/l trans-1,2-Dichloroethene: 15 ug/l Trichloroethene: 1 000 ug/l

Trichloroethene: 1,000 ug/l Vinyl Chloride: 20 ug/l Total VOCs: 2,438.2 ug/l

118

MW-04

Acetone: 3.5 ug/l 1,4-Dichlorobenze 1,1-Dichlorobenze trans-1,2-Dichloroet trans-1,2-Dichloro Toluene: 0.2 ug/l Trichloroethene: Vinyl Chloride: 48 Methylcyclohexar

Total VOCs: 1,8

NOTES:

Monitoring wells locations provided by Maques & Associates, P.C., dated June 6, 2019. These locations should be considered approximate.

Property boundaries provided by City of Rochester dated January 2018.

Aerial imagery provided by the City of Rochester dated 2018. This image may not reflect the most recent conditions on the site.

Former Pit

Image: Parcel boundary of 65 Sullivan Street	PROJECT MANAGER DATE	JAD 10-2019	DRAWN BY DATE DRAWN	CPS 10-2019	SCALE DATE ISSUED	AS NOTED 10-01-2019
CUBA PLACE					Rochester, New York 1460	New York, New York 10170
DOSEPHACEMENT OF CONTRACT OF				L SITE ASSESSMENT		oundwater Samples
// tene: 0.21 ug/l thene: 1,400 ug/l toethene: 7.4 ug/l 1 410 ug/l 88 ug/l ne: 0.21 ug/l 872.62 ug/l	Project Title	65 SULLIVAN STREET ROCHESTER. NEW YORK			Drawing Title	VOCs in June 6, 2019 Gr
0 15 30 60 Feet	Proj	^{ect No.} 5 FIC	582 GUI	s-´	19 5 12	2

TABLES

65 Sullivan Street Rochester, New York

Analytical Laboratory Testing Program

				SOIL SAMPLES FROM TEST PITS						
	Sample						Param	eters Testo	ed	
Location	Depth (Ft.)	Date	PID (ppm)	Visual	VOCs	SVOCs	Metals	PCBs	TCLP VOCs	TO-15 VOCs
TP-01	1-2	5/1/2019	0.0	FILL (Brown Silty Sand, little Wood and Concrete)	1					
TP-02	2-4	5/1/2019	0.0	FILL (Brown/black Clayey Silt, Brick, Rock, Metal, Concrete and Glass)	1	1	1	1		
TP-03	10-11	5/1/2019	0.0	Dark brown/gray Clayey SILT, some Shale fragments	1					
TP-04	4-5	5/1/2019	0.0	FILL (Dark brown/black Clayey Silt and Sand, Metal Pipe, Wood, Rock, and Rubber)	1	1	1	1		
TP-05	8-8.5	5/1/2019	0.0	Tan Sandy SILT	1					
TP-06	10-10.5	5/1/2019	0.0	Gray/Brown/Red Clayey SILT, some Shale	1					
TP-07	8-8.5	5/1/2019	0.0	FILL (Gray/Black Sandy Silt, Organics, Concrete, Metal Post with Concrete, Brick, Slag, and Plastic)	1	1	1			
TP-08	4-5	5/1/2019	0.0	FILL (Brown Silty Sand and Gravel, some Brick, Metal, and Cinders)	1	1	1			
				SOIL SAMPLES FROM TEST BORINGS	8	4	4	2	0	0
	Comple						Param	eters Teste	ed	
Location	Depth (ft)	Date	PID	Visual	VOCs	SVOCs	Metals	PCBs	TCLP Metals	lgn, Rea., pH
TB-01	6-8	5/9/2019	9.3	FILL (Dark brown Sand and Silt, little Concrete, trace Slag and Gravel)	1					
TB-02	4-6	5/7/2019	3.5	FILL (Black Sand and Silt, little Gravel, and Cinders)	1					
TB-03A	7.8-8.8	5/7/2019	1.6	FILL (Gray brown Concrete, Sand, Gravel, little Brick, Wood and black Cinders)	1	1	1			
MW-01	2-4	5/10/2019	3.7	FILL (Brown/black Silty Clay, some Gravel and Sand, trace Brick, Coal, Plastic and Wood).		1	1			
MW-01	6-6.9	5/10/2019	4.6	FILL (Black Silty Clay, some Gravel, Sand, Brick, Concrete, and Wood) Faint chemical-type odor	1					
MW-02	10-12	5/8/2019	7.0	Brown/gray Clayey SILT, trace Gravel	1					
MW-03	4-6	5/13/2019	2.4	FILL (Brown Silty Clay with trace Brick) Faint petroleum-type odor	1					
MW-04	6-7	5/9/2019	12.0	Brown Silty fine SAND	1					
MW-05	4-6	5/14/2019	0.3	FILL (Black Sand, some Silt and Cinders, little Brick and Gravel, trace Slag and Ash)		1	1	1		
MW-05	8-10	5/14/2019	0.9	Brown SILT, little fine Sand and Shale	1					
				Totals for Test Borings	8	3	3	1	0	0
				GROUNDWATER SAMPLES FROM MONITORING WELLS	1		Param	eters Test	he	
Location	Date	PID of Wel	l Headspace	Sample Observations	VOCs	SVOCs	Metals	PCBs	TCLP VOCs	TO-15 VOCs
MW-01	6/6/2019	11	.8.9	light yellow, clear	1					
MW-02	6/6/2019	33	3.9	brown, turbid	1					
MW-03	6/6/2019	3	67	clear	1					
MW-04	6/6/2019	19	98.2	clear, rainbow sheen, petroleum-type odor	1					
MW-05	6/6/2019	2	0.2	brown, turbid	1					
Trip Blank	6/6/2019	1	A	NA	1	0	0	0	0	0
				SOIL VAPOR EVALUATION SAMPLES	0	0	0	0	0	0
Landian	Sample	Data	ND	Viewal			Param	eters Test	ed	
Location	Depth (ft)	Date	PID	visual	VOCs	SVOCs	Metals	PCBs	TCLP VOCs	TO-15 VOCs
SV-01	5.5-6.0	6/25/2019	NA	Off-Site soil vapor sample through asphalt pavement						1
OA-01	NA	6/25/2019	NA	Off-Site upwind background outdoor air sample above asphalt pavement						1
				Totals for Test Borings	0	0	0	0	0	2
	Consult						Param	eters Test	ed	
Location	Depth (ft)	Date	PID	Visual	VOCs	SVOCs	Metals	PCBs	TCLP VOCs	TO-15 VOCs
IDW-01 (Soil)	NA	6/28/2019	NA	Mixture of fill material, indigenous soils and dolomite drill fines					1	
(301)				Totals for Test Borings	0	0	0	0	1	0

VOCs = TCL and CP51//STARS Volatile Organic Compounds via Method 8260 SVOCs = TCL Semi-Volatile Organic Compounds via Methods 8270 Metals = TAL Metals via Methods 6010 and 7471 PCBs = Polychlorinated Biphenyls via Method 8082 Sample PID reading was the greater value between headspace and ambient air screening results _______ = Included Matrix Spike/Matrix Spike Duplicate (MS/MSD) PID Reading = Photoionization Detector Reading in parts per million (ppm) TO-15 VOCs = TCL VOCs for air samples

TAL - Target Analyte List TCLP = Toxicity Characteristic Leaching Procedure NA = Not Applicable

TCL - Target Compound List

65 Sullivan Street Rochester, New York

Top of Competent Bedrock Elevation Data

Well ID	Elevation of Ground Surface (FT)	Static Water Level (SWL) Measurement (FT)	Groundwater Elevation (FT)
MW-01	493.06	10.30	482.76
MW-02	493.60	12.30	481.30
MW-03	493.76	12.00	481.76
MW-04	494.72	14.20	480.52
MW-05	494.22	13.10	481.12

Vertical control is referenced to NAVD88.

65 Sullivan Street Rochester, New York

Summary of Detected VOC Results in mg/Kg or Parts Per Million (ppm)

Soil and Fill Samples

Detected Constituent	CAS Number	A Unrestricted SCO ⁽¹⁾	B Residential SCO ⁽¹⁾	C Restricted Residential SCO ⁽¹⁾	D Commercial SCO ⁽¹⁾	G Protection of Groundwater SCO ⁽¹⁾	R1903957-001 TP-01 (1-2) 5//1/2019	R1903957-0 TP-02 (2-4 5/1/2019	002 4)	R1903957-003 TP-03 (10-11) 5/1/2019	R1903957-004 TP-04 (4-5) 5/1/2019	R1903957-005 TP-05 (8-8.5) 5/1/2019	R1903957-006 TP-06 (10-10.5) 5/1/2019	R1903957-007 TP-07 (8-8.5) 5/1/2019	R1903957-008 TP-08 (4-5) 5/1/2019
							FILL	FILL		SOIL	FILL	SOIL	SOIL	FILL	FILL
1,1,1-Trichloroethane	71-55-6	0.68	100	100	500	0.68	U	U		0.00074 J	U	U	0.00022 J	U	0.00024 J
1,1-Dichloroethane	75-34-3	0.27	19	26	240	0.27	U	U		U	U	U	U	0.00032 J	U
1,2,4-Trimethylbenzene	95-63-6	3.6	47	52	190	3.6	0.00059 J	0.0026 J		0.00021 J	0.0017 J	0.0003 J	0.00024 J	0.00024 J	0.00036 J
1,3,5-Trimethylbenzene	108-67-8	8.4	47	52	190	8.4	0.00024 J	0.00058 J		U	0.00074 J	U	U	U	U
2-Butanone (MEK)	78-93-3	0.12	100	100	500	0.12	0.0073	0.029		U	0.0072 J	0.0019 J	0.0035 J	0.013	0.0024 J
4-Isopropyltoluene	99-87-6	NA	NA	NA	NA	10	U	0.00063 J		U	U	U	U	U	U
4-Methyl-2-pentanone (MIBK)	108-10-1	NA	NA	NA	NA	1	U	U		U	U	U	U	U	U
Acetone	67-64-1	0.05	100	100	500	0.05	1.2 D AG	0.19	AG	0.025	0.049	0.035	0.062 AG	0.097 AG	0.088 AG
Benzene	71-43-2	0.06	2.9	4.8	44	0.06	U	0.00036 J		0.00018 J	0.00051 J	U	U	U	U
Carbon Disulfide	75-15-0	NA	100	NA	NA	2.7	U	0.0011 J		U	0.0036 J	U	U	0.00045 J	U
Chloroform	67-66-3	0.37	10	49	350	0.37	U	U		0.00032 J	U	U	U	U	U
Cyclohexane	110-82-7	NA	NA	NA	NA	NA	U	U		0.00048 J	0.0012 J	U	U	U	0.00025 J
Ethylbenzene	100-41-4	1	30	41	390	1	U	U		U	0.00026 J	U	U	U	U
Isopropylbenzene	98-82-8	NA	100	NA	NA	2.3	U	U		U	U	U	U	U	U
Methyl Acetate	79-20-9	NA	NA	NA	NA	NA	0.031	0.01		0.0087	0.0037 J	0.0073	0.023	0.014	0.011
Methyl tert-butyl Ether	1634-04-4	0.93	62	100	500	0.93	0.00052 J	0.00023 J		U	U	U	U	0.00017 J	0.00026 J
Methylcyclohexane	108-87-2	NA	NA	NA	NA	NA	U	0.00097 J		0.00045 J	0.0018 J	U	0.0003 J	0.00035 J	U
Naphthalene	91-20-3	12	100	100	500	12	0.00078 BJ	0.018		0.00087 BJ	0.001 BJ	0.0007 BJ	U	0.00058 BJ	U
Tetrachloroethene	127-18-4	1.3	5.5	19	150	1.3	0.00033 J	0.00026 J		0.0021 J	0.00043 J	0.0029 J	U	U	U
Toluene	108-88-3	0.7	100	100	500	0.7	0.00023 J	0.00052 J		0.00036 J	0.00087 J	0.00021 J	0.00028 J	0.00031 J	0.00031 J
Trichloroethene	79-01-6	0.47	10	21	200	0.47	U	U		1.4 D AG	0.0003 J	0.11	0.015	0.00061 J	0.0084
Trichlorofluoromethane (Freon 11)	75-69-4	NA	NA	NA	NA	NA	0.00095 J	0.00031 J		U	U	U	U	U	U
cis-1,2-Dichloroethene	156-59-2	0.25	59	100	500	0.25	U	U		0.027	U	0.012	U	0.0024 J	U
m,p-Xylene	179601-23-1	0.26	100	100	500	1.6	U	0.00072 J		U	0.0012 J	U	U	U	U
n-Butylbenzene	104-51-8	12	100	100	500	12	U	0.00045 J		U	U	U	U	U	U
n-Propylbenzene	103-65-1	3.9	100	100	500	3.9	U	0.00036 J		U	0.0003 J	U	U	U	U
o-Xylene	95-47-6	0.26	100	100	500	1.6	U	0.00083 J		U	0.00092 J	U	U	U	0.00017 J
sec-Butylbenzene	135-98-8	11	100	100	500	11	U	0.00033 J		U	U	U	U	U	U
trans-1,2-Dichloroethene	156-60-5	0.19	100	100	500	0.19	U	U		0.00053 J	U	0.00028 J	U	0.00022 J	U
Total VOCs		NA	NA	NA	NA	NA	1.24194	0.25725		1.46694	0.0747	0.171	0.105	0.12965	0.1114

(1) = Soil Cleanup Objective (SCO) referenced in 6 NYCRR Part 375 dated 12/14/2006

Concentration in **BOLD** and **RED** print exceeds one or more of the following criteria.

A = Concentration Exceeds Unrestricted Use SCO

B = Concentration Exceeds Residential Use SCO

C = Concentration Exceeds Restricted Residential Use SCO

D = Concentration Exceeds Commercial Use SCO

G = Concentration Exceeds Protection of Groundwater SCO

- B = Also detected in associated blank
- J = Estimated Value

U = Not Detected

- D = Data reported from a dilution
- VOC = Volatile Organic Compound
- NA = Not Available

65 Sullivan Street Rochester, New York

Summary of Detected VOC Results in mg/Kg or Parts Per Million (ppm)

Soil and Fill Samples

		A	B Residential	C Restricted	D	G Protection of	R1904205-001	R1904205-002	R1904205-003	R1904205-004	R1904205-005	R1904291-002	R1904291-003	R1904291-005
Detected Constituent	CAS Number			Residential		Groundwater	TB-02 (4-6)	TB-03A (7.8-8.8)	MW-02 (10-12)	TB-01 (6-8)	MW-04 (6-7)	MW-01 (6-6.9)	MW-03 (4-6)	MW-05 (8-10)
Detected Constituent	CAS Number	300	300	SCO ⁽¹⁾	300	SCO ⁽¹⁾	5/7/2019	5/7/2019	5/8/2019	5/9/2019	5/9/2019	5/10/2019	5/13/2019	5/14/2019
							FILL	FILL	SOIL	FILL	SOIL	FILL	FILL	SOIL
1,1,1-Trichloroethane	71-55-6	0.68	100	100	500	0.68	U	0.00054 J	U	U	U	U	U	0.0011 J
1,1-Dichloroethane	75-34-3	0.27	19	26	240	0.27	U	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	3.6	47	52	190	3.6	0.0029 J	0.0024 J	U	0.62 J	U	0.033	0.22 J	0.00029 J
1,3,5-Trimethylbenzene	108-67-8	8.4	47	52	190	8.4	0.0013 J	0.00091 J	U	0.45 J	U	0.015	0.074 J	0.00018 J
2-Butanone (MEK)	78-93-3	0.12	100	100	500	0.12	0.0094	0.012	U	U	0.0052	0.026	0.3 J AG	0.0042 J
4-Isopropyltoluene	99-87-6	NA	NA	NA	NA	10	0.00028 J	0.00062 J	U	U	U	0.001 J	U	U
4-Methyl-2-pentanone (MIBK)	108-10-1	NA	NA	NA	NA	1	U	U	U	U	U	0.00044 J	U	U
Acetone	67-64-1	0.05	100	100	500	0.05	0.061 AG	6.5 D AG	0.42 AG	1.3 AG	3.2 D AG	0.084 AG	U	0.58 D AG
Benzene	71-43-2	0.06	2.9	4.8	44	0.06	0.00087 J	U	U	U	U	0.00032 J	U	0.00033 J
Carbon Disulfide	75-15-0	NA	100	NA	NA	2.7	0.0049 J	U	U	U	U	0.01	U	U
Chloroform	67-66-3	0.37	10	49	350	0.37	U	U	U	U	U	U	U	0.00057 J
Cyclohexane	110-82-7	NA	NA	NA	NA	NA	0.0033 J	0.0017 J	U	U	U	0.0023 J	U	0.0011 J
Ethylbenzene	100-41-4	1	30	41	390	1	0.00045 J	U	U	U	U	0.00088 J	U	U
Isopropylbenzene	98-82-8	NA	100	NA	NA	2.3	0.00029 J	U	U	U	U	0.0016 J	U	U
Methyl Acetate	79-20-9	NA	NA	NA	NA	NA	0.0017 J	0.11	2.9	0.43 BJ	0.072	U	0.17 BJ	0.026
Methyl tert-butyl Ether	1634-04-4	0.93	62	100	500	0.93	U	0.00053 J	U	U	0.0004 J	U	U	0.00023
Methylcyclohexane	108-87-2	NA	NA	NA	NA	NA	0.0063	0.00089 J	U	U	U	0.0037 J	U	0.0011 J
Naphthalene	91-20-3	12	100	100	500	12	0.015	0.004 J	U	0.2 J	U	U	U	U
Tetrachloroethene	127-18-4	1.3	5.5	19	150	1.3	0.00026 J	0.00066 J	U	U	0.00037 J	U	U	0.0004 J
Toluene	108-88-3	0.7	100	100	500	0.7	0.0024 J	0.0018 J	U	U	U	0.00086 J	0.044 J	0.00072 J
Trichloroethene	79-01-6	0.47	10	21	200	0.47	U	0.0038 J	2.4 AG	U	U	U	U	0.0089
Trichlorofluoromethane (Freon 11)	75-69-4	NA	NA	NA	NA	NA	0.0014 J	U	U	U	U	0.00067 J	U	0.00033 J
cis-1,2-Dichloroethene	156-59-2	0.25	59	100	500	0.25	U	U	0.037 J	U	U	U	U	U
m,p-Xylene	179601-23-1	0.26	100	100	500	1.6	0.0022 J	0.00088 J	U	U	U	0.0041 J	0.11 J	0.00053 J
n-Butylbenzene	104-51-8	12	100	100	500	12	0.00027 J	U	U	0.056 J	U	0.00058 J	0.031 J	U
n-Propylbenzene	103-65-1	3.9	100	100	500	3.9	0.00047 J	0.00047 J	U	U	U	0.00098 J	U	U
o-Xylene	95-47-6	0.26	100	100	500	1.6	0.0014 J	0.00078 J	U	0.085 J	U	0.011	0.06 J	U
sec-Butylbenzene	135-98-8	11	100	100	500	11	U	U	U	0.06 J	U	0.00081 J	U	U
trans-1,2-Dichloroethene	156-60-5	0.19	100	100	500	0.19	U	U	U	U	U	U	U	U
Total VOCs		NA	NA	NA	NA	NA	0.11609	6.642	5.757	3.20100	3.27797	0.19724	1.00900	0.62598

(1) = Soil Cleanup Objective (SCO) referenced in 6 NYCRR Part 375 dated 12/14/2006

Concentration in **BOLD** and **RED** print exceeds one or more of the following criteria.

A = Concentration Exceeds Unrestricted Use SCO

B = Concentration Exceeds Residential Use SCO

C = Concentration Exceeds Restricted Residential Use SCO

D = Concentration Exceeds Commercial Use SCO

G = Concentration Exceeds Protection of Groundwater SCO

- B = Also detected in associated blank
- J = Estimated Value
- U = Not Detected
- D = Data reported from a dilution
- VOC = Volatile Organic Compound
- NA = Not Available

65 Sullivan Street Rochester, New York

Summary of Detected SVOC Results in mg/Kg or Parts Per Million (ppm)

Soil and Fill Samples

Detected Constituent	CAS Number	A Unrestricted SCO ⁽¹⁾	B Residential SCO ⁽¹⁾	C Restricted Residential SCO ⁽¹⁾	D Commercial SCO(1)	G Protection of Groundwater SCO ⁽¹⁾	R1903957-002 TP-02 (2-4) 5/1/2019 FILL	R1903957-004 TP-04 (4-5) 5/1/2019 FILL	R1903957-007 TP-07 (8-8.5) 5/1/2019 FILL	R1903957-008 TP-08 (4-5) 5/1/2019 FILL	R1904205-002 TB-03A (7.8-8.8) 5/7/2019 FILL	R1904291-00 MW-01 (2-4) 5/10/2019 FILL	R1904291-004 MW-05 (4-6) 5/14/2019 FILL
Acenaphthene	83-32-9	20	100	100	500	98	0.097 J	U	U	U	U	3.800	U
Acenaphthylene	208-96-8	100	100	100	500	107	0.120 J	U	U	U	0.360 J	U	U
Anthracene	120-12-7	100	100	100	500	1000	0.330 J	U	U	0.071 J	0.160 J	7.100	U
Benzo(a)anthracene	56-55-3	1	1	1	5.6	1	0.890	0.400 J	0.120 J	0.290 J	1.100 ABCG	12.000 ABCDG	0.440 J
Benzo(a)pyrene	50-32-8	1	1	1	1	22	0.820	0.410 J	0.150 J	0.270 J	1.100 ABCD	10.000 ABCD	0.450 J
Benzo(b)fluoranthene	205-99-2	1	1	1	5.6	1.7	1.000 ABC	0.570 J	0.180 J	0.320 J	1.400 ABC	13.000 ABCDG	0.660 J
Benzo(g,h,i)perylene	191-24-2	100	100	100	500	1000	0.520	0.380 J	0.110 J	0.180 J	0.910	6.200	0.370 J
Benzo(k)fluoranthene	207-08-9	0.8	1.0	3.9	56	1.7	0.370 J	U	U	0.120 J	0.530	4.900 ABCG	U
Butyl benzyl phthalate	85-68-7	NA	100	NA	NA	122	U	U	U	U	U	11.000	U
Carbazole	86-74-8	NA	NA	NA	NA	NA	0.150 J	U	U	U	U	4.100	U
Chrysene	218-01-9	1	1	3.9	56	1	0.840	0.450 J	0.140 J	0.280 J	1.000 ABG	12.000 ABCG	0.470 J
Dibenzo(a,h) anthracene	53-70-3	0.33	0.33	0.33	0.56	1000	0.120 J	U	U	U	0.190 J	1.600 J ABCD	U
Dibenzofuran	132-64-9	7	14	59	350	210	U	U	U	U	0.100 J	2.000 J	U
Di-n-butyl phthalate	84-74-2	NA	100	NA	NA	8.1	U	U	U	U	U	2.000 J	U
Fluoranthene	206-44-0	100	100	100	500	1000	1.800	0.790 J	0.260 J	0.550	2.000	35.000	1.100
Fluorene	86-73-7	30	100	100	500	386	0.130 J	U	U	U	U	3.800	U
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	0.5	0.5	5.6	8.2	0.520 ABC	0.280 J	0.100 J	0.170 J	0.860 ABC	6.200 ABCD	0.310 J
Naphthalene	91-20-3	12	100	100	500	12	U	U	U	U	U	1.700 J	U
Phenanthrene	85-01-8	100	100	100	500	1000	1.100	0.440 J	0.130 J	0.290 J	0.750	25.000	0.580 J
Pyrene	129-00-0	100	100	100	500	1000	1.500	0.710 J	0.250 J	0.510	1.900	27.000	0.930 J
Total SVOCs		NA	NA	NA	NA	NA	10.307	4.430	1.440	3.051	12.360	188.400	5.310

(1) = Soil Cleanup Objective (SCO) referenced in 6 NYCRR Part 375 dated 12/14/2006

Concentration in **BOLD** and **RED** print exceeds one or more of the following criteria.

A = Concentration Exceeds Unrestricted Use SCO

B = Concentration Exceeds Residential Use SCO

C = Concentration Exceeds Restricted Residential Use SCO

D = Concentration Exceeds Commercial Use SCO

G = Concentration Exceeds Protection of Groundwater SCO

SVOC = Semi-Volatile Organic Compound

U = Not detected

J = Estimated Value

NA = Not Available

Page 1 of 1

65 Sullivan Street Rochester, New York

Summary of Metals Results in mg/Kg or Parts Per Million (ppm)

Soil and Fill Samples

				с		G	R1903957-0	002	R1903	957-004	4 R1	9039	57-007	R19039	57-008	R1904	205-002	R1904	291-0	001	R19042	91-004
Detected Analyte	CAS Number	A Unrestricted	B Residential	Restricted	D	Protection of	TP-02 (2-4	4)	TP-04	4 (4-5)	TF	P-07 ((8-8.5)	TP-08	(4-5)	TB-03A	(7.8-8.8)	MW-0	1 (2-	4)	MW-05	5 (4-6)
Delected Analyte		SCO ⁽¹⁾	SCO ⁽¹⁾	Residential	SCO(1)	Groundwater	5/1/2019)	5/1/	2019		5/1/2	019	5/1/2	019	5/7/	2019	5/10	/2019	9	5/14/2	2019
				SCO		SCU	FILL		FI	LL		SO	IL	FIL	.L	FI	LL	F	LL		FIL	.L
Aluminum	7429-90-5	NA	NA	NA	NA	NA	4840		4830		729	0		4750		5970		8770			4530	
Antimony	7440-36-0	NA	NA	NA	NA	NA	U		U			U		U		U		U			U	
Arsenic	7440-38-2	13	16	16	16	16	10.0		6.3		6	.1		3.5		4.8		4.8			9.9	
Barium	7440-39-3	350	350	400	400	820	111		167		61	.7		22.4		143		70.7			70.1	
Beryllium	7440-41-7	7.2	14	72	590	47	0.32		0.28	J	0.3	31 J		0.22 J	J	0.23	J	0.45			0.31	
Cadmium	7440-43-9	2.5	2.5	4.3	9.3	7.5	0.63		0.68		0.4	1 J		0.77		0.14	J	0.43	J		0.22	J
Calcium	7440-70-2	NA	NA	NA	NA	NA	45100		73200		1380	0		152000		86500		43400			103000	
Chromium	7440-47-3	30	36	180	1500	NA	11.7		7.5		8	.8		6.6		12.1		13.4			7.7	
Cobalt	7440-48-4	NA	30	NA	NA	NA	3.9 J		3.4	J	4	.5 J		3.4 J	J	3.4	J	5.0	J		2.8	J
Copper	7440-50-8	50	270	270	270	1720	104	Α	16.0		19	.4		13.7		11.9		20.4			10.3	
Iron	7439-89-6	NA	NA	NA	NA	NA	12200		11400		1180	00		9830		8360		15600			10700	
Lead	7439-92-1	63	400	400	1000	450	74.4	Α	65.9	Α	30	8	A	13.1		36.5		79.7		A	22.3	
Magnesium	7439-95-4	NA	NA	NA	NA	NA	15500		29500		475	50		48200		12200		13100			35100	
Manganese	7439-96-5	1600	2000	2000	10000	2000	315		259		16	64		630		520		325			250	
Mercury	7439-97-6	0.18	0.81	0.81	2.8	0.73	0.132		0.117		0.82	26	ABCG	0.062		0.67	Α	0.066			0.069	
Nickel	7440-02-0	30	140	310	310	130	10.0		8.5		7	.8		7.2		8.1		11.1			7.4	
Potassium	9/7/7440	NA	NA	NA	NA	NA	1010		1230		67	0		1480		1530		1560			1340	
Selenium	7782-49-2	3.9	36	180	1500	4	U		U			U		U		U		U			U	
Silver	7440-22-4	2	36	180	1500	8.3	0.6 J		1.4		0	.3 J		U		U		0.5	J		7.6	Α
Sodium	7440-23-5	NA	NA	NA	NA	NA	330		340		16	60		170		550		500			390	
Thallium	7440-28-0	NA	NA	NA	NA	NA	1.0 J		1.7			U		3.9		2.3		U			2.8	
Vanadium	7440-62-2	NA	100	NA	NA	NA	15.2		14.3		13	.8		9.7		13.3		17.7			14.0	
Zinc	7440-66-6	109	2200	10000	10000	2480	213	Α	238		81	.1		57.1		58.6		81.7			36.9	

(1) = Soil Cleanup Objective (SCO) referenced in 6 NYCRR Part 375 dated 12/14/2006

Concentration in **BOLD** and **RED** print exceeds one or more of the following criteria.

A = Concentration Exceeds Unrestricted Use SCO

B = Concentration Exceeds Residential Use SCO

C = Concentration Exceeds Restricted Residential Use SCO

D = Concentration Exceeds Commercial Use SCO

G = Concentration Exceeds Protection of Groundwater SCO

U = Not Detected

J = Estimated Value

NA = Not Available

NT = Not Tested

65 Sullivan Street Rochester, New York

Summary of PCB Results in mg/Kg or Parts Per Million (ppm)

Fill Samples

Constituent	CAS Number	A Unrestricted SCO ⁽¹⁾	B Residential SCO ⁽¹⁾	C Restricted Residential SCO ⁽¹⁾	D Commercial SCO(1)	G Protection of Groundwater SCO ⁽¹⁾	R1903957 TP-02 (2 5/1/201 Fill	7-002 2-4) 19	R190395 TP-04 (5/1/20 Fill	7-004 (4-5) (19	R190429 MW-05 5/14/2 Fill	(1-004 (4-6) 019 I
Aroclor-1016	12674-11-2	0.1	1	1	1	3.2	U		U		U	
Aroclor-1221	11104-28-2	0.1	1	1	1	3.2	U		U		U	
Aroclor-1232	11141-16-5	0.1	1	1	1	3.2	U		U		U	
Aroclor-1242	53469-21-9	0.1	1	1	1	3.2	U		U		U	
Aroclor-1248	12672-29-6	0.1	1	1	1	3.2	U		U		U	
Aroclor-1254	11097-69-1	0.1	1	1	1	3.2	U		U		U	
Aroclor-1260	11096-82-5	0.1	1	1	1	3.2	1.6	ABCD	U		U	
Total PCBs		0.1	1	1	1	3.2	1.6	ABCD	0.0		0.0	

(1) = Soil Cleanup Objective (SCO) referenced in 6 NYCRR Part 375 dated 12/14/2006 and CP-51 dated 10/21/10

U = Not detected

PCB = Polychlorinated Biphenyl

65 Sullivan Street Rochester, New York

Groundwater Elevation Data for June 6, 2019

Well ID	Elevation of Ground Surface (FT)	Elevation of Top of PVC Well Casing (FT)	Static Water Level (SWL) Measurement (FT)	Groundwater Elevation (FT)
MW-01	493.06	492.62	9.69	482.93
MW-02	493.60	493.06	9.63	483.43
MW-03	493.76	493.51	11.63	481.88
MW-04	494.72	494.38	12.15	482.23
MW-05	494.22	493.95	12.03	481.92

The oil/water interface probe did not detect light non-aqueous phase liquid (LNAPL) or dense non-aqueous phase liquid (DNAPL) at the well locations during collection of static water level measurements

Vertical control is referenced to NAVD88.

Static water levels measured from top of PVC well casings

65 Sullivan Street Rochester, New York

Summary of Detected VOC Results in ug/l or ppb

Groundwater Samples

Detected Constituent	CAS Number	Groundwater Standard or	R1905223-00 MW-01)1	R1905223-00 MW-02)2	R1905223-00 MW-03)3	R1905223-0 MW-04	04	R1905223-00 MW-05	15
Detected Constituent	CAS Number	Guidance	6/6/2019		6/6/2019		6/6/2019		6/6/2019		6/6/2019	
		Value	Groundwate	ər	Groundwate	ər	Groundwate	ər	Groundwat	er	Groundwate	۶r
Acetone	67-64-1	50	U		2.7 J		U		3.5 J		U	
Benzene	71-43-2	1	U		0.23 J		U		U		U	
1,4-Dichlorobenzene	106-46-7	3	U		U		U		0.21 J		U	
1,1-Dichloroethene	75-35-4	5	U		0.26 J		3.2 J		3.1 J		3.2 J	
cis-1,2-Dichloroethene	156-59-2	5	620	X	47	X	1300	X	1400 D	X	1400	X
trans-1,2-Dichloroethene	156-60-5	5	11 J	X	0.3 J		15 J	X	7.4	X	15 J	X
Toluene	108-88-3	5	U		0.49 J		U		0.2 J		U	
Trichloroethene	79-01-6	5	3400	X	67	X	520	X	410 D	X	1000	X
Vinyl chloride	75-01-4	2	78 J	X	0.9 J		39 J	X	48	X	20 J	X
m,p-Xylene	179601-23-1	5	U		0.43 J		U		U		U	
Methylcyclohexane	108-87-2	NA	U		0.52 J		U		0.21 J		U	
Total VOCs		NA	4109.0		119.83		1877.2		1872.62		2438.2	

U = Not detected

ug/I = Micrograms per liter

J = Estimated value ppb - Parts per billion

D = Data reported from a dilution

⁽¹⁾ Groundwater standard or guidance value are as referenced in NYSDEC TOGS 1.1.1 dated June 1998 with April 2000 and June 2004 addendums.

X = Concentration exceeds groundwater standard or guidance value

VOC = Volatile Organic Compound

NA = Not available

65 Sullivan Street Rochester, New York

Summary of Detected VOC Results in ug/m³ Soil Vapor and Outdoor Air Samples

		A EPA BASE 90th	P1903890-001	P1903890-002
Detected Compound	CAS Number	Percentile for	SV-01	OA-01
		Outdoor Air	Soil Vapor	Outdoor Air
			6/25/2019	6/25/2019
1,1,1-Trichloroethane	71-55-6	2.6	1.1	U
Acetone	67-64-1	43.7	250.0	11.0
Acrylonitrile	107-13-1	NA	0.98	U
Acrolein	107-02-8	NA	17.0	U
Benzene	71-43-2	6.6	17.0	U
2-Butanone (MEK)	78-93-3	11.3	40.0	U
Dichlorodifluoromethane (Freon 12)	75-71-8	8.1	3.6	2.0
Ethanol	64-17-5	57.0	30.0	U
Ethyl Acetate	141-78-6	1.5	4.2	4.5 A
Ethylbenzene	100-41-4	3.5	5.7	U
4-Ethyltoluene	622-96-8	3.0	2.4	U
Heptane	142-82-5	NA	6.4	U
Hexane	110-54-3	6.4	5.5	U
2-Hexanone (MBK)	591-78-6	NA	1.1	U
4-Methyl-2-Pentanone (MIBK)	108-10-1	1.9	1.0	U
Naphthalene	91-20-3	4.9	0.96	U
Propene	115-07-1	NA	26.0	U
Propylbenzene	103-65-1	NA	1.5	U
Toluene	108-88-3	33.7	31.0	1.2
Trichlorofluoromethane (Freon 11)	75-69-4	4.3	9.6	1.0
1,2,4-Trimethylbenzene	95-63-6	5.8	11.0	U
1,3,5-Trimethylbenzene	108-67-8	2.7	2.9	U
m,p-Xylene	179601-23-1	12.8	23.0	U
o-Xylene	95-47-6	4.6	8.7	U
Vinyl Acetate	108-05-4	NA	14.0	U
n-Butyl Acetate	123-86-4	<5.8	1.9	U
n-Octane	111-65-9	1.6	3.4	U
n-Nonane	111-84-2	2.8	3.0	U
alpha-Pinene	80-56-8	<6.2	3.5	U
d-Limonene	5989-27-5	3.6	1.4	U

Notes

Concentrations and comparison criteria in ug/m³

NA = Not available

VOC = Volatile Organic Compound

U = Compound was analyzed but not detected, detection limit shown in parenthesis.

(A) 90th Percentiles of EPA 2001 Building Assessment and Survey Evaluation (BASE) database for Outdoor Air referenced in the NYSDOH document titled "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006.

Bold and **A** = Exceeds Air Benchmark Value noted.

New York State does not have standards, criteria or guidance values for concentrations of VOCs in subsurface vapors (either soil vapor or sub-slab vapor).

APPENDIX A

Photo Log

Photolog Phase II Environmental Site Assessment 65 Sullivan Street Rochester, New York

Test Pit TP-01 – looking northwest (5/1/2019)

Test Pit TP-06 (5/1/2019)

Test Pit TP-07 – looking north (5/1/2019)

Test Pit TP-07 – looking northeast (5/1/2019)

Test Pit TP-08 (5/1/2019)

Test Pit TP-08 – looking southwest (5/1/2019)

Test Pit TP-05 – looking east (5/1/2019)

Test Pit TP-05 – looking northeast (5/1/2019)

Test Pit TP-02 – looking west (5/1/2019)

Test Pit TP-03 – looking east (5/1/2019)

Test Boring TB-02 – looking east (5/7/2019)

Monitoring Well MW-02 – looking southeast (5/8/2019)

Split Spoon sample from Monitoring Well MW-01 (5/9/2019)

Monitoring Well MW-01 – looking northwest (5/9/2019)

Monitoring Well MW-04 - looking east (5/9/2019)

Monitoring Well MW-04 Rock Core with Sheen (5/9/2019)

Monitoring Well MW-03 – looking south (5/13/2019)

Monitoring Well MW-05 – looking east

Split Spoon sample from Monitoring Well MW-05

APPENDIX B

Field Logs and Construction Diagrams

	/IRONMEN	TAL, INC.				ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #: Project Ad	dress:	5582S-19 65 Sullivan 3	Street			TEST PIT TP-01
DAY Repro Contractor: Equipment:	esentative:	Rochester, I J. Danzinge Nature's Wa Kubota KX0	New York r ly 57-4 Excava	Date: 5/1/2019 Test Pit Depth: 11.5' Depth to Water: 9.0'		Page 1 of 1
Depth (ft)	PID Reading (ppm)	Samples Collected	PID Headspace (ppm)	Sample Description		Notes
	0.0			Medium Brown, Silty Sand with little Wood and Concrete mass - possible		
1-	0.0			housing footer (FILL), dry	1-	
2-	0.0			Rusty Tan/Light Brown, Sandy Silt, 5' long 8" thick Metal beam (FILL), dry	2-	
3-	0.0				3-	
4-	0.0				4-	
5-	0.0			Grav/Brown Silty SAND, trace Boulder, dry	-5-	
6-	0.0				6-	
7-	0.0				-7-	
8-	0.0			Gray-brown/reduish brown, Grayey SiLT with trace Cobbies and fractured Rock, moist	8-	
9-	0.0			Gray, SILT and GRAVEL, wet	9-	
10-	0.0			Clayey SILT, wet rounded Cobbles, very moist Reddish-Brown, Silty CLAY with fractured Shale	10-	
11-					11-	
12-				Terminated @ 11.5'	12-	
13-					13-	
14-					14-	
15-					15-	
16-					16-	
Notes:	1) Water leve 2) Stratificatio 3) PID reading 4) NA = Not A	ls were made a n lines represer gs are reference vailable or Not	t the times and nt approximate ed to a benzen Applicable	d under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other con- b boundaries. Transitions may be gradual. le standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp	ditions.	TEST PIT TP-01
1563 LYEL ROCHEST (585) 454- FAX (585)	L AVENUE FER, NEW Y 0210 454-0825	ORK 14606		www.dayenvironmental.com		420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

	VIRONMEN	TAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		5582S-19			TEST BIT TO 02
Project Ac	ldress:	65 Sullivan	Street		
DAY Repr	esentative:	J. Danzinge	new York	Date: 5/1/2019 Test Pit Depth: 10.0'	Page i or i
Contractor	:	Nature's Wa	ay	Depth to Water: Not Encountered	
Equipment		Kubota KXU	57-4 Excava		
Depth (ft)	PID Reading (ppm)	Samples Collected	PID Headspace (ppm)	Sample Description	Notes
				Brown/Black, Clayey Silt, some Brick fragments, Rocks, Metal, Concrete pieces, and Glass (FI	LL),
	0.0			maint	
1-				moist	1-
2-					2-
3-					3-
4-					4-
5-	0.0			more Glass (FILL), moist	5-
	0.0			10' x 15' Concrete nieces (FILL)	
6-					6-
7-	0.0				7-
				Light Brown, Sandy Silt and Brick (FILL), moist	
					o
0-					0-
	0.0				
9-					9-
10-				Concrete structure @ end of TP (likely housing footer)	10-
				Refusal @ 10.0'	
					44
11-					11-
12-					12-
13-					13-
14-					14-
15-					15-
16-					16-
Notes:	 Water level Stratification 	els were made a n lines represer	at the times and nt approximate	I under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other con- boundaries. Transitions may be gradual.	litions.
	3) PID reading 4) NA = Not A	gs are reference vailable or Not	ed to a benzen Applicable	e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp	TEST PIT TP-02
1563 LYEL ROCHES	L AVENUE TER, NEW Y	ORK 14606			420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585) 454-	-0210			www.devenvironmental.com	(212) 986-8645 EAX (222) 096 987
Test Pit Loo	as\TP-02			www.dayenvironmental.com	9/7/2019

	VIRONMEN	TAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		5582S-19			
Project Ac	ldress:	65 Sullivan	Street		
DAY Repr	esentative:	Rochester, I	New York	Date: 5/1/2019 Test Pit Depth: 11.0'	Page 1 of 1
Contractor	:	Nature's Wa	ay	Depth to Water: Not Encountered	
Equipment	t:	Kubota KX0	57-4 Excava	tor	
Depth (ft)	PID Reading (ppm)	Samples Collected	PID Headspace (ppm)	Sample Description	Notes
				Dark Brown, Silty Sand with Gravel, some Brick and fractured Bock (EILL), moist	
1-	0.0				1-
2-				Orange Brown/Tan, Sandy SILT, moist	-2-
3-	0.0				3-
4-				Grayish Tan, Sandy SILT, moist	4-
5-	0.0				5-
6-					6-
7-	0.0			Cobbles, Boulders, moist	7-
8-					8-
9-					9-
10-	0.0			Dark Brown/Gray, Clayey Silt with Shale fragments, very moist	10-
11-				hard surface (likely SHALE bedrock) Refusal @ 11.0'	-11-
12-					12-
13-					13-
14-					14-
15-					15-
16-					16-
Notes:	1) Water leve 2) Stratification	ls were made a n lines represer	at the times and nt approximate	I under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other cor boundaries. Transitions may be gradual.	
	3) PID reading 4) NA = Not A	s are reference vailable or Not	ed to a benzen Applicable	e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lam	p. TEST PIT TP-03
1563 LYEL		ODK 44000			420 LEXINGTON AVENUE, SUITE 300
(585) 454-	-0210 -0254-0825	UKK 14606		unu davanviramental som	NEW YORK, NEW YORK 10170 (212) 986-8645 EAV (212) 986-8657
Test Pit Loc	as\TP-03			www.dayenvironmentai.com	9/7/2019

	VIRONMEN	TAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		5582S-19			
Project Ac	dress:	65 Sullivan	Street		TEST PIT TP-04
	recentative:	Rochester,	New York	Date: 5/1/2019	Page 1 of 1
Contractor	:	Nature's Wa	ıy	Depth to Water: Not Encountered	
Equipment	t:	Kubota KX0	57-4 Excava	tor	
Depth (ft)	PID Reading (ppm)	Samples Collected	PID Headspace (ppm)	Sample Description	Notes
				Dark Brown/Black, Clavey Silt and Sand, some Metal Pine, Bricks, Wood, and fractured Rock /	EUL)
1-	0.0			moist	1-
2-					2-
3-					3-
4-	0.0			Gravel, Rubber, Wood (FILL), moist	4-
5-	0.0			Light Brown, Sandy Silt (FILL)	5-
6-	0.0			1.0' thick layer of Brick (FILL)	6-
7-				Light Brown, Sandy SILT, moist	7-
8-					8-
9-					9-
10-				Terminated @ 10.0'	10-
11-					11-
12-					12-
13-					13-
14-					14-
15-					15-
16-					16-
Notes:	 Water level Stratification 	n lines represer	t the times and t approximate	under conduions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other con boundaries. Transitions may be gradual.	auons.
	3) PID readin 4) NA = Not A	gs are reference vailable or Not	ed to a benzen Applicable	e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp	TEST PIT TP-04
1563 LYEL ROCHES	L AVENUE	ORK 14606			420 LEXINGTON AVENUE, SUITE 300 NEW YORK NEW YORK 10170
(585) 454 FAX (585)	-0210) 454-0825			www.davenvironmental.com	(212) 986-8645 FAX (212) 986-8657
Test Pit Log	gs\TP-04				9/7/2019

	VIRONMEN	ITAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		5582S-19			TEST PIT TP-05
Project Ad	ldress:	65 Sullivan Rochester, I	Street New York	Date: 5/1/2019	Page 1 of 1
DAY Repr	esentative:	J. Danzinge	r	Test Pit Depth: 9.0'	
Equipment	:	Kubota KX0	iy 57-4 Excava	tor	
Depth (ft)	PID Reading (ppm)	Samples Collected	PID Headspace (ppm)	Sample Description	Notes
				Light Brown/Grav, Silty Sand and Gravel some Brick, Wood, and Rock fragments (FILL) mois	
1-	0.0				1-
2-					2-
3-					3-
4-					4-
5-	0.0			Black/Dark Gray, Wood and Brick, Sandy Silt and Gravel (FILL), saturated	5-
6-	0.0			Tan, Sandy SILT, moist	6-
7-					7-
8-	0.0				8-
9-				Refusal @ 9.0'	9-
10-					10-
11-					11-
12-					12-
13-					13-
14-					14-
15-					15-
16-					16-
Notes:	1) Water leve 2) Stratificatio	els were made a n lines represer	it the times and nt approximate	i under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other con- boundaries. Transitions may be gradual.	ditions.
	3) PID readin 4) NA = Not A	gs are reference wailable or Not	ed to a benzen Applicable	e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp	TEST PIT TP-05
1563 LYEL ROCHES	L AVENUE TER, NEW Y	ORK 14606			420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585) 454- FAX (585)	-0210 <u>454-08</u> 25			www.dayenvironmental.com	(212) 986-8645 FAX (212) 986-8657
Test Pit Log	gs\TP-05				9/7/2019

	VIRONMEN	TAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		5582S-19			
Project Ac	ldress:	65 Sullivan	Street		
DAY Repr	esentative:	J. Danzinge	New York	Date: <u>5/1/2019</u> Test Pit Depth: 11.0'	Page 1 of 1
Contractor	Contractor: Nature's Way			Depth to Water: 10.0'	
Equipment	t:	Kubota KX0	57-4 Excava	tor	
Depth (ft)	PID Reading (ppm)	Samples Collected	PID Headspace (ppm)	Sample Description	Notes
				Black/Brown Sand and Silt some Brick, Cobbles, Diastic, Bock and Wood (Ell I.)	
1-	0.1			Black/Brown Sand and Sill, some Brick, Cobbles, Plastic, Rock and Wood (FILL)	1-
2-					2-
3-	0.0			Orange/Light Brown, Sandy Silt (FILL)	3-
4-				Tan, Sandy SILT	-4-
5-					5-
6-					6-
7-	0.0				7-
8-	0.0			Gray-Brown/Reddish-Brown, Clayey SILT with fractured Shale, moist	8-
9-	0.0				9-
10-	0.0				10-
11-				Terminated @ 11.0'	-11-
12-					12-
13-					13-
14-					14-
15-					15-
16-					16-
Notes:	 vVater leve Stratificatio 	is were made a n lines represei	t the times and	under conduions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other con boundaries. Transitions may be gradual.	auons.
	3) PID reading 4) NA = Not A	s are reference vailable or Not	ed to a benzen Applicable	e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp	D. TEST PIT TP-06
1563 LYEL ROCHES	L AVENUE TER, NEW Y	ORK 14606			420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585) 454	-0210			WARM devenuerated com	(212) 986-8645
Test Pit Log	gs\TP-06			www.ddyclivilonnendi.com	9/7/2019

	VIRONMEN	TAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		5582S-19			
Project Ac	ldress:	65 Sullivan	Street		
DAY Representative: J. Danzinger				Date: <u>5/1/2019</u> Test Pit Depth: 8.0'	Page 1 of 1
Contractor	:	Nature's Wa	у	Depth to Water: 8.5'	
Equipment	-	Kubota KX0	57-4 Excava	tor	
Depth (ft)	PID Reading (ppm)	Samples Collected	PID Headspace (ppm)	Sample Description	Notes
				Dark Gray/Black, Sandy Silt with Organics/tree roots), some Concrete, Brick, Slag	
1-	0.0			Plastic, Concrete, Conduit (FILL), moist	1-
2-	0.0				2-
3-	0.0				3-
4-	0.0				4-
5-				Some Glass, Plastic (FILL)	5-
6-					6-
7-				2" diameter Fence Post/Pipe encased in Concrete (FILL)	7-
8-	0.0			standing water hard surface (possible basement floor), moist, septic-type odor	8-
9-				Refusal @ 8.5'	9-
10-					10-
11-					11-
12-					12-
13-					13-
14-					14-
15-					15-
16-	1) Water Iovo	s were made a	t the times and	under conditions stated. Fluctuations of moundwater levels may occur due to sessonal factors and other con-	16-
	2) Stratificatio	n lines represer	nt approximate	boundaries. Transitions may be gradual.	ID.
	4) NA = Not A	vailable or Not	Applicable	s contactor monoradored in the neorogrape above the sample using a minimate 2000 equipped with a 10.6 eV lami	TEST PIT TP-07
1563 LYEL ROCHES (585) 454 FAX (585)	L AVENUE TER, NEW Y 0210 1454-0825	ORK 14606		www.davenvironmental.com	420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 1017C (212) 986-8645 FAX (212) 986-8645 FAX (212) 986-8657
Test Pit Log	gs\TP-07			awyormonitonia.com	9/7/2019

	VIRONMEN	TAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		5582S-19			
Project Ac	ldress:	65 Sullivan	Street		TEST PIT TP-08
	esentative:	Rochester,	New York	Date: 5/1/2019	Page 1 of 1
Contractor	:	Nature's Wa	iy	Depth to Water: 9.0'	
Equipment	-	Kubota KX0	57-4 Excava	tor	
Depth (ft)	PID Reading (ppm)	Samples Collected	PID Headspace (ppm)	Sample Description	Notes
				Madium Brown Silty Sand and Graval some Brick, Matal, and Cinders (Ell.L.), moist	
1-	0.0			Medium Brown, Silly Sand and Gravel, some Brick, Metal, and Cinders (FILL), moist	1-
2-	0.0			Metal Ladder/Grate (FILL)	2-
3-					3-
4-	0.0			hard surface @ bottom of TP (southern portion)	4-
5-				6' long, 2" diameter Pipe (Fill)	5-
6-	0.0			Orange Tan/Light Brown, Sandy SILT	6-
7-				mostly Tan, Clayey Silt (FILL)	7-
8-					8-
9-				water entering test pit excavation Terminated @ 9.0'	-9-
10-					10-
11-					11-
12-					12-
13-					13-
14-					14-
15-					15-
16- Notes:	1) Water leve	ls were made a	t the times and	under conditions stated. Fluctuations of aroundwater levels may occur due to seasonal factors and other con-	16- Iditions.
	2) Stratificatio 3) PID reading	n lines represei	nt approximate	boundaries. Transitions may be gradual.	D.
4500 1115	4) NA = Not A	vailable or Not	Applicable	,	TEST PIT TP-08
1563 LYEL ROCHES (585) 454- FAX (585)	L AVENUE TER, NEW Y 0210 454-0825	ORK 14606		www.davenvironmental.com	420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657
Test Pit Log	qs\TP-08				9/7/2019

DAY ENVIRONMENTAL, INC. AN A Project #: 55825-19 Project Address: 65 Sullivan Street Rochester, New York Ground Elevation: NA Datum: NA Datum: NA	FFILIATE OF DAY ENGINEERING, P.C. Test Boring TB-01 Page 1 of 1
Project #: 5582S-19 Project Address: 558Ulivan Street Rochester, New York Ground Elevation: NA Datum: NA Project Address: 65 Julivan Street	Test Boring TB-01 Page 1 of 1
Rochester, New York Ground Elevation: NA Datum: NA	Page 1 of 1
Date Started: 5/9/2019 Date Ended: 5/9/2019 Drilling Contractor: Nature's Way Borehole Depth: 12.3' Borehole Diameter: 8"	
Sampling Method: Split Spoon, Rotary Model 57-B Completion Method: Well Installed Backfilled with Grout Backfilled Water Level (Date): Not Encountered	ed with Cuttings
Depth (ft) Blows per 0.5 ft. Sample Number Sample Depth (ft) % Recovery Headspace PID (ppm) PID Reading (ppm)	Notes
5 0.0 Brown, Sandy (Topsoil) SILT, damp	
12 S-1 0-2 75 37 0.5 0.0 Brown, Silt, some Sand, Gravel, damp (FILL)	
2 23 0.0 Red Brick and Glass, damp (FILL)	
22 S-2 2-4 65 36 5.1 0.0 Craw Constant and Sand maint (FILL)	
3 14 0.0	
10 0.0 Dark Brown, Silt, some Sand, little Gravel, moist (FILL)	
4 0.0 Sand, Silt, little Concrete, trace Slag, trace Gravel, moist (FILL)	
4 S-3 4-6 70 9 2.7 0.0	
5 0.0	
6 0.0	
$7 \\ 7 \\ 4 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8$	
8 6 0.0	
12 S-5 8-10 80 23 1.9 0.0	
9 11 0.0	
9 0.0	
6 0.0 Brown, fine Sandy SILT, little Clay, moist	
21 S-6 10-12 50 NA 8.2 0.0moist	
50/4 0.0 Gray, weathered SHALE, moist	
12 50/4 S-7 12-12.3 0 NA NA NA NA NA recovery	
13 Equipment Refusal @ 12.3'	
14	
16	
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual.	
3) PID readings are referenced to an isobutylene standard. A MiniRae 3000 equipped with a 10.6 eV lamp was used to obtain the PID readings. 4) NA = Not Available or Not Applicable	Test Boring TB-01
5) Headspace PID readings may be influenced by moisture	
1563 LYELL AVENUE ROCHESTER, NEW YORK 14606	420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585) 454-0210	(212) 986-8645

da	JV									ENVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONME	NTAL, I	NC.					AN	AFFILIATE OF DAY ENGINEERING, P.C.
Projec Projec	ct #: ct Addres	ss:	5582S-1 65 Sulliv	l9 /an Stre	ət					Test Boring TB-02
			Rochest	er, New	York			Ground Elevation: NA Da	atum: NA	Page 1 of 1
DAY F	Represer	ntative:	J. Danzi	nger				Date Started: 5/7/2019 Date Er	nded: <u>5/7/2019</u>	
Drilling	g Contra ling Meth	ictor: hod:	Split Sp	oon Rot	arv Mod	lel 57-B		Completion Method: URL Well Installed Backfilled with	heter: <u>8"</u> h Grout ■ Backf	illed with Cuttings
oump	ing wea							Water Level (Date): Not Encountered	Duok	nica wan oatango
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
	3						0.0	Topsoil		
1	13	S-1	0-2	50	36	0.9	0.0	Brown, reworked Sandy Silt, some Brick, Coal, Asphalt and Glass, n	noist (FILL)	
	23						0.1			
	26						0.1			
-	15						0.0			
	26	S-2	2-3.4	50	NA	0.5	0.0			
3	50/4						0.1			
							0.1	Black. moist (FILL)		
4	9						0.0	······································		
	16	S-3	4-6	70	28	3.5	0.1	Plack Sand Silt little Cravel Cindere maint (Ell.)		
5	12						0.3			
	14						0.3			
6	35						0.0	Cray/Braum Sand came Silt Concrete with Crayel maint (EILL)		
	16	S-4	6-8	30	24	29	0.1	Gray/Brown, Sand, some Silt, Concrete with Gravel, moist (FILL)		
7	8	•				2.0	0.0			
	14						0.0			
8	18						0.0			
	15	S-5	8-10	65	32	23	0.0	little Cinders (FILL)		
9	17	0-0	0-10	00	52	2.5	0.0	Brown, mottled, fine Sandy SILT, moist		
	26						0.0			
10	20						0.0			
	29		40.40	70	67	4.2	0.2	Brown, Silty fine SAND, some hard Shale Rock fragments, moist		
11	30	5-6	10-12	70	0/	1.3	0.3			
	37						0.1			
12	26						0.1			
	8						0.1	Gray/Brown, fine Sandy SILT, some dark gray Shale fragments, very	y moist	
13	50/3	S-7	12-12.8	90	NA	3.1	0.2			
14								Equipment Refusal @ 13.5'		
15										
16										
Notes	1) Water	r levels M	ere made	at the tim	es and	nder cond	itions stat	ad. Eluctuations of groundwater levels may occur due to seasonal factors and a	other conditions	
. 10103.	2) Strati	fication li	nes repres	ent appro	ximate b	oundaries	. Transiti	ons may be gradual.	sale, conditione.	
	3) PID re	eadings a	are referen	ced to an	isobutyle	ene standa	ard. A Min	Rae 3000 equipped with a 10.6 eV lamp was used to obtain the PID readings.		Toot Boring TB 02
	4) NA = 1 5) Heads	space PIE	able of No) readings	may be i	ne nfluenced	l by moist	ure			Test Boring 18-02
1563 L	YELL A	VENUE	-							420 LEXINGTON AVENUE, SUITE 300
KOCH (585)	1ESTER 454-021	, NEW Υ 0	ORK 14	606						NEW YORK, NEW YORK 10170 (212) 986-8645
FAX (585) 454	4-0825						www.dayenvironmental.com		FAX (212) 986-8657

da	av										ENVIRONMENTAL CONSULTANTS	
DAY	ENVIR	ONMEI	NTAL, IN	NC.						AN AFFIL	LIATE OF DAY ENGINEERING, P.C.	
Projec Projec	ct #: ct Addres	SS :	5582S-1 65 Sulliv	19 /an Stree	et						Test Boring TB-03	
	_		Rochest	ter, New	York			Ground Elevation: NA	Datum: NA	_	Page 1 of 1	
DAY F	Represer	ntative:	J. Danzi	inger Wav				Date Started: 5/7/2019 Borehole Depth: 5.0'	Date Ended: <u>5/7/201</u> Borebole Diameter: 8"	9	-	
Samp	ling Meth	hod:	Split Sp	oon, Rot	ary Mod	lel 57-B	•	Completion Method: Well Installed	Backfilled with Grout	Backfilled wi	th Cuttings	
								Water Level (Date): Not Encounter				
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description			Notes	
	2						0.1	Brown, Topsoil Sandy Silt, little Brick & Gravel,	moist (FILL)			
1	17	S-1	0-2	65	35	3.5	0.1					
	18						0.1	Gray/Brown, Sand, Gravel & Concrete, little Gla	iss and Rock, moist (FILL)			
2	11						0.1					
	32						0.0	Gray/Brown, Sand, Gravel and Concrete, moist	(FILL)			
3	50/4	S-2	2-4	95	NA	1.1	0.0					
4	NIA	NIA	NIA	NIA	NIA	NIA	NIA	Auger through apparent concrete				
	NA	NA	NA	NA	NA	NA	NA					
5												
								Equipment Refusal (2 5.0'			
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
10												
Notes:	1) Water 2) Stratif 3) PID r/	r levels w fication li	rere made nes repres are referen	at the tim ent appro	ies and un eximate be isobutyle	nder conc oundaries	itions stat . Transitio ard. A Min	ed. Fluctuations of groundwater levels may occur due to ons may be gradual. iRae 3000 equipped with a 10.6 eV lamp was used to c	o seasonal factors and other conditions.			
	4) NA = 1	Not Avail	able or No	t Applicab	le	ne atdriù			alan ulo i ib icauliya.		Test Boring TB-03	
1563 1	5) Heads) readings	may be ir	nfluenced	l by moist	ure					
ROCH	HESTER	, NEW	ORK 14	606							NEW YORK, NEW YORK 10170	
(585) FAX (454-021 585) 454	0 1-0825		(212) 986-8645 (255) 454-0225 EAX (212) 986-8645								

da	V										ENVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONME	NTAL, II	NC.						AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec	t #:		5582S-1	9							Test Boring TB-03A
Projec	t Addres	dress: 65 Sullivan Street Rochester New York Ground Elevation: NA Datum: NA			Page 1 of 1						
DAY F	Represer	ntative:	J. Danzi	nger	TOIN			Date Started: 5/7/2019	Date Ended: 5/7/2019		
Drilling	g Contra	ctor:	Nature's	Way				Borehole Depth: 14.1'	Borehole Diameter: 8"		_
Sampl	ing Meth	nod:	Split Sp	oon, Rot	tary Mod	lel 57-B		Completion Method: Well Installed	Completion Method: Well Installed Backfilled with Grout		th Cuttings
					1						
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm	PID Reading (ppm)	Sample Description			Notes
								Auger to 4'			
1	NA	NA	NA	NA	NA	NA	NA				
4	10						0.1				
	10						0.1	Black/Gray, Sand, some reworked Shale, some	Concrete and Gravel, moist (FILL)		
5	23	S-1	4-6	70	42	1.0	0.0				
	19						0.0				
6	23						0.0				
Ū	27						0.1	Gray/Brown, Concrete, Sand, Gravel, little Brick.	moist (FILL)		
	50/2	S-2	6-6.8	80	NA	0.8	0.0		Gray/Diown, Concrete, Sand, Gravel, little Dick, moist (FILL)		
7											
8	47						0.5	-			
			7000	05		10	0.0				
9	14	5-3	7.8-9.8	60	24	1.0	0.6	little Wood and black Cinders (FILL)			
	10						0.2				
10	6						0.0				
	8						0.1	Gray/Brown, firm SILT and fine SAND, moist			
	12	S-4	10-12	70	23	2.0	0.1				
11	11						0.0				
	19						0.1				
12	21						0 1				
	31	9.5	12 14	65	64	12	0.3	wet, ittle black Shale fragments, trace Clay			
13	20	3-0	12-14	03	04	1.3	0.3				
	33						0.4				
14	50						0.2	Gray, broken SHALE, wet		_	
								Equipment Refusal @	14.1'		
15											
16											
Notes:	1) Water	r levels v	vere made	at the tim	ies and u	nder condi	tions stat	ed. Fluctuations of groundwater levels may occur due to	seasonal factors and other conditions.		
	 2) Stratif 3) PID re 	ucation li eadings a	nes repres are referen	ent appro ced to an	isobutyle	oundaries. ene standa	ı ransiti ırd. A Mir	ons may be gradual. iRae 3000 equipped with a 10.6 eV lamp was used to ob	tain the PID readings.		
	4) NA = 1	Not Avail	able or No	t Applicat	ble			••••	-		Test Boring TB-03A
4500	5) Heads	pace PI	O readings	may be i	nfluenced	l by moistu	ire				
ROCH	TELL A	VENUE	YORK 14	606							420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585)	454-021	0	-								(212) 986-8645
FAX (585) 454	-0825						www.davenvironmental.com			FAX (212) 986-8657
da	V										ENVIRONMENTAL CONSULTANTS
-----------	---	-------------------------	-------------------	-------------------------	-----------------	---------------------	-------------------	--	------------------------------------	----------------	-------------------------------
DAY I	ENVIRO	ONME	NTAL, IN	IC.						AN AFFIL	IATE OF DAY ENGINEERING, P.C
rojec	t #:		5582S-1	9	-1		-				Test Boring MW-01
rojec	l Addres	S:	Rochest	er, New	eι / York		-	Ground Elevation: 493.06'	Datum: NAV	/D88	Page 1 of 1
AY R	epreser	ntative:	H. McLe	nnan			-	Date Started: 5/10/2019	Date Ended: 5/10	/2019	
rilling	Contra	ctor:	Nature's	Way			-	Borehole Depth: 15.5'	Borehole Diameter: 8"		_
ampl	ing Meth	nod:	Split Sp	oon, Ro	tary Moo	iel 57-B	-	Completion Method: Well Installed Water Level (Date): 9.69' (6/6/19)	Backfilled with Grout	Backfilled wit	in Cuttings
neptn (π)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Descrip	tion		Notes
	2						0.0	Brown, Topsoil, wet (FILL)			
1	8	S-1	0-2	42	17	3.7	0.0	Brown, Sand, some Silt and Gravel, trace red Bric	k, moist (FILL)		
	9						0.0				
2	9						0.0	-			
	3						0.0	Brown, Silty Clay, some Gravel and Sand, traces of	of red Brick, Coal, Plastic, de	cayed	
2	8	S-2	2-4	67	16	3.7	0.1	Wood, moist (FILL)		black staini	ng 3-4'
3	8						0.0				
4	5						0.1				
-	15						0.0	broken Concrete and red Brick and decayed Wo	od (FILL)		
5	10	S-3	4-6	58	21	4.6	0.1				
3	11						0.0				
6	8						0.0				
•	4						0.1				
-	50/5	S-4	6-8	78	NA	4.6	0.1	Black staining (FILL)			
'											
8										Chemical-ty	vpe odor
Ű	3						0.0	Tan/Brown, SAND, some Clay and Silt, damp to m	noist		
٩	6	S-5	8-10	67	12	10.1	0.0				
Ĵ	6						0.0				
10	8						0.0	moist to wet			
	50-3	S-6	10-10.3	100	NA	8.3	0.1	broken Angular Gray DOLOMITE			
11							/	-			
								Gray, DOLOMITE, some fractures, some vugs (<5	per ft.)		
12											
										HQ Core	
13	NA	C-1	10.3-15.5	100	44	NA					
14											
15											
16								Terminated @ 15.5'			
ites.	1) Water	- Jevele	vere mode	at the tire	les and	nder corr	litions stat	ed. Eluctuations of proundwater levels may occur due to a	asonal factors and other condition	ns	
ues:	 vvater Stratif 	ievels v fication li	nes repres	at the tim ent appro	oximate b	oundaries	. Transiti	co. Fractuations of groundwater reveis may occur due to se	asonal lactors and other condition	niə.	
	3) PID re	eadings	are referen	ced to an	n isobutyle	ene stand	ard. A Mir	iRae 3000 equipped with a 10.6 eV lamp was used to obta	in the PID readings.		Tost Boring MW 04
	5) Heads	pace Pll	D readings	may be i	influenced	l by moist	ure				
53 L'	YELL A			306							420 LEXINGTON AVENUE, SUITE 3
85) 4	154-021	0	I UINK 14	500							(212) 986-864
X (5	85) 454	-0825						www.davenvironmental.com			FAX (212) 986-86

da	av									E	NVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONMEI	NTAL, IN	IC.						AN AFFILI	ATE OF DAY ENGINEERING, P.C.
Projec Projec	ct #: ct Addres	SS:	5582S-1 65 Sulliv	9 an Stree	et						Test Boring MW-02
			Rochest	er, New	York		•	Ground Elevation: 493.60'	Datum: NAVD 88		Page 1 of 2
DAY	Represer	ntative:	H. McLe	nnan			•	Date Started: 5/8/2019	Date Ended: 5/9/2019		
Samp	ling Meth	cior: nod:	Split Sp	on. Rot	arv Mod	el 57-B		Completion Method: Well Installed	Backfilled with Grout	Backfilled with	- Cuttings
	5				,		•	Water Level (Date): 9.63' (6/6/19)			
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description			Notes
	5						0.0	Topsoil (FILL)			
	12	S-1	0-2	75	26	5.8		Rusty Brown, Sandy Silt, some Ash, Rock, Coal fragmer	nts, dry (FILL)		
	14						0.0				
	5										
2	2						0.2	Brown/tan Mottled, Sandy Silt, some coarse Sand, trace	Red Brick, trace Coal,		
	3	S-2	2-4	75	8	3.6	0.1	moist (FILL)			
3	5						0.0				
	5						0.0				
4	2						0.0	Dark Brown, Silty Sand, trace Coal and red Brick, moist ((FILL)		
	9	S-3	4-6	25	21	3.2			()		
5	12						0.0				
	9							Tan, SAND, moist		-	
6	1						0.0	Modium Brown, Silty SAND, moist to wat			
	4	S-4	6-8	95	7	4.0		Medium Brown, Sity SAND, moist to wet			
7	3					-	0.0				
	3										
8	17						0.1				
	37	S-5	8-10	75	NA	04	••••	Medium Brown, Clayey SILT, moist			
9	50/2					••••	0.1				
							••••				
10	24						0.5				
	32	S-6	10-12	20	61	7.0		wedium brown/dray, diayey SIL I, trace dravel, tracture	EU NUCK		
11	20						0.1				
	50/2						5.1				
12	50/3	S-7	12-12.3	NA	NA	NA	NA				
										1	
13										HQ Core	
14	NA	C-1	12.3-17.6	100	30.2	NA					
15											
16											
Notes:	1) Water	r levels w	vere made	at the tim	ies and ur	nder cond	itions stat	ed. Fluctuations of groundwater levels may occur due to seasonal	I factors and other conditions.	1	
	2) Stratif	fication li	nes repres	ent appro	ximate bo	oundaries	. Transitio	ns may be gradual.	PID readings		
	3) PID re 4) NA = N	eauings a Not Avail	ate reteren able or Not	Applicat	nsobutyle ble	ne standa	aru. A Min	ראיד equipped with a 10.6 eV lamp was used to obtain the F	rio readings.		Test Boring MW-02
	5) Heads	pace PI) readings	may be i	nfluenced	by moist	ure				
1563 L ROCH	YELL AV	VENUE NEW ۱	YORK 14	606							420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585)	454-021	0									(212) 986-8645
FAX (585) 454	-0825						www.dayenvironmental.com			FAX (212) 986-8657

da	N									E	INVIRONMENTAL CONSULTANTS
DAY	ENVIRO	ONME	NTAL, IN	IC.						AN AFFILI	ATE OF DAY ENGINEERING, P.C.
				_							
Projec Projec	t #: t Addres	SS:	5582S-1 65 Sulliv	9 an Stree	et						Test Boring MW-02
			Rochest	er, New	York			Ground Elevation: 493.60'	Datum: NAVD 88		Page 2 of 2
DAY F	Represen	ntative:	H. McLe	nnan Way				Date Started: 5/8/2019 Borehole Depth: 17.5'	Date Ended: <u>5/9/2019</u> Borehole Diameter: 8"		-
Samp	ing Meth	nod:	Split Spo	bon, Rota	ary Mod	el 57-B		Completion Method: Well Installed	Backfilled with Grout	Backfilled with	n Cuttings
		1						Water Level (Date): <u>9.63' (6/6/19</u>	·	-	
th (ft)	vs per 0.5 ft.	iple Number	nple Depth (ft)	ecovery	alue or RQD%	dspace PID (ppm)	Reading (ppm)	Sample Desc	ription		Notes
Dep	Blov	Sam	Sam	% R	Ň-N	Неа	DIA				
17										HQ Core	
18								Terminated @ 17	.5'		
19											
10											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
21											
31											
32											
Notes:	1) Water	r levels w	ere made	at the time	es and ur	nder cond	itions state	ed. Fluctuations of groundwater levels may occur due to	o seasonal factors and other conditions.		
	3) PID re	eadings a	re referen	ced to an	isobutyle	ne standa	ard. A Mini	Rae 3000 equipped with a 10.6 eV lamp was used to c	btain the PID readings.		
	4) NA = N 5) Heads	Not Availa	able or Not) readings	Applicab may be ir	le ifluenced	by moist	ıre				Test Boring MW-02
1563 L ROCH	YELL A\ IESTER	VENUE	ORK 14	606							420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585) FAX (454-0210	0						www.davenvironmental.com			(212) 986-8645 EAX (212) 986-8657

da	N								E	ENVIRONMENTAL CONSULTANTS
DAY		ONMEI	NTAL, IN	IC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec	t #: t Addres	ss:	5582S-1	9 ran Stree	et					Test Boring MW-03
	.,		Rochest	er, New	York			Ground Elevation: 493.76' Datum: NAVD88		Page 1 of 2
DAY F	Represer	ntative:	A. Zobel	Martino)			Date Started: 5/13/2019 Date Ended: 5/14/2019		_
Drilling	g Contra	ctor:	Nature's	Way				Borehole Depth: <u>17.2'</u> Borehole Diameter: <u>8"</u>	D 100 1 1	-
Sampi	ing Metr	100:	Split Sp	oon, Rot	ary Mod	Iel 57-B		Water Level (Date): 11.63' (6/6/19)	Backfilled wit	n Cuttings
	5 ft.	ber	и (f t)		2D%	(mqq) Ol	(mqq)			
Depth (ft)	Blows per 0.4	Sample Numl	Sample Dept	% Recovery	N-Value or R	Headspace P	PID Reading	Sample Description		Notes
	2						0.1	Topsoil. Sandy Silt with trace Clay, moist (FILL)		
	7	S-1	0-2	75	18	0.3	0.0	การที่สามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสาม 		
1	11						0.0	fractured Brick and Cinders (EILL)		
	11									
2	16							Fractured Concrete and Brick, maint (EILL)		
	12	S-2	2-4	33	24	0.9	0.0			
3	12									
	5									
4	5						0.2		Petroleum-t	vpe odor
	7	5-3	4-6	63	16	24	0.1	Medium Brown, Slity Clay with trace Brick tragments, wet (FILL)		, , , , , , , , , , , , , , , , , , ,
5	0	0-0	4-0	00	10	2.7	0.1			
	9						0.0			
6	4									
	6							Gray/Medium Brown, Silty Sand with Gravel, Concrete, moist (FILL)		
7	8	S-4	6-8	21	27	1.7	0.0			
	19									
8	8								-	
	3						0.0	Medium Brown, Silty CLAY with trace Gravel, moist	-	
9	25	S-5	8-10	75	54	0.6	0.0	Gray, fractured ROCK and Clayey SILT, moist		
	29						0.1			
10	40						0.2			
	14						0.2	Light Brown/Gray, SAND and SILT, some Gravel and fractured Rock, very moist		
11	25	S-6	10-12	67	52	0.3	0.1			
	27						0.1			
40	50/2						0.0			
12								Gray, DOLOMITE, some horizontal and angular fractures		
40									HO C	
13									nu Core	
	NA	C-1	12-17.2	99	69.8	NA	7			
14										
15										
						'				
16										
Notes:	1) Water	r levels w	ere made	at the tim	es and ur	nder cond	itions stat	I ed. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	<u>ı </u>	
	2) Stratif	fication li	nes repres	ent appro	ximate bo	oundaries	. Transitio	ons may be gradual.		
	4) NA = N	vot Availa	able or No	t Applicat	ble	ane standi	aru. A IVIIN	ייז איז איז איז איז איז איז איז איז איז		Test Boring MW-03
	5) Heads	pace PIE) readings	may be i	nfluenced	l by moist	ure			
1563 L ROCH	YELL AV	VENUE	ORK 14	606						420 LEXINGTON AVENUE, SUITE 300 NEW YORK. NEW YORK 10170
(585)	454-021	0								(212) 986-8645
FAX (o85) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657

da	V									E	NVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONMEI	NTAL, IN	IC.						AN AFFILI	ATE OF DAY ENGINEERING, P.C.
Projec Projec	:t #: :t Addres	SS:	5582S-1 65 Sulliv	9 an Stree	et						Test Boring MW-03
			Rochest	er, New	York			Ground Elevation: 493.76'	Datum: NAVD 88		Page 2 of 2
DAY F	Represer	ntative:	A. Zobel	Martino				Date Started: 5/13/2019 Borehole Depth: 17.2'	Date Ended: 5/14/2019 Borehole Diameter: 8"		-
Samp	ling Meth	nod:	Split Spo	bon, Rot	ary Mod	el 57-B		Completion Method: Well Installed	Backfilled with Grout	Backfilled with	n Cuttings
								Water Level (Date): <u>11.63' (6/6/19)</u>			
Jepth (ft)	3lows per 0.5 ft.	sample Number	Sample Depth (ft)	6 Recovery	4-Value or RQD%	leadspace PID (ppm)	olD Reading (ppm)	Sample Descr	iption		Notes
			0,	81		-	Ť				
17										HQ Core	
18								Terminated @ 17.2	2		
19											
20											
21											
22											
23											
24											
25											
26											
27											
20											
28											
29											
30											
31											
32											
Notes:	1) Water	r levels w	ere made	at the tim	es and ur	nder cond	itions stat	ed. Fluctuations of groundwater levels may occur due to	seasonal factors and other conditions.		
	2) Stratif 3) PID re	ucation lii eadings a	ies repres ire referen	ent appro ced to an	ximate bo isobutyle	oundaries ene standa	. i ransitio ard. A Min	ms may be gradual. Rae 3000 equipped with a 10.6 eV lamp was used to ob	tain the PID readings.		
	4) NA = N 5) Heads	Not Availa	able or Not	Applicab	le Influenced	by moiet	ıre				Test Boring MW-03
1563 L	YELL A	VENUE		, <u></u>		,					420 LEXINGTON AVENUE, SUITE 300
(585) / FAX (1⊏STER, 454-0210 585) 454	, NEW \ 0 ⊩0825	UKK 14	סטכ				www.davenvironmental.com			NEW TOKK, NEW YORK 10170 (212) 986-8645 EAX (212) 986-8657

da	V								E	NVIRONMENTAL CONSULTANTS
DAY		ONMEI	NTAL. IN	IC.					AN AFFILI	ATE OF DAY ENGINEERING. P.C.
			,							
Projec	t #:		5582S-1	9	- 4		-			Test Boring MW-04
Projec	t Addres	SS:	Rochest	er New	York		-	Ground Elevation: 494 72' Datum: NAVD88		Page 1 of 2
DAY F	Represer	ntative:	J. Danzi	nger	. on		-	Date Started: 5/9/2019 Date Ended: 5/10/2019		1 490 1 012
Drilling	g Contra	ctor:	Nature's	Way			-	Borehole Depth: 18.2 Borehole Diameter: 8"		
Samp	ing Meth	nod:	Split Spo	oon, Rot	ary Mod	lel 57-B	-	Completion Method: ■ Well Installed □ Backfilled with Grout □	Backfilled with	n Cuttings
								Water Level (Date): <u>12.15' (6/6/19)</u>	1	
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
	4						0.2	Brown Silt (Tonsoil) little Sand trace Gravel and Brick (Ell I)		
	24	S-1	0-2	15	29	4.9				
1	5							Concrete		
	5									
2	4									
	2						0.2	Light Brown, Silty fine Sand, moist (FILL)		
3	2	S-2	2-4	80	8	7.9	0.6			
	6						0.4			
	6						0.0			
4	12									
	10	S-3	4-6	2	18	4.3	NA	piece of constate in and of space (FULL)		
5	8							piece of concrete in end of spoon (FILL)		
	0									
6	8									
	3						0.3	Brown, Silt, fine SAND, moist		
7	3	S-4	6-8	90	6	12.0	0.1			
-	3						0.0			
	3						0.0			
ð	7						0.0	little Gravel, moist		
	11	S-5	8-10	85	19	6.4	0.1	Brown SILT some fine Sand and Clay, moist		
9	8						0.0			
	10						0.2			
10	10						0.2		-	
	5	c -		~~			0.0	Gray/Brown, fine Sandy SILT, trace Clay, very moist		
11	18	5-6	10-12	80	43	3.9	0.1			
	25						0.3	Fractured Shale, moist		
12	27						0.5		1	
	13						0.0	Gray/Brown, fine to medium SAND, little Silt and Gravel, wet		
12	26	S-7	12-14	70	66	2.7	0.1			
13	40						0.2			
	16						0.2	little fractured dark gray SHALE, wet		
14	50/3	S-8	14-14.2	40	NA	1.4	NA		╉	
	NA	C-1	14.2-18.2	60.4	NA	1.9		Grav DOLOMITE como fracturas		
15							_		Oil sheen wi	th slight Petroleum-type odor
								1	on rock core	
16									SHI JOCK COTE	
Notes:	1) Water	levels 4	ere made	at the tim	es and u	nder cond	litions stat	ed. Eluctuations of aroundwater levels may occur due to seasonal factors and other conditions		
	2) Stratif	ication li	nes repres	ent appro	ximate bo	oundaries	. Transitio	ons may be gradual.		
	3) PID re	eadings a	are referen	ced to an	isobutyle	ene standa	ard. A Min	Rae 3000 equipped with a 10.6 eV lamp was used to obtain the PID readings.		
	4) NA = N 5) Heada	Not Avail	able or Not	Applicat	ole	1 by moiet	ure			lest Boring MW-04
1563 L	YELL A	VENUE	, caunys	ay be li	muchiceu	. 59 110150				420 LEXINGTON AVENUE, SUITE 300
ROCH	IESTER,	, NEW	YORK 14	606						NEW YORK, NEW YORK 10170
(585) FAX (+ə4-021(585) 454	-0825						www.davenvironmental.com		(212) 986-8645 FAX (212) 986-8657

da	Ŋ								E	NVIRONMENTAL CONSULTANTS
DAY	ENVIRO	ONMEN	NTAL, IN	IC.					AN AFFILI	ATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	5582S-1 65 Sulliv	9 an Stree	et					Test Boring MW-04
DAY F	Represer	ntative:	Rochest J. Danzii	er, New nger	York			Ground Elevation: 494.72* Datum: NAVD88 Date Started: 5/9/2019 Date Ended: 5/10/2019		Page 2 of 2
Drilling	g Contrac	ctor:	Nature's	Way	any Mod	ol 57 P		Borehole Depth: 18.2 Borehole Diameter: 8"	Rockfillod with	Cuttings
oump	ing mea	iou.	opiit opt	5011, 1101	ary woo			Water Level (Date): 12.15' (6/6/19)	Duokinica witi	ouungo
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
17								Occasional Vugs throughout (~ 5 per ft)	HQ Core	
18								Terminated @ 18.2'	-	
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
20										
23										
30										
24										
31										
32										
Notes:	1) Water	levels w	ere made	at the tim	es and ur	nder cond	itions state	ed. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	<u>I</u>	
	2) Stratif 3) PID re	eadings a	ies represe re reference	ent appro	ximate bo isobutyle	ne standa	. I ransitio ard. A Mini	ns may be gradual. Rae 3000 equipped with a 10.6 eV lamp was used to obtain the PID readings.		
	4) NA = N 5) Heads	vot Availa pace PID	ible or Not readings	Applicab may be ir	le Influenced	by moist	ıre			Test Boring MW-04
1563 L ROCH	YELL A	VENUE , NEW Y	ORK 146	606						420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(305) (FAX (+34-0210 585) 454	-0825						www.davenvironmental.com		(212) 980-8045 FAX (212) 986-8657

da	N								E	ENVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONMEI	NTAL, IN	IC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: Addres	ss:	5582S-1 65 Sulliv	9 an Stre	et		•			Test Boring MW-05
			Rochest	er, New	York			Ground Elevation: 494.22' Datum: NAVD88		Page 1 of 2
DAY F	Represer	ntative:	J. Danzii	nger				Date Started: <u>5/14/2019</u> Date Ended: <u>5/14/2019</u>		_
Drilling	g Contra ling Moth	ctor:	Nature's	Way	any Mod	ol 57 P		Borehole Depth: <u>18.1'</u> Borehole Diameter: <u>8</u> "	Rockfilled wit	h Cuttings
Samp	ing weu	iou.	Spiit Spt		ary wou	еі <i>51-</i> Б		Water Level (Date): 12.03' (6/6/19)	Dackined wit	in Cuttings
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
	3						0.2	Brown, Topsoil, Silty Sand, little Gravel (FILL)		
	9	S-1	0-2	75	28	0.6	0.5			
1	19						0.0			
	16						0.0			
2	q						0.0	DIOWIT, Silt, little Sand and Dick, Glass, moist (FILL)		
	32	6.2	2.4	45	74	0.4	0.0			
3	32	5-2	2-4	40	74	0.4	0.1			
	42						0.0	Red/Brown, Gray, Brick, Glass and Concrete. Little Sand and Silt, dry (FILL)		
4	20						0.0			
	17						0.0	Black, Sand, some Silt and Cinders, little Brick, Gravel, trace Slag, Ash, moist (FILL)		
5	20	S-3	4-6	50	38	0.3	0.0			
Ŭ	18						0.0			
	9						0.1			
6	10						0.0			
	40	S-4	6-8	40	53	0.3	0.0			
7	12	• •	00			0.0	0.0	Gray, Concrete, moist (FILL)		
	10									
8	10									
	5						0.0	Brown, SILT, little fine Sand, Shale fragments, moist		
9	19	S-5	8-10	40	41	0.9	0.1			
	22						0.2			
10	19									
	5						0.0	very moist		
	15	S-6	10-12	75	31	0.3	0.0			
	16						0.0			
	23						0.0			
12	16				1		0.0	Gravish Brown, Silty Clay, trace Gravel, very moist	1	
	13	S-7	12-13.1	65	NA	1.3	0.0	· · · · · · · · · · · · · · · · · · ·		
13	50/1						0.0	Fractured CHALE and/or DOLONITE		
14	NΔ	C-1	14.3-18 3	97	58.3	NΔ			-	
					00.0		/	Gray, DOLONITE, some weathered zones, horizontal and vertical and angled		
15								fractures, trace vugs	HQ Core	
16							1			
NI-4	1) 147 -	'		ot th						
Notes:	 vVater Stratif 	r ievels w fication li	vere made : nes represe	at the tim ent appro	es and ur	oundaries	. Transitio	eu. Fructuations of groundwater levels may occur due to seasonal factors and other conditions.		
	3) PID re	eadings a	are referend	ced to an	isobutyle	ne standa	ard. A Min	iRae 3000 equipped with a 10.6 eV lamp was used to obtain the PID readings.		
	4) NA = N	Not Avail	able or Not	Applicat	ole	(h				Test Boring MW-05
1563 L	YELL A	VENUE	readings	may be i	muenced	by moist	ure			420 LEXINGTON AVENUE, SUITE 300
ROCH	IESTER,	, NEW	YORK 140	606						NEW YORK, NEW YORK 10170
(585) · FAX (454-0210 585) 454	u I-0825						www.dayenvironmental.com		(212) 986-8645 FAX (212) 986-8657

da	N								E	NVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONME	NTAL, IN	IC.					AN AFFILI	ATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: Addres	ss:	5582S-1 65 Sulliv	9 an Stree	et					Test Boring MW-05
			Rochest	er, New	York			Ground Elevation: 494.22' Datum: NAVD88		Page 2 of 2
DAY F Drilling	Represer a Contra	ntative: ctor:	J. Danzi Nature's	nger Way			•	Date Started: 5/14/2019 Date Ended: 5/14/2019 Borehole Depth: 18.1' Borehole Diameter: 8"		-
Samp	ing Meth	nod:	Split Spo	oon, Rot	ary Mod	lel 57-B		Completion Method: Well Installed Backfilled with Grout	Backfilled with	n Cuttings
			1			1	1	Water Level (Date): 12.03' (6/6/19)	1	
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
17									HQ Core	
18									-	
								Terminated @ 18.1'		
19										
20										
21										
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										
Notes:	1) Water	r levels w	ere made	at the tim	es and ur	nder cond	itions stat	ed. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	1	
	2) Stratif 3) PID re	fication lii eadings a	nes represe ire referene	ent appro ced to an	ximate bo isobutyle	oundaries ene stand	. Transitio ard. A Min	ons may be gradual. iRae 3000 equipped with a 10.6 eV lamp was used to obtain the PID readings.		
	4) NA = N	Not Avail	able or Not	Applicab	le			· •		Test Boring MW-05
1563 L	o) Heads	pace PIE	v readings	may be ir	muenced	ı by moist	ure			420 LEXINGTON AVENUE, SUITE 300
ROCH (585)	IESTER, 454-0210 585) 454	, NEW \ 0 1-0825	ORK 14	606				www.davenvironmental.com		NEW YORK, NEW YORK 10170 (212) 986-8645 EAX (212) 986-8657

da	av								E	ENVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONMEI	NTAL, IN	NC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projor	×+ #•		55929 1	10						
Projec	ot #. ct Addres	ss:	65 Sulliv	/an Stre	et		-			Test Boring SV-01
			Rochest	ter, New	York		-	Ground Elevation: NA Datum: NA		Page 1 of 2
DAY F	Represer	ntative:	J. Danzi	inger			-	Date Started: 5/15/2019 Date Ended: 5/15/2019 Parabala Dantha 20 Parabala Dantha 20 Parabala Diameter 2"		-
Samp	ling Meth	nod:	Split Sp	oon. Rot	tarv Mod	del 57-B	-	Completion Method: SV Point Installed Backfilled with Grout	Backfille	_ d with Cuttinas
	U		<u> </u>				-	Water Level (Date): 7.5' (5/15/19)		C C
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
	13						0.0	Asphalt		
	7	S-1	0-2	58	11	1.1	0.1	Medium Brown, Silty Sand with Gravel (FILL)		
1	4						0.0			
	3						0.0	Medium Brown, Silty Clay, moist (FILL)		
2	5						0.1			
	6	S-2	2-4	48	15	0.2	0.0			
3	9						0.0	Medium Brown, Sand and Gravel, moist (EILL)		
	11						0.0			
4	12						0.1	Tan Sandy Silt with Concrete maint (FILL)		
	7	S-3	4-6	54	13	4.0	0.0			
5	6				-		0.0			
	8						0.0			
6	7						0.0			
	6	S 1	6.9	75	12	24	0.0	Dark Brown, Sandy SILT, very moist		
7	7	0-4	0-0	15	15	2.4	0.1			
	26						0.1			
8	20						0.1			
								Terminated at 8.0'		
9										
10										
11										
12										
13										
14										
15										
16										
Notes:	1) Water	r levels w	ere made	at the tim	nes and u	nder cond	litions stat	ted. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.		
	2) Stratif	fication li	nes repres	ent appro	oximate b	oundaries	. Transiti	ons may be gradual.		
	3) PID re 4) NA = N	eadings a Not Avail	are referen	iced to an	i isobutyle ble	ene stand:	ard. A Mir	iRae 3000 equipped with a 10.6 eV lamp was used to obtain the PID readings.		Test Boring SV-01
	5) Heads	pace PIE) readings	may be i	nfluenced	d by moist	ure			
1563 L		VENUE		606						420 LEXINGTON AVENUE, SUITE 300
(585)	454-021	, INE VV 1 0	UNA 14	000						(212) 986-8645
FAX (585) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657

DAY ENVIRONMENTAL, INC.

ENVIRONMENTAL CONSULTANTS

AN AFFILIATE OF DAY ENGINEERING, P.C.

		MONITORING W	ELL CONSTRUCTIO	I DIAGRAM	
Project #: 5582 Project Address: 65 S	S-19 ullivan Street	-			MONITORING WELL MW-01
Roch DAY Representative: Drilling Contractor:	iester, New York H. McLennan Nature's Way	Ground Elevation: Date Started: Water Level (Date):	493.06' 5/10/2019 SWL = 9.69' (6/6/	Datum: Date Ended: 2019)	NAVD88 5/10/2019
Refer to Test Boring Log MW-01 for Soil Description		Flush Mounted Depth to top of P <u>1.0</u> Depth to Top of R <u>4.5</u> Depth to Bottom Backfill Type <u>Sand</u> <u>8</u> Diameter of Bore <u>2</u> Diameter of Casi Type of Pipe <u>Sch</u> Screen Slot Size <u>10 S</u> <u>5.5</u> Depth to Top of S <u>10.3</u> Depth to top of B <u>3.875</u> Diameter of Rock <u>15.5</u> Depth to Bottom	Roadbox 'VC Casing (ft) 3entonite Seal (ft) of Bentonite Seal/T whole to Top of Bedr ing (in) <u>edule 40 PVC</u> <u>Streen (ft)</u> Bedrock (ft) k Core (In) of Sand and Botton	op of Sand (ft) ock (in)	
Notes: 1) Water levels wer 2) NA = Not Availa	e made at the times and une ble or Not Applicable	nder conditions stated. Fluctuation	ons of groundwater level	s may occur due to seasonal fa	ictors and other conditions.
					MONITORING WELL MW-01

1563 LYELL AVENUE ROCHESTER, NEW YORK 14606 (585) 454-0210 FAX (585) 454-0825 420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

DAY ENVIRONMENTAL, INC.

ENVIRONMENTAL CONSULTANTS

AN AFFILIATE OF DAY ENGINEERING, P.C.

		MONITORING W	ELL CONSTRUCTION	IDIAGRAM	
Project #: <u>5582</u> Project Address: 65 S	2S-19 ullivan Street				MONITORING WELL MW-02
Roct DAY Representative: Drilling Contractor:	nester, New York H. McLennan Nature's Way	Ground Elevation: Date Started: Water Level (Date):	493.60' 5/8/2019 SWL +9.63' (6/6/2	Datum: Date Ended: 019)	NAVD88 5/9/2019
Refer to Test Boring Log MW-02 for Soil Description		Flush Mounted Depth to top of P 2.0 Depth to Top of B 5.0 Depth to Bottom Backfill Type <u>Sand</u> 8 Diameter of Bore 2 Diameter of Casi Type of Pipe <u>Sch</u> Screen Slot Size <u>10 S</u> 6.0 Depth to Top of S <u>12.3 Depth to Top of S</u> 3.875 Diameter of Rock <u>16.0 Depth to Bottom</u> <u>17.5 Depth to Bottom</u>	Roadbox VC Casing (ft) 3entonite Seal (ft) of Bentonite Seal/To thole to Top of Bedro ng (in) <u>edule 40 PVC</u> <u>Streen (ft)</u> Screen (ft) c Core (In) of Screen (ft)	op of Sand (ft) ock (in)	
Notes: 1) Water levels wer 2) NA = Not Availa	re made at the times and ur ble or Not Applicable	nder conditions stated. Fluctuation	ons of groundwater levels	may occur due to seasonal fa	actors and other conditions.
					MONITORING WELL MW-02

1563 LYELL AVENUE ROCHESTER, NEW YORK 14606 (585) 454-0210 FAX (585) 454-0825 420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

DAY ENVIRONMENTAL, INC.

ENVIRONMENTAL CONSULTANTS

AN AFFILIATE OF DAY ENGINEERING, P.C.

		MONITORING W	ELL CONSTRUCTION	N DIAGRAM	
Project #: <u>5582</u> Project Address: 65 S	2S-19 ullivan Street				MONITORING WELL MW-03
Roct DAY Representative: Drilling Contractor:	nester, New York J. Danzinger Nature's Way	Ground Elevation: Date Started: Water Level (Date):	493.76' 5/13/2019 SWL = 11.63' (6/6	Datum: Date Ended: 5/2019)	NAVD88 5/14/2019
Refer to Test Boring Log MW-03 for Soil Description		Flush Mounted Depth to top of F 3.2 Depth to Top of 5.2 Depth to Bottom Backfill Type <u>Sand</u> 8 Diameter of Bore 2 Diameter of Casi Type of Pipe <u>Sch</u> Screen Slot Size <u>10</u> 7.2 Depth to Top of S <u>12.0</u> Depth to top of Bo <u>3.875</u> Diameter of Rock <u>17.2</u> Depth to Bottom	Provide the text of te	op of Sand (ft) ock (in)	
Notes: 1) Water levels we 2) NA = Not Availa	re made at the times and u ble or Not Applicable	nder conditions stated. Fluctuati	ons of groundwater levels	s may occur due to seasonal fa	actors and other conditions.
					MONITORING WELL MW-03

1563 LYELL AVENUE ROCHESTER, NEW YORK 14606 (585) 454-0210 FAX (585) 454-0825 420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

DAY ENVIRONMENTAL, INC.

ENVIRONMENTAL CONSULTANTS

AN AFFILIATE OF DAY ENGINEERING, P.C.

		MONITORING WI	ELL CONSTRUCTION	IDIAGRAM	
Project #: <u>5582</u> Project Address: 65 S	2S-19 Jullivan Street				MONITORING WELL MW-04
Rocl DAY Representative: Drilling Contractor:	hester, New York J. Danzinger Nature's Way	Ground Elevation: Date Started: Water Level (Date):	494.72' 5/9/2019 SWL = 12.15' (6/6	Datum: Date Ended: /2019)	NAVD88 5/10/2019
Refer to Test Boring Log MW-04 for Soil Description		Flush Mounted Depth to top of P 2.7 Depth to Top of B 5.7 Depth to Bottom Backfill Type <u>Sand</u> 8 Diameter of Bore 2 Diameter of Casi Type of Pipe <u>Schr</u> Screen Slot Size <u>10 S 7.7 Depth to Top of S 14.2 Depth to top of B 3.875 Diameter of Rock 17.7 Depth to Bottom of 18.2 Depth to Bottom 18.2 Depth to Bottom 18.2 Depth to 18.2 Depth 18.2 Depth to 18.2 Depth 18.2 D</u>	Roadbox VC Casing (ft) 3entonite Seal (ft) of Bentonite Seal/T hole to Top of Bedr ng (in) edule 40 PVC 3lot Screen (ft) core (In) of Screen (ft) of Sand (ft)	pp of Sand (ft) pck (in)	
Notes: 1) Water levels we 2) NA = Not Availa	re made at the times and u ble or Not Applicable	nder conditions stated. Fluctuatio	ons of groundwater levels	may occur due to seasonal fa	actors and other conditions.
					MONITORING WELL MW-04

1563 LYELL AVENUE ROCHESTER, NEW YORK 14606 (585) 454-0210 FAX (585) 454-0825 420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

DAY ENVIRONMENTAL, INC.

ENVIRONMENTAL CONSULTANTS

AN AFFILIATE OF DAY ENGINEERING, P.C.

		MONITORING W	ELL CONSTRUCTIO	N DIAGRAM	
Project #: <u>5582</u> Project Address: 65 S	2S-19 ullivan Street	-			MONITORING WELL MW-05
Roct DAY Representative: Drilling Contractor:	nester, New York J. Danzinger Nature's Way	Ground Elevation: Date Started: Water Level (Date):	<u>494.22'</u> <u>5/14/2019</u> SWL = 12.03' (6/6	Datum: Date Ended: 5/2019)	NAVD88 5/14/2019
Refer to Test Boring Log MW-05 for Soil Description		← Flush Mounted Depth to top of P Depth to Top of P Bepth to Bottom Backfill TypeSand Diameter of Bore Diameter of Casi Type of PipeSch Screen Slot Size0S 8.1Depth to Top of S Bepth to Top of Bo Bepth to top of Bo Bepth to top of Bo Bepth to Bottom Bepth to Bottom	Roadbox VC Casing (ft) Bentonite Seal (ft) a of Bentonite Seal/T shole to Top of Bedr ing (in) edule 40 PVC Slot Screen (ft) edrock (ft) k Core (In) of Sand and Botton	op of Sand (ft)	
Notes A) Weter laught up		- J			
2) NA = Not Availa	re made at the times and u ble or Not Applicable	nder conditions stated. Fluctuation	ons ot groundwater level	s may occur due to seasonal fa	ictors and other conditions.
					MONITORING WELL MW-05

1563 LYELL AVENUE ROCHESTER, NEW YORK 14606 (585) 454-0210 FAX (585) 454-0825 420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

SITE LOCATION: 65 Sullivan Street, Rochester, New York

DATE/ TIME	5/17/2019 9:08	5/17/2019 9:12	5/17/2019 9:15	5/17/2019 9:20	5/17/2019 9:23	5/17/2019 9:25	5/17/2019 9:28	5/17/2019 9:30
EVACUATION METHOD	Gas Pump							
PID/FID (PPM)	5.3	NC						
DEPTH OF WELL (FT)	14.94	NC	NC	NC	NC	NC	NC	14.94
STATIC WATER LEVEL (SWL) FT	9.00	NC	NC	NC	NC	NC	NC	9.16
VOLUME EVACUATED (GAL)	1.0	1.0	1.0	1.0	0.5	0.5	0.5	0.5
TOTAL VOLUME EVACUATED (GAL)	1.0	2.0	3.0	4.0	4.5	5.0	5.5	6.0
TEMPERATURE (°C)	14.7	14.7	15.7	16.8	16.8	17.0	16.7	17.0
pН	8.22	7.26	8.14	8.19	8.20	8.17	8.16	8.16
ORP (mV)	124.2	128.7	130.1	131.7	131.1	132.0	134.2	133.5
CONDUCTIVITY (ms/cm)	1.080	0.889	0.864	0.859	0.857	0.855	0.856	0.856
TURBIDITY (NTU)	550.68	1628.18	3579.45	3883.69	3005.90	2200.01	1560.38	996.14
VISUAL OBSERVATION	Brown/ Turbid	Brown/ Turbid	Brown/ Turbid	Brown/ Turbid	Brown/ Turbid	Brown/ Turbid	Cloudy	Cloudy

LEGEND:

NC = Not Collected

SITE LOCATION: 65 Sullivan Street, Rochester, New York

IOB#·	55828-19
$JOD\pi$.	JJ02D-17

DATE/ TIME	5/17/2019 10:53	5/17/2019 10:55	5/17/2019 10:56	5/17/2019 10:59	5/17/2019 11:00	5/17/2019 11:02	5/17/2019 11:05	5/17/2019 11:07	5/17/2019 11:08	5/17/2019 11:09
EVACUATION METHOD	Gas Pump									
PID/FID (PPM)	9.4	NC								
DEPTH OF WELL (FT)	15.62	NC	15.63							
STATIC WATER LEVEL (SWL) FT	8.90	NC	9.40							
VOLUME EVACUATED (GAL)	1.0	1.0	1.0	1.0	1.0	0.5	0.5	0.5	0.5	0.5
TOTAL VOLUME EVACUATED (GAL)	1.0	2.0	3.0	4.0	5.0	5.5	6.0	6.5	7.0	7.5
TEMPERATURE (°C)	13.8	13.4	14.6	13.1	12.0	13.0	12.5	12.0	12.7	12.4
pН	7.39	7.55	7.60	7.52	7.49	7.47	7.44	7.37	7.28	7.31
ORP (mV)	137.7	144.5	139.6	134.5	127.0	115.0	80.3	30.5	3.9	-3.5
CONDUCTIVITY (ms/cm)	1.145	1.120	1.076	1.089	1.115	1.115	1.079	1.054	1.066	1.052
TURBIDITY (NTU)	4788.42	2580.70	2791.26	3343.20	4139.33	4646.31	3420.30	1452.53	1543.81	1056.82
VISUAL OBSERVATION	Brown/ Turbid	Cloudy	Cloudy	Cloudy						

LEGEND: NC = Not Collected

Day Environmental, Inc.

SITE LOCATION: 65 Sullivan Street, Rochester, New York

JOB#: 5582S-19

DATE/ TIME	5/17/2019 9:23	5/17/2019 9:40	5/17/2019 9:43	5/17/2019 9:45	5/17/2019 9:46	5/17/2019 9:47	
EVACUATION METHOD	Gas Pump						
PID/FID (PPM)	11.0	NC	NC	NC	NC	NC	
DEPTH OF WELL (FT)	16.80	NC	NC	NC	NC	16.76	
STATIC WATER LEVEL (SWL) FT	11.40	NC	NC	NC	NC	11.49	
VOLUME EVACUATED (GAL)	2.5	0.5	0.5	1.0	0.5	0.5	
TOTAL VOLUME EVACUATED (GAL)	2.5	3.0	3.5	4.5	5.0	5.5	
TEMPERATURE (°C)	16.3	17.0	14.8	16.1	17.3	16.0	
pН	7.78	7.65	7.43	7.49	7.63	7.41	
ORP (mV)	143.8	155.8	157.7	157.3	155.2	159.9	
CONDUCTIVITY (ms/cm)	1.093	0.622	1.337	1.355	1.359	1.365	
TURBIDITY (NTU)	299.85	4333.02	3066.12	1400.79	1128.31	445.62	
VISUAL OBSERVATION	Brown/ Turbid	Brown/ Turbid	Brown/ Turbid	Cloudy	Cloudy	Cloudy	

LEGEND:

NC = Not Collected

SITE LOCATION: 65 Sullivan Street, Rochester, New York

DATE/ TIME	5/17/2019 11:30	5/17/2019 11:44	5/17/2019 11:50	5/17/2019 11:53*	5/17/2019 12:12	5/17/2019 12:14	5/17/2019 12:16	5/17/2019 12:18
EVACUATION METHOD	Gas Pump	Gas Pump						
PID/FID (PPM)	8.0	NC	NC	NC	NC	NC	NC	NC
DEPTH OF WELL (FT)	17.28	NC	NC	NC	NC	NC	NC	17.25
STATIC WATER LEVEL (SWL) FT	11.78	NC	NC	NC	NC	NC	NC	12.69
VOLUME EVACUATED (GAL)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.75
TOTAL VOLUME EVACUATED (GAL)	1.0	2.0	3.0	4.0	5.0	6.0	7.0	7.75
TEMPERATURE (°C)	13.6	14.9	15.4	13.5	16.9	12.8	13.1	13.1
pH	7.61	7.35	7.40	7.33	7.38	7.40	7.46	7.20
ORP (mV)	114.2	141.0	126.8	81.8	101.7	77.1	66.3	-1.8
CONDUCTIVITY (ms/cm)	1.656	1.457	1.297	1.205	1.032	1.200	1.194	1.155
TURBIDITY (NTU)	1275.06	1119.55	2233.65	4483.56	4337.97	4168.18	3864.93	1541.74
VISUAL OBSERVATION	Brown/ Turbid/Sheen	Cloudy/Sheen						

LEGEND:

NC = Not Collected * = Went dry, turned off gas pump afterwards to let the well recover

SITE LOCATION: 65 Sullivan Street, Rochester, New York

JOB#: 5582S-19

DATE/ TIME	5/17/2019 12.48	5/17/2019 12:50	5/17/2019 12:52	5/17/2019 12:53	5/17/2019 12:55	5/17/2019 12:57	5/17/2019 12:58	
EVACUATION METHOD	Gas Pump							
PID/FID (PPM)	7.2	NC	NC	NC	NC	NC	NC	
DEPTH OF WELL (FT)	17.68	NC	NC	NC	NC	NC	17.69	
STATIC WATER LEVEL (SWL) FT	11.86	NC	NC	NC	NC	NC	12.01	
VOLUME EVACUATED (GAL)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
TOTAL VOLUME EVACUATED (GAL)	1.0	2.0	3.0	4.0	5.0	6.0	7.0	
TEMPERATURE (°C)	13.2	12.2	13.8	12.0	12.7	11.4	12.2	
рН	7.58	7.55	7.57	7.45	7.36	7.33	7.28	
ORP (mV)	76.7	51.8	61.9	62.1	70.7	73.8	80.2	
CONDUCTIVITY (ms/cm)	1.163	1.157	1.291	1.433	1.470	1.490	1.474	
TURBIDITY (NTU)	866.73	606.79	1096.82	3797.45	3715.06	1480.78	1819.13	
VISUAL OBSERVATION	Brown/ Turbid	Brown/ Turbid	Brown/ Turbid	Brown/ Turbid	Brown/ Turbid	Cloudy	Cloudy	

LEGEND:

NC = Not Collected

WELL MW-01

SECTION 1 - SITE INFORMATION									
SITE LOCATION: 65 Su	Illivan Street	JOB #: <u>5582S-19</u>							
Roche	ester, New York	DATE : 6/6/2019							
SAMPLE COLLECTOR(S): <u>H. Miller, A. Zobel Martino</u>								
WEATHER CONDITION	S: <u>65°F, Partly Cloudy</u>	PID IN WELL (PPM) : <u>118.</u>	9 LNAPL <u>ND</u> DNAPL <u>ND</u>						
SECTION 2 - PURGE INFORMATION									
DEPTH OF WELL [FT]:	14.91	(MEASURED FROM TOP OF CAS	SING - T.O.C.)						
STATIC WATER LEVEI	L (SWL) [FT]: <u>9.69</u>	(MEASURED FROM T.O.C.)							
T.O.C. TO GROUND SUP	RFACE [FT]: 0.44								
THICKNESS OF WATER	R COLUMN [FT]: <u>5.22</u>	(DEPTH OF WELL - SWL)							
CALCULATED VOL. OF	F H2O PER WELL CASING [GA	L]: <u>0.85</u> CASING	G DIA.: 2 inch						
$\begin{array}{c} \textbf{CALCULATIONS:} \\ \underline{\textbf{CASING DIA. (FT)}} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ELL CONSTANT(GAL/FT) 0.023 0.041 0.063 0.1632 0.380 0.6528 0.826 1.4688 2.611	ALCULATIONS DL. OF H2O IN CASING = DEPTH OF WAT	'ER COLUMN X WELL CONSTANT						
CALCULATED PURGE	VOLUME [GAL]: <u>2.55</u> (3 TI	MES CASING VOLUME)							
ACTUAL VOLUME PUR	GED [GAL]: <u>3.0</u>								
PURGE METHOD:Ga	as Pump	PURGE START: <u>10:25</u> EN	D: <u>10:35</u>						
S	SECTION 3 - SAMPLE IDENTI	FICATION AND TEST PARAME	ETERS						
SAMPLE ID #	DATE / TIME	SAMPLING METHOD	ANALYTICAL SCAN(S)						
MW-01	6-6-2019 / 11:45	Bailer TCL and STARS/CP-51 8260 VOCs							
	SECTION 4 - W	ATER OUALITY DATA							

	SECTION 4 - WATER QUALITY DATA									
SWL (FT)	TEMP (°C)	рН	CONDUCTIVITY (mS/cm)	TURBIDITY (NTU)	DO (mg/L)	ORP (mV)	VISUAL			
9.82	14.71	7.53	0.702	177	2.62	160	Clear, Yellow hue			

N/M = Not Measured

WELL MW-02

	SECTION 1 - SI	TE INFORMATION						
SITE LOCATION: 65 Su	llivan Street	JOB #: <u>5582S-19</u>						
Roche	ester, New York	DATE : 6/6/2019						
SAMPLE COLLECTOR(S): <u>H. Miller, A. Zobel Martino</u>							
WEATHER CONDITION	S: 65°F, Partly Cloudy	PID IN WELL (PPM): <u>333.9</u>) LNAPL <u>ND</u> DNAPL <u>ND</u>					
	SECTION 2 - PU	RGE INFORMATION						
DEPTH OF WELL [FT]:	15.63 (1	MEASURED FROM TOP OF CAS	ING - T.O.C.)					
STATIC WATER LEVEL	a (SWL) [FT]: <u>9.63</u> (a	MEASURED FROM T.O.C.)						
T.O.C. TO GROUND SUF	RFACE [FT]: 0.54							
THICKNESS OF WATER	R COLUMN [FT]: <u>6.00</u> (DEPTH OF WELL - SWL)						
CALCULATED VOL. OF	H2O PER WELL CASING [GAI	CASING	GDIA.: 2 inch					
$\begin{array}{c} \textbf{CALCULATIONS:} \\ \hline \textbf{CASING DIA. (FT)} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	LL CONSTANT(GAL/FT) 0.023 0.041 0.063 0.1632 0.380 0.6528 0.826 1.4688 2.611	LCULATIONS L. OF H ₂ O IN CASING = DEPTH OF WAT	ER COLUMN X WELL CONSTANT					
CALCULATED PURGE	VOLUME [GAL]: <u>2.94</u> (3 TIN	IES CASING VOLUME)						
ACTUAL VOLUME PUR	GED [GAL]: <u>3.5</u>							
PURGE METHOD: Ga	PURGE METHOD: Gas Pump PURGE START: 10:45 END: 10:55							
S	SECTION 3 - SAMPLE IDENTIF	ICATION AND TEST PARAME	TERS					
SAMPLE ID #	DATE / TIME	SAMPLING METHOD	ANALYTICAL SCAN(S)					
MW-02	6-6-2019 / 12:03	Bailer	TCL and STARS/CP-51 8260 VOCs					

SECTION 4 - WATER QUALITY DATA									
SWL (FT) TEMP (°C) pH CONDUCTIVITY (mS/cm) TURBIDITY (NTU) DO ORP (g/L) ORP (mV)									
9.60	12.14	7.34	0.784	> cal. range	0.501	74	Brown, Turbid		

N/M = Not Measured

WELL MW-03

	SECTION 1 - S	TE INFORMATION							
SITE LOCATION: 65 Su	llivan Street	JOB #: <u>5582S-19</u>							
Roch	ester, New York	DATE : 6/6/2019							
SAMPLE COLLECTOR(S): <u>H. Miller, A. Zobel Martino</u>								
WEATHER CONDITION	WEATHER CONDITIONS: 65°F, Partly Cloudy PID IN WELL (PPM): 367.0 LNAPL ND DNAPL ND								
	SECTION 2 - PU	RGE INFORMATION							
DEPTH OF WELL [FT]:	16.75 (1	MEASURED FROM TOP OF CAS	SING - T.O.C.)						
STATIC WATER LEVEI	L (SWL) [FT]: <u>11.63</u> (1	MEASURED FROM T.O.C.)							
T.O.C. TO GROUND SUF	RFACE [FT]: 0.25								
THICKNESS OF WATER	R COLUMN [FT]: <u>5.12</u> (DEPTH OF WELL - SWL)							
CALCULATED VOL. OF	H2O PER WELL CASING [GA]	CASING	GDIA.: 2 inch						
CALCULATIONS: CASING DIA. (FT) WE ¾" (0.0625) 1" (0.0833) 1¼" (0.1041) 2" (0.1667) 3" (0.250) 4" (0.3333) 4½" (0.375) 6" (0.5000) 8" (0.666) 8" (0.666)	CLL CONSTANT(GAL/FT) C.4 0.023 0.041 0.063 0.1632 0.380 0.6528 0.826 1.4688 2.611 C.4	ILCULATIONS L. OF H ₂ O IN CASING = DEPTH OF WAT	ER COLUMN X WELL CONSTANT						
CALCULATED PURGE	VOLUME [GAL]: <u>2.52</u> (3 TIN	IES CASING VOLUME)							
ACTUAL VOLUME PUR	GED [GAL]: <u>3.5</u>								
PURGE METHOD:Ga	s Pump P	URGE START: <u>11:27</u> EN	D: <u>11:32</u>						
	SECTION 3 - SAMPLE IDENTIF	ICATION AND TEST PARAME	TERS						
SAMPLE ID #	DATE / TIME	SAMPLING METHOD	ANALYTICAL SCAN(S)						
MW-03	6-6-2019 / 13:05	Bailer	TCL and STARS/CP-51 8260 VOCs						

SECTION 4 - WATER QUALITY DATA									
SWL (FT) TEMP (°C) pH CONDUCTIVITY (mS/cm) TURBIDITY (NTU) DO (mg/L) ORP (mV) VISU									
11.65	13.51	7.67	0.972	551	2.43	89	Clear		

N/M = Not Measured

WELL MW-04

	SECTION 1 - S	ITE INFORMATION	
SITE LOCATION: 65 Su	llivan Street	JOB #: <u>5582S-19</u>	
Roche	ester, New York	DATE : 6/6/2019	
SAMPLE COLLECTOR(S): <u>H. Miller, A. Zobel Martino</u>		
WEATHER CONDITION	S:65°F, Partly Cloudy	PID IN WELL (PPM): <u>198.</u> 2	2 LNAPL <u>ND</u> DNAPL <u>ND</u>
	SECTION 2 - PU	RGE INFORMATION	
DEPTH OF WELL [FT]:	17.24 (1	MEASURED FROM TOP OF CAS	SING - T.O.C.)
STATIC WATER LEVEL	(SWL) [FT]: <u>12.15</u> (1	MEASURED FROM T.O.C.)	
T.O.C. TO GROUND SUF	RFACE [FT]: 0.34		
THICKNESS OF WATEF	R COLUMN [FT]:(DEPTH OF WELL - SWL)	
CALCULATED VOL. OF	H2O PER WELL CASING [GA]	L]: 0.83 CASING	GDIA.: 2 inch
$\begin{array}{c} \textbf{CALCULATIONS:} \\ \hline \textbf{CASING DIA. (FT)} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	CLL CONSTANT(GAL/FT) CA 0.023 0.041 0.063 0.1632 0.380 0.6528 0.826 1.4688 2.611 CA	LCULATIONS L. OF H ₂ O IN CASING = DEPTH OF WAT	ER COLUMN X WELL CONSTANT
CALCULATED PURGE	VOLUME [GAL]: <u>2.49</u> (3 TIN	IES CASING VOLUME)	
ACTUAL VOLUME PUR	GED [GAL]: <u>3.0</u>		
PURGE METHOD: Ga	s Pump P	URGE START: <u>11:05</u> EN	D: <u>11:10</u>
S	SECTION 3 - SAMPLE IDENTIF	ICATION AND TEST PARAME	TERS
SAMPLE ID #	DATE / TIME	SAMPLING METHOD	ANALYTICAL SCAN(S)
MW-04	6-6-2019 / 12:25	Bailer	TCL and STARS/CP-51 8260 VOCs

	SECTION 4 - WATER QUALITY DATA									
SWL (FT)	VISUAL									
12.15	12.09	7.38	0.798	615	6.13	78	Clear, Rainbow Sheen, Petro-type odor			

N/M = Not Measured

WELL MW-05

	SECTION 1 - SI	TE INFORMATION					
SITE LOCATION: 65 S	Sullivan Street	JOB #: <u>5582S-19</u>					
Roc	hester, New York	DATE : 6/6/2019					
SAMPLE COLLECTOR	R(S): <u>H. Miller, A. Zobel Martino</u>						
WEATHER CONDITIO	NS:65°F, Partly Cloudy	PID IN WELL (PPM): 20.2	LNAPL <u>ND</u> DNAPL <u>ND</u>				
	SECTION 2 - PU	RGE INFORMATION					
DEPTH OF WELL [FT]	: 17.67 (1	MEASURED FROM TOP OF CAS	ING - T.O.C.)				
STATIC WATER LEVE	L (SWL) [FT]: <u>12.03</u> (N	MEASURED FROM T.O.C.)					
T.O.C. TO GROUND SU	RFACE [FT]: 0.27						
THICKNESS OF WATE	CR COLUMN [FT]: <u>5.64</u> (DEPTH OF WELL - SWL)					
CALCULATED VOL. O	F H2O PER WELL CASING [GAI	CASING	DIA.: <u>2 inch</u>				
$\begin{array}{c} \textbf{CALCULATIONS:} \\ \underline{\textbf{CASING DIA. (FT)}} \\ \hline & \underline{\textbf{W}} \\ \hline & \underline{\textbf{34''}} (0.0625) \\ 1" (0.0833) \\ 11/4" (0.1041) \\ 2" (0.1667) \\ 3" (0.250) \\ 4" (0.3333) \\ 41/2" (0.375) \\ 6" (0.5000) \\ 8" (0.666) \end{array} \\ \begin{array}{c} \textbf{W} \\ \textbf{W} \\$	ELL CONSTANT(GAL/FT) CA 0.023 VOI 0.041 0.063 0.1632 0.380 0.6528 0.826 1.4688 2.611	LCULATIONS OF H ₂ O IN CASING = DEPTH OF WAT	ER COLUMN X WELL CONSTANT				
CALCULATED PURGE	E VOLUME [GAL]: <u>2.76</u> (3 TIN	IES CASING VOLUME)					
ACTUAL VOLUME PU	RGED [GAL]: <u>3.5</u>						
PURGE METHOD:	PURGE METHOD: Gas Pump PURGE START: 11:05 END: 11:18						
	SECTION 3 - SAMPLE IDENTIF	ICATION AND TEST PARAME	TERS				
SAMPLE ID #	DATE / TIME	SAMPLING METHOD	ANALYTICAL SCAN(S)				
MW-05	6-6-2019 / 12:45	Bailer	TCL and STARS/CP-51 8260 VOCs				

SECTION 4 - WATER QUALITY DATA									
SWL (FT) TEMP (°C) pH CONDUCTIVITY (mS/cm) TURBIDITY (NTU) DO (mg/L) ORP (mV)									
12.05	12.59	7.44	0.976	573	3.92	82	Brown, Turbid		

N/M = Not Measured

day					ENVIRONMENTAL CONSULTANTS
DAY ENVIRONMENTA	L, INC.			AN AFFI	LIATE OF DAY ENGINEERING, P.C.
		SOIL VAPOR P	ROBE CONSTRUCTION D	IAGRAM	
Project #: <u>5582S-19</u> Project Address: 65 Sullivar	n Street	-			Soil Vapor Probe SV-01
Rochester DAY Representative: <u>A.</u> Drilling Contractor: <u>Na</u>	r, New York Zobel Martino ture's Way	Ground Elevation: Date Started: Water Level (Date):	NA 5/15/2019 wet soil at 7.5' (5/15/2	Datum: Date Ended: 2019)	NA 5/15/2019
Refer to Test Boring Log SV-01 for Soil Description		0.0 Depth to Top 3.0 Depth to Botto 5.5 Depth to Top 2 Diameter of B Backfill Type Sand 0.25 Inside Diameter Type of screen Stain 6.0 Depth to Botto 8.0 Depth to Botto	of Bentonite Seal (ft) om of Bentonite Seal (ft) of Screen (ft) iorehole (in) er of probe (in) <u>iless Steel</u> om of Probe Screen (ft) tom of Borehole (ft)		
Notes: 1) Water levels were mad 2) NA = Not Available or N	le at the times and u Not Applicable	nder conditions stated. Fluctuat	tions of groundwater levels ma	y occur due to seasonal fa	ctors and other conditions.
					Soil Vapor Probe SV-01

S:\Fieldforms\Soil vapor probe Installation Log (revised June 2014)

1563 LYELL AVENUE ROCHESTER, NEW YORK 14606 (585) 454-0210 FAX (585) 454-0825 420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

day DAY ENVIRONMENTA	L, INC.					ENVIRG AN AFFILIATE C	DNMENTAL CONSULTANTS
Project #:	5582S-19					Soil Va	por Sampling Log
Project Address:	65 Sullivan Street		Sample Type:	Soil V	/apor		1
	Rochester, New Yor	r <u>k</u> Date:	6/25/2019	-			Page 1 of 1
DAY Representative	: <u>C. Demian</u>	Canister #:	SC01007	-	Slab Thickness: <u>3" Asphalt</u>		
Sample Location	: <u>SV-01</u>	Regulator #:	FCA00674	-	Probe Depth: <u>6.0 feet</u>	Purge Time:	2 minutes
Sample Designation	: <u>SV-01</u>	Start:	1321	. E	Backfill Material: Sand	Purge Method:	plastic syringe
Test Duration	: 2 hours, 9 minutes	End:	1530	_	Surface Seal: Bentonite		
		Heli	ium Tracer Tes	ting			
Chamber Type He Concentration	e / Volume: <u>2 liter plas</u> n Inside	stic			Surface Seal: Bentonite		
Chamber:	60.80%		He Measuren	nent fro	om Vapor Point: 0%		
		Vapor S	Sample Collect	ion Da	ita		
	Time	Vacuum Gage Reading (inches of Hg)	Background VOC Reading (ppb or ppm)		Notes		
	1321	-30	NA	Start			
	1340	-28	NA				4
	1358	-25	NA				4
	1417	-21.5	NA				-
	1445	-16.5	NA				-
	1506	-12	NA				-
	1520	-9.5	NA				-
	1530	-8	NA	Stop			
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
	<u>[]</u>	<u> </u>	I <u></u>	I <u></u>			<u>-</u>
Notes: 1) PID readings a 2) Not Applicable	are referenced to an isobutylen	e standard measured using a MiniRae	2000 or PPB RAE eq	uipped w	ith a 10.6 eV lamp.		
							Soil Vapor Sampling Log
1563 LYELL AVENUE ROCHESTER, NEW YORI	K 14606					420 L	EXINGTON AVENUE, SUITE 3 NEW YORK, NEW YORK 101
(585) 454-0210 FAX (585) 454-0825				www.da	yenvironmental.com		(212) 986-864 FAX (212) 986-865

day DAY ENVIRONMENTAI	L, INC.				ENVIF AN AFFILIATE	CONMENTAL CONSULTANTS
Project #:	5582S-19				Soil V	apor Sampling Log
Project Address:	65 Sullivan Street		Sample Type:	Outdoor Air		
	Rochester, New Yo	rk Date:	6/25/2019			Page 1 of 1
DAY Representative	: C. Demian	Canister #:	AC02232	Slab Thickness: NA		
Sample Location	: <u>OA-01</u>	Regulator #:	FCA00024	Probe Depth: NA	Purge Time:	NA
Sample Designation	: <u>OA-01</u>	Start:	1323	Backfill Material: NA	Purge Method	: <u>NA</u>
Test Duration:	: 2 hours, 7 minutes	End:	1530	Surface Seal: NA		
		Hel	ium Tracer Tes	ting		
Chamber Type	e / Volume: <u>NA</u>			Surface Seal: NA		
Chamber:	NA		He Measuren	nent from Vapor Point: <u>NA</u>		
		Vapor S	Sample Collect	on Data		
	Time	Vacuum Gage Reading (inches of Hg)	Background VOC Reading (ppb or ppm)		Notes	
	1323	-28.3	NA	Start		
	1341	-25	NA			
	1358	-18.5	NA			
	1417	-15.5	NA			
	1445	-10.5	NA			
	1506	-8	NA			
	1520	-6	NA			
	1530	-5	NA	Stop		_
						-
						_
						-
						-
						-
						-
		_		_		
						<u> </u>
Notes: 1) PID readings a 2) Not Applicable	re referenced to an isobutylen	e standard measured using a MiniRae	2000 or PPB RAE eq	uipped with a 10.6 eV lamp.		
					100	Soil Vapor Sampling Log
ROCHESTER, NEW YORK	K 14606				420	NEW YORK, NEW YORK 101
(303) 454-02 10 FAX (585) 454-0825				www.dayenvironmental.com		(212) 986-864 FAX (212) 986-865

APPENDIX C

Investigation-Derived Waste Disposal Documentation

			Note: 1	\$5 8000	17.04										
200	o prin	t or type (Form desig	ned for use on eli	e (12-nitch) typew	riter)						For	n Approved	OMB No	2050-0039	
	JNIFORM HAZARDOUS WASTE MANIFEST I. Generator ID Number NYD000233601					3. En 800	nergency Respons	4. Manifest Tracking Number 008595649 JJK							
	5. Generator's Name and Mailing Address Generator's Site Address (if different the								uan mailing address)						
	Gener	ator's Phone:					1								
1	6. Tran	nsporter 1 Company Nam	е.	5	- 1	I. X.				U.S. EPA ID	Number	1.00			
T	SUN ENVIRONMENTAL CORP.									NYR	00	0 1 7	691	58	
7. Transporter 2 Company Name U.S. EPA ID Nur											Number				
1 m	8. Designated Facility Name and Site Address CONTROL STATE ADDR LEVINE CONTROL STATE ADDR Facility's Phone: 717 SOB-4700										U.S. EPA ID Number				
ſ	9a.	9b. U.S. DOT Description (Including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (If any))						10, Conta	alners	11. Total	12. Unit	13	Waste Cod		
	HM							No.	Туре	Quantity	Wt./Vol.	10.	Waste Out	105 /	
	X	FRQ UN1993, V ERG#128	MASTE FLAN	MABLE LIQ	uide, N.O.S.	.,3,PGI		0.0.3	DM	01350		D040	F002	D043	
ŀ	1	2			Manager and a la	-	1.1	MIN W	6,7104	01330					
		NON RCRA, P	ION DOT RE	GULATED M	ATERIAL			0.03	DM	01800		NONE			
ł	-	3.	100 A				-	000	6/141	01000	1.			-	
			1.0								8	····			
İ		4.	5 0 5	(*		1		-							
	12 15. Geng	77712-TR 79319-LS GENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the I certify that the waste mi rater's/Offeror's Printed/T	Contents of this continuation statement when the st	DN." I hereby declare respects in proper co signment conform to Identified in 40 CFR	that the contents of indition for transport the terms of the atta .262.27(a) (if I am a	this consignme according to ap iched EPA Ackn large quantity g	nt are fu plicable owiedgn enerator	lly and accurately, international and r nent of Consent. r) or (b) (if I am a s	described abo national govern mall quantity	we by the proper s umental regulation renerator) is true.	hipping nar s. If export s	ne, and are cla shipment and Mo	assified, pao I am the Pri	ckaged, mary ay Year	
4	-	Jane	nHTO	1983		hip	T	7111	16) alina		1	11.	1 19	
Transporter signature (for exports only): Transporter signature (for exports only): Date leaving U.S.:											_				
i	17. Tr	ansporter Acknowledgme	nt of Receipt of Mate	rials			Secolus	a second a					anth De	Voor	
IN INNIVI	Dalling Diallo E Transporter 2 Printed/Typed Name Signatu						11	2	7		I	onth Da	7 / / 5 ay Year		
18 Discronancy															
	18a. Discrepancy Indication Space Quantity Type Residue Partial Rej									ejection		Full R	ejection		
		Manifest Reference Number:											_		
	18b. Alternate Facility (or Generator) U.S.) Number				
	Facili	ility's Phone:													
	18c. :	Signature of Alternate Fa	cility (or Generator)									N	Nonth E	Jay Yea	
	19. H	azardous Waste Report I	Management Method	Codes (i.e., codes	for hazardous waste	treatment, disp	osal, an	d recycling system	s)	Lx.	1				
2	1.5	4141		2.			5.			4.					
1	20. D	esignated Facility Owner	or Operator: Certific	ation of receipt of ha	azardous materials c	overed by the m	anifest	except as noted in	Item 18a						
1	Printe	ed/Typed Name	p	A 01.54			Signalu	fe fe fe	D	a 4		N	fonth D	ay Year	
-	. (STETCHE	217 100	YEr			ye.	he all on	- PG	glow.		1	111	11/1	
PA	Form	n 8700-22 (Rev. 3-05)	Previous editions	are obsolete.					6	0		TRANSP	ORTER	'S COP	