

Soil and Groundwater Management Plan

121-123 Reynolds Street Rochester, New York

August 30, 2021

Prepared for:

New York State Department of Environmental Conservation Division of Environmental Remediation 6274 East Avon-Lima Road Avon, NY 14414-9519

Prepared By:

Stantec Consulting Services Inc. 61 Commercial Street, Suite 100 Rochester NY 14614-1009

On Behalf of:

City of Rochester Dept. of Environmental Services Division of Environmental Quality 30 Church Street, Room 300B Rochester, NY 14614

Table of Contents

1.0	INTROD	UCTION	1
2.0	SITE LO	CATION AND DESCRIPTION	3
3.0		RY OF PREVIOUS INVESTIGATIONS AND PARTIAL REMEDIAL	
		IES	
3.1		NMENTAL INVESTIGATIONS	
3.2	FINAL R	EMEDIAL ACTIVITIES COMPLETED	5
4.0		RY OF CURRENT SITE CONDITIONS	
4.1	REMAIN	ING CONTAMINATION	8
5.0	CONSID	ERATIONS FOR SUBSURFACE WORK AND CHANGES IN SITE USE.	10
6.0	MANAG	EMENT OF IMPACTED MATERIAL	11
6.1	NOTIFIC	ATION	11
6.2	FIELD ID	DENTIFICATION OF IMPACTS	11
6.3		NG	
6.4		RING DURING EXCAVATION	
	6.4.1	Health and Safety Monitoring	
	6.4.2	Soil and Groundwater Monitoring	
6.5		EMENT OF IMPACTED MATERIAL	
	6.5.1 6.5.2	On-Site Re-Use of Excavated Materials	
	6.5.2 6.5.3	Off-Site Disposal of Excavated Materials Off-Site Disposal of Impacted Water	
7.0	INSTITU	TIONAL CONTROLS	16
8.0	ENGINE	ERING CONTROLS	17
9.0	CONTAG	CT INFORMATION	18

LIST OF FIGURES

Figure 1-	Site Location Map
Figure 2-	Remedial Site Plan

Figure 3- Groundwater Elevation Contour Map – January 14, 2021

LIST OF TABLES

Table 1-	Summary of Excavation Confirmatory Soil Sample Analyses
Table 2-	Summary of Groundwater Field Parameters
Table 2	Summery of Croundwater Analyzan

 Table 3 Summary of Groundwater Analyses

LIST OF APPENDICES

- Appendix A- Historical Soil and Groundwater Analytical Results from Day Environmental Phase II ESA (January 11, 2016)
- Appendix B- Soil Vapor Intrusion Mitigation Guidance

1.0 INTRODUCTION

This Soil and Groundwater Management Plan (SGMP) has been prepared on behalf of the City of Rochester (the City) and is the final element of an environmental remediation program undertaken to address petroleum contamination at the site located at 121-123 Reynolds Street in the City of Rochester, Monroe County, New York (the Site; see Location Map, Figure 1).

The site had a history of use as a gas station and an auto repair facility that included a paint spraying operation; such sites are suspect in terms of potential releases of petroleum products or chlorinated compounds. Multiple phases of environmental investigation were performed at the Site. These investigations documented the presence of four abandoned underground storage tanks (USTs) and identified petroleum-related impacts to soil and groundwater. The four USTs were decommissioned by removal in accordance with applicable regulations. In addition, surface and shallow soils included typical urban fill materials, which contained polynuclear aromatic hydrocarbons (PAHs) and heavy metals at concentrations above applicable cleanup standards. Due to the presence of petroleum contamination in soil and groundwater, the New York State Department of Environmental Conservation (NYSDEC) assigned Spill File No. 1103833 to the property in 2011. The City subsequently received a Brownfield Cleanup Grant (Agreement No. BF-96261018) from the United States Environmental Protection Agency (USEPA), and a remedial project was undertaken to address the identified impacts. The remedial program was jointly funded by the USEPA and the City. Though this project has been funded in, wholly or in part by the USEPA, the contents of this document do not necessarily reflect the views and policies of the USEPA.

The primary objectives of the corrective action program were to 1) remove petroleum-contaminated and urban fill-impacted soils to the extent necessary to satisfy NYSDEC's Part 375 soil cleanup objectives (SCOs; specifically for Restricted Residential site use) and Commissioner's Policy CP-51 soil cleanup levels (SCLs); 2) reduce concentrations of petroleum contaminants in groundwater to levels acceptable to NYSDEC; and 3) achieve closure of NYSDEC Spill File No. 1103833 for the Site and facilitate future sale and redevelopment of the property.

The excavation portion of the remedial program was completed in July 2020 in accordance with a NYSDEC-approved Corrective Action Plan (CAP). The excavation work included limited groundwater removal and application of ORC-A® as an amendment to promote bioremediation of residual impacts in groundwater. Four quarters of post-remedial groundwater monitoring has been performed, as detailed in this SGMP.

The remedial program implemented to address petroleum contamination at the Site was successful in removing the majority of the petroleum contamination and contaminant mass (likely more than 95% mass reduction). This is evidenced by: 1) None of the excavation confirmatory soil samples contained VOCs or SVOCs at concentrations at or above applicable NYSDEC SCOs/SCLs, and 2) the last three quarters of post-source removal groundwater sampling exhibited no exceedances of groundwater standards or guidance values. Samples collected from MW-4 and Sump 1 during the first round of quarterly groundwater sampling were reported to contain concentrations of a few volatile organic compounds (VOCs) with minor exceedances of groundwater standards.

All soil excavation confirmatory samples met SCOs and SCLs; however, there was minor residual petroleum presence observed in a limited number of soil excavation confirmatory samples, and some other remaining fill soils contained typical urban fill-related compounds. Note that two feet of clean topsoil was placed across the entire footprint of the excavation after the excavation was backfilled.

This SGMP addresses the low-level presence of residual petroleum compounds in subsurface soil and groundwater and metals in urban fill materials. Section 4 provides a description of the locations where impacts remain.

Given the presence of residual contamination in the subsurface that could potentially be encountered during future excavation or other soil-disturbing activities, this SGMP describes appropriate health and safety considerations, field screening procedures, and materials-handling/disposal procedures to be used. This SGMP includes the following:

- A brief summary of site historical use and environmental investigations performed.
- A description of Site subsurface conditions and the nature and extent of petroleum impacts identified.
- A description of the remedial program performed to address the petroleum impacts.
- Data summary tables which present historic and current contaminant levels in soil and groundwater.
- A site plan which identifies the known locations of residual soil contamination as well as groundwater monitoring well locations.
- A description of the type of monitoring that should be performed in the event future Site work occurs that involves excavation or other work that might disturb or expose soil or groundwater.
- A description of the sampling of impacted media that should be performed if contamination is encountered.
- A description of the procedures that should be followed to assure proper handling and disposal or treatment of contaminated material if it is encountered in the future.
- A list of the parties to be notified and their respective responsibilities if residual contamination is encountered in the future.
- A list of the government officials and agencies and other parties to whom copies of this SGMP will be distributed.
- A description of applicable engineering and institutional controls applicable to the Site.

2.0 SITE LOCATION AND DESCRIPTION

The Site, which is owned by the City (Monroe County Tax ID No. 12.52-3-18.001; address 121-123 Reynolds Street, Rochester, New York 14611) is located in a low-density residential area. The Site is a currently vacant parcel approximately 0.19 acres in size. The Site is generally level and is bounded on the east by a sidewalk and Reynolds Street, on the north by a sidewalk and Tremont Street, on the west by an adjoining vacant parcel (409-411 Tremont Street) and a residential property, and on the south by a residential property. Wooden bollards currently block vehicle access from the streets.

There are currently no utilities servicing the Site.

3.0 SUMMARY OF PREVIOUS INVESTIGATIONS AND PARTIAL REMEDIAL ACTIVITIES

3.1 ENVIRONMENTAL INVESTIGATIONS

Several phases of investigation and partial remediation were previously completed at the site, prior to the final remediation program, as detailed in the following reports:

- Subsurface Evaluation Data Package, Environmental Assessment and Remediation Services, Day Environmental (Day), December 2011;
- Phase I Environmental Site Assessment (ESA), Day, April 2015;
- Phase II ESA, Day, January 2016; and
- Supplemental Phase II ESA, Day, January 2017.

In June 2011, apparent petroleum contamination was observed in soil encountered during excavation of the basement foundation of a new residential house on the 125 Reynolds Street parcel that abuts the Site on the south. Subsequent historical research by the City revealed the former presence of a gas station, and an auto repair facility that included a paint spraying operation on the northern portion of the Site (121 Reynolds Street).

Historical records indicated that up to four petroleum underground storage tanks (USTs) containing gasoline and kerosene had been documented on the Site. In addition, a single-family house had previously been located on the southern portion of the site (123 Reynolds Street). The City and its consultant then removed the four USTs in August 2011. A limited amount of impacted soil was also excavated and disposed offsite at that time; confirmatory sampling indicated residual petroleum impacts remained in soil at levels above regulatory cleanup criteria.

The City then commissioned a Phase I ESA in early 2015, followed by a Phase II ESA in the fall of 2015. The Phase II investigation provided the following findings:

- Twenty locations were drilled and sampled across the site, using either Geoprobe direct-push or rotary drilling methods. Four interface monitoring wells were installed, one in the northern half of the site and three in the southern half. Groundwater gauging in the four monitoring wells indicate groundwater flows toward the south.
- Bedrock was encountered at depths ranging from approximately 8 to 10 feet below ground surface (bgs).
- Photoionization detector (PID) readings from soil screening were detected in 8 of the 20 borings. Peak PID readings ranged up to 1,659 parts per million (ppm).
- Four of nineteen analyzed soil samples contained petroleum volatile organic compounds (VOCs) at levels above applicable Part 375 SCOs and CP-51 SCLs.
- Only one sample obtained from one of several Site perimeter borings (some of which were in the rights-of-way) exceeded applicable SCOs for VOCs.
- Urban fill was encountered in 12 of the 20 test boring locations, to depths ranging up to 6 feet bgs. Two samples of urban fill were analyzed; one sample (located in the southeast portion of the

site) contained lead at a level above the Restricted Residential (RR) SCO but a TCLP analysis did not indicate a hazardous level.

• All four groundwater samples exhibited petroleum VOCs at levels above NYSDEC's Technical and Operational Guidance Series (TOGS) 1.1.1 groundwater standards and/or guidance values.

A supplemental Phase II ESA was then performed in the fall of 2016, consisting of an additional nine soil test borings and field PID screening; nine soil samples were submitted for analysis for VOCs. The results of this investigation were combined with the findings of the initial Phase II ESA to further refine the apparent limits of impacts to soil. Based on the cumulative results, recommendations were provided in the Phase II ESA report that included:

- Additional excavation of impacted soil (beyond that excavated at the time of tank removal) and the upper, fractured portion of bedrock in the source area in the northeast portion of the Site;
- Excavation of deeper, wet to saturated soils in the "plume area" in the southern portion of the Site;
- Excavation of urban fill materials in the northern portion of the site;
- Post-excavation, in-situ bioremediation in the saturated zone in petroleum-impacted areas;
- Implementation of a Soil and Groundwater Management Plan (SGMP) for future development; and
- Installation of a sub-slab depressurization system (SSDS) for any future structures on the Site.

As a result of the findings of these investigations and the City's desire to return the Site to productive residential use, a Brownfield Cleanup Grant was awarded by the USEPA to the City for the remediation of soil and groundwater impacts at the Site. Though this project has been funded, wholly or in part, by the USEPA, the contents of this document do not necessarily reflect the views and policies of the USEPA.

3.2 FINAL REMEDIAL ACTIVITIES COMPLETED

Remedial actions were performed during the period July to August 2020 by TREC Environmental Inc. of Spencerport, New York under the observation of Stantec and the City. The remediation was performed in accordance with a Corrective Action Plan (CAP) approved by the NYSDEC. The primary elements of the program included:

- Excavation and offsite disposal of impacted soils from the Urban Fill Area, UST Source Area, and Plume Area excavations (see Figure 2);
- Backfill with clean excavated soil and imported material;
- Confirmatory soil sampling in excavations;
- Placement of a soil amendment, Oxygen Release Compound-Advanced (ORC-A[®]; manufactured by Regenesis) in excavations to facilitate *in situ* bioremediation of residual impacts;
- Installation of injection piping in the UST Source and Plume Area Excavations for future applications of ORC-A[®] powder in these areas, if needed;
- Installation of two bedrock sumps to remove potentially impacted groundwater from the bedrock; and

• Post-remediation groundwater monitoring.

A summary of remedial actions performed is presented below. A more detailed description of the remedial actions is presented in Stantec's report titled *Remedial Construction/Closure Report, Petroleum-Impacted Soil and Groundwater, 121-123 Reynolds Street, Rochester, NY,* dated January 2021.

Soil Excavation and Disposal

Approximately 899 tons of petroleum-impacted soil and 957 tons of urban fill material was removed and disposed of offsite at a NYSDEC permitted disposal facility. Figure 2 depicts the limits of each excavation. The limits of these excavations were established based on PID readings and confirmatory soil sampling. In some instances, excavations were limited by the property line or proximity to the adjacent sidewalks; Results of the excavation confirmatory soil sampling indicated that none of the confirmatory samples contained VOCs or SVOCs at concentrations at or above applicable NYSDEC SCOs/SCLs. These results did identify residual concentrations of petroleum and urban fill-related compounds (but below applicable NYSDEC SCOs and SCLs) in a limited number of samples. See Figure 2 for confirmatory samples applicable 1 for a summary of contaminant levels in confirmatory soil samples.

In-situ Groundwater Treatment and Monitoring

The soil excavation was generally terminated at the top of bedrock. There was little to no groundwater encountered in the overburden. A relatively minor amount of stormwater accumulated during a rain event. The dolomite bedrock was generally only slightly weathered and very competent, which generally prevented excavation into and removal of rock with an excavator. At one location in the Plume Area, a limited weathered area was encountered, and minor petroleum staining was observed. At the request of the City a hydraulic breaker was employed to further excavate rock at this location. An area approximately 4 by 4 ft in lateral dimension was excavated to a depth of approximately 3 feet below the top of bedrock. Groundwater that accumulated in the sump was removed and temporarily containerized in a poly tank.

It was decided to construct a permanent sump at this location to allow further groundwater removal if deemed appropriate. A second sump of similar dimensions was then excavated in the UST area for the same purpose. The sumps were completed with 12-in diameter plastic pipe that was extended to the ground surface with a concrete surface seal and a steel road box for easy access. The sumps were designated Sump 1 and Sump 2 (see locations, Figure 2)

Given that seasonal groundwater levels fluctuate, and in accordance with the CAP, an amendment was placed in the excavation to enhance natural *in-situ* groundwater bioremediation and further reduction of contaminant levels. This was accomplished by using ORC-A[®] in dry form; the material was spread evenly in each excavation before backfill materials were placed. Approximately 440 lbs. and 720 lbs. of ORC-A[®] were placed in the UST Source Area and Plume Areas, respectively.

Eight horizontal lengths of *in-situ* remediation injection piping were installed at the base of both the UST Source Area and the Plume Area excavations, in the event future injections of ORC-A[®] are deemed necessary. The piping consists of 2-in diameter, 0.02-in slot PVC well screen, which was embedded in a 2-ft-thick layer of crushed stone place on the top of bedrock. Each run of piping was approximately 30 feet in length, oriented east-west. Each vertical riser was finished at the surface with a flush mount road box (see Figure 2).

Groundwater Monitoring

Four quarterly rounds of post-excavation groundwater monitoring were performed: October 2020, and January, April and July 2021. Sumps 1 and 2, installed during the excavation and one preexisting well MW-4 were sampled in each event. The sumps and well were purged with a gas-powered pump using dedicated polyethylene tubing and then sampled with a bailer. The field parameters of conductivity, dissolved oxygen (DO), oxidation reduction potential (ORP), pH, and temperature were measured during each event. These results are summarized on Table 2. These parameters are used to indicate that the well has been adequately purged prior to sampling.

The groundwater samples were submitted to Paradigm Environmental Services (October 1, 2020) and Eurofins TestAmerica (January 14, 2021, April 20, 2021 and July 15, 2021) for analysis for CP-51-list VOCs using USEPA Method 8260C. Table 3 provides a summary of the groundwater analytical results for quarters Q1 through Q4. Data from the fourth quarter were also reviewed by an independent validator, and a Data Useability Summary Report (DUSR) was prepared. No issues were identified with the data.

The Q1 results contained the following petroleum-related VOCs at levels above the groundwater standards:

- Benzene in MW-4 and Sump 1 at 1.77 and 1.43 μg/L, respectively, vs. the standard of 1 μg/L.
- Ethylbenzene in Sump 1 at 9.62 µg/L, vs. the standard of 5 µg/L.
- 1,2,4-Trimethylbenzene in Sump 1 at 19.3 µg/L, vs. the standard of 5 µg/L.

Results from the Q2 through Q4 events indicated that none of the groundwater samples exceeded NYSDEC VOC groundwater standards. Minor detections (below NYSDEC groundwater standards) of petroleum-related compounds were observed in some of these samples (see Table 3).

4.0 SUMMARY OF CURRENT SITE CONDITIONS

At the time this SGMP was prepared, the site was vacant and undeveloped, with no structures present. Wooden bollards line the north and east property lines. As described above, the remedial program included completing the excavation backfill with imported topsoil, which was graded essentially level with the adjacent parcels and sidewalks. The entire site was hydroseeded and a grass cover was established. Eight road boxes are present along the eastern edge of the site, one for each remedial injection piping run. Two large-diameter sumps and one monitoring well are also present (see Site feature locations on Figure 2)

4.1 REMAINING CONTAMINATION

Soil: A total of 26 confirmatory soil samples were taken in the excavation areas. Based on these analytical results the following locations are known to contain limited contaminant presence in soil (see Figure 2 and Table 1):

- <u>Urban Fill Excavation</u>: No exceedances of SCOs were reported in any of the Urban Fill Area confirmatory samples; however, some residual soil impacts remained along the north sidewall (as reflected by SVOC TIC detections), where the excavation was limited due to the close proximity to the sidewalk.
- <u>UST Source Area Excavation</u>: As noted above, the northern extent, as well as the eastern extent, of the excavation were bound by the Tremont Street and Reynolds Streets sidewalk. No exceedances of SCOs were reported in any of the UST Source Area confirmatory samples; however, some residual impacts remained along the north and east sidewalls (as reflected by VOC TIC detections), where the excavation was limited due to the close proximity to the sidewalk.
- <u>Plume Area Excavation</u>: The eastern extent of this excavation was limited by the Reynolds Street sidewalk. During the excavation, petroleum staining was observed along the western extent of the excavation. Further excavation was completed in this area until no observed impacts remained (via staining or PID detections). VOC TIC detections indicate some residual impacts remain along the eastern sidewall of the excavation which was limited due to the sidewalk.
- <u>Surface Soils</u>: Based on results of surface soil or shallow soil samples taken during the Phase II ESAs, some surface soils may contain urban fill which may contain heavy metals such as lead at levels in excess of applicable SCOs (see Appendix A).

Groundwater:

The results of post-remedial groundwater monitoring in quarters Q2 through Q4 (see Table 3) did not indicate the presence of petroleum-related compounds at concentrations above groundwater quality standards. A few compounds were detected in the low part per billion range but below groundwater quality standards.

Samples collected from MW-4 and Sump 1 during the first round of quarterly groundwater sampling were reported to contain concentrations of a few volatile organic compounds (VOCs) with minor exceedances above groundwater standards.

Subsequent to the remedial excavation, an amendment (ORC-A[®]) was placed in the excavation to enhance natural in-situ groundwater bioremediation and further reduce contaminant levels. In addition, eight horizontal lengths of in-situ remediation injection piping were installed at the base of both the UST

Source Area and the Plume Area excavations. At the City's discretion, this injection piping may be used to inject additional ORC-A[®] into the subsurface at the site to further enhance groundwater bioremediation.

5.0 CONSIDERATIONS FOR SUBSURFACE WORK AND CHANGES IN SITE USE

As discussed above, residual petroleum contamination and urban-fill materials are known to remain at the Site at limited locations. Other limited occurrence of residual impacts not previously identified or encountered may also exist. Future activities involving excavation or soil disturbance in the areas of residual soil contamination must be conducted in accordance with the considerations and requirements of this SGMP.

Note also that use of groundwater for potable purposes within City limits is prohibited by the City Code.

Site development must take into consideration the known residual contamination and the observed concentrations in comparison to allowable concentrations for the proposed site usage (i.e., Restricted-Residential or Restricted-Commercial Use).

The measures described herein are designed to:

- Prevent ingestion/direct contact with contaminants in soil;
- Prevent ingestion of groundwater with contaminant levels that exceed groundwater standards;
- Prevent the discharge of contaminants to surface water; and
- Prevent migration of contaminants that would result in off-site groundwater or surface water contamination.

If contaminated soil is encountered as part of an excavation program or other subsurface work, it cannot be replaced or reused on the Site, or allowed to run off the Site via stormwater flow unless it meets NYSDEC soil cleanup objectives and reuse criteria, and/or NYSDEC permission for reuse is obtained. The materials must be properly characterized, managed and disposed of off-site at a NYSDEC-permitted disposal facility.

The scheduling, duration and cost of activities that involve subsurface disturbance or excavation may be affected by soil or groundwater management and waste characterization issues. Scheduling of work will need to allow for management of potentially contaminated material encountered during the course of the work. Should unanticipated materials or conditions be observed during subsurface work, sampling may be required. Sampling will entail laboratory analysis, which typically takes from a few days to weeks to be completed. Therefore, construction schedules and design plans should allow for adequate flexibility for sampling, segregation, and temporary stockpiling of unanticipated materials on-site. Construction schedules should also provide both contingency time and measures to address variability in subsurface conditions and the presence of groundwater. For example, if contaminated material or hazardous substances are encountered, additional safety measures and use of personal protective equipment (PPE) may be required. Excavation dewatering and work stoppage could also affect construction schedules and costs. Measures designed to address these situations are described in further detail below.

As with all underground excavation work, the parties performing invasive subsurface work are responsible for the safe performance of the work, the integrity and safety of excavations, and for protection of structures that may be affected by excavations (such as underground or aboveground utility lines, sidewalks or road surfaces and building foundations). Prior to commencement of any intrusive work, the presence of utilities and easements on the site should be ascertained via a Dig Safely NY stakeout, review of utility drawings, and interviews with knowledgeable facility staff, etc. to determine if they are likely to be encountered so that appropriate plans can be developed.

6.0 MANAGEMENT OF IMPACTED MATERIAL

6.1 NOTIFICATION

With the exception of emergency activities, written notification to NYSDEC is required at least 10 days prior to the start of activities which are anticipated to potentially encounter residual contamination. Currently this notification will be made to:

Mr. Michael Zamiarski, P.E.

NYSDEC, Bureau of Spill Prevention and Response 6274 E. Avon-Lima Road Avon, NY 14414 585-226-5483

The notification should include the following information:

- A description of the work to be performed, including the location and areal extent;
- A summary of environmental conditions anticipated in the work areas and plans for any preconstruction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work;
- A statement that the work will be performed in compliance with this SGMP;
- A copy of the health and safety plan to be used by Site workers (in electronic format);
- Identification of disposal facilities for potential waste streams; and
- Identification of sources of backfill to be imported to the Site, if applicable.

In the event that ground intrusive activities are required to address an emergency or time-sensitive matter such as the emergency repair of a utility required to allow continued on-site operations, notice shall be given as soon as practicable but no later than 24 hours after the emergency activity.

6.2 FIELD IDENTIFICATION OF IMPACTS

During subsurface activities, petroleum impacted soil or groundwater may be encountered. Petroleumimpacted soil may be stained gray or black, contain a rainbow-type sheen, and emit petroleum-type odor. Petroleum-impacted groundwater may emit a petroleum-type odor and could contain a floating sheen. Free petroleum product has not been detected in the soil or on the groundwater surface. However, free petroleum product, if encountered, would exhibit an oily texture, a strong petroleum-type odor, likely an amber to dark brown/black color, and would be floating on the groundwater surface. Elevated PID readings exceeding background measurements on ambient air above soil or groundwater is also indicative of the presence of VOCs associated with petroleum contamination.

Urban fill materials can often be visually identified by the presence of deleterious materials such as brick, cinders, ash, wood or other debris/trash. These materials may not necessarily emit a distinct odor and can be intermixed with a variety of soil types such as clay, silt sand and gravel.

6.3 SAMPLING

Sampling of excavated soil or subsurface materials or groundwater removed during subsurface work should be considered if unusual odors or visual observations such as stained soils, sheens or the

presence of apparent petroleum or other product are identified in soil or groundwater, or if tanks, containers, or unknown piping are encountered.

In these situations, sampling frequency and analyses would depend on the types, conditions and quantities of material encountered and the anticipated reuse, recycling or disposal of the removed materials. The associated chemical analysis of samples obtained must adequately characterize materials in light of current NYSDEC 6 NYCRR Part 375 SCOs or CP-51 SCLs, and/or permitted disposal or wastewater treatment facility requirements, depending on the intended destination of waste materials.

Waste disposal analyses for petroleum-contaminated soil or water, or urban fill materials typically include some or all of the following:

- Total volatile organic compounds (VOCs) and polynuclear aromatic hydrocarbons (PAHs, a subclass of SVOCs);
- Toxicity Characteristic Leaching Procedure (TCLP) VOCs;
- TCLP Metals; and
- pH, Ignitability, and reactivity.

Depending on the nature of potential contaminants encountered and/or the intended disposal facility, the following additional waste disposal analyses may also be required:

- TCLP SVOCs;
- TCLP Pesticides and Herbicides; and
- Polychlorinated Biphenyls (PCBs)

Based on extensive sampling results obtained during previous investigations and the USEPA-funded remediation, it is anticipated that potential waste streams generated during future activities will qualify as non-hazardous solid or liquid waste.

6.4 MONITORING DURING EXCAVATION

Monitoring of soil and fill materials that are excavated and groundwater pumped during construction should be performed for three reasons:

- to protect the health and safety of project site workers during construction;
- to determine that the material encountered during construction is consistent with the material encountered during previous investigations; and
- to facilitate characterization of the non-hazardous or hazardous nature of material encountered in the event that no previous investigation results are available for a specific area.

6.4.1 Health and Safety Monitoring

Past investigations determined that non-hazardous contaminated soil and groundwater were present on the Site. General groups of compounds subject to future health and safety planning include primarily VOCs, SVOCs (typically PAHs) and metals (primarily lead).

Previous investigations show that while overall the potential for worker chemical exposure exists, it is relatively low. However, Site personnel involved in construction and excavation activities should employ safety measures in accordance with applicable OSHA regulations and should also consider

other construction-related hazards such as heavy equipment, weather conditions, confined space entry, and excavation safety. It may be appropriate or even required that workers be trained for Hazardous Waste Operations (HAZWOPER).

Site conditions may warrant preparation and implementation of a Community Air Monitoring Plan (CAMP), in accordance with the NYSDEC DER-10 guidance, to minimize potential exposure to neighboring residents or others in the community from airborne vapors or particulates (dust) that may be generated during excavation activities.

6.4.2 Soil and Groundwater Monitoring

Soil and groundwater monitoring should generally consist of documentation of visible characteristics of the soil, fill and groundwater encountered, including staining, sheens, odors, or other indicators of contamination such as oils, tars or petroleum containers. It is recommended that construction monitoring by a trained individual such as an environmental engineer, scientist, or geologist be performed during excavation and groundwater work regardless of where the invasive work is done. In addition, instruments capable of monitoring for the presence of volatile organic compounds and particulates are readily available and can be rented from several sources. Monitoring should include use of the following instrumentation:

- VOCs: Photoionization detector (PID) such as a MiniRae 3000 or equivalent.
- Particulates: Aerosol monitor such as a TSI DustTrak II or equivalent.

These instruments should be operated by individuals trained and experienced in their use, limitations and capability for data generation. Readings generated from monitoring instruments should be recorded in the field along with visual observations. As long as excavation monitoring shows soil, fill, and groundwater material to be uncontaminated, then the material should be manageable as determined prior to construction. If conditions are different from those anticipated, then sampling and additional characterization may be necessary.

6.5 MANAGEMENT OF IMPACTED MATERIAL

At this time, there is no preferred method for the management of soil/fill excavated during construction activities. In general, it is recommended that non-hazardous soil or fill excavated during excavation, foundation work, utility trenching work and other earth-moving activities (including, if needed, remedial measures), either be reused on-site, if permitted, in accordance with regulations and covered with either clean soil or an impervious surface, or be transported off-Site to a properly-licensed and permitted facility. While unlikely based on past environmental studies and remediation performed, if hazardous wastes are encountered, they cannot be reused on-site and will need to be disposed properly at an approved, off-Site facility. The presence of staining and petroleum odors in soil is also a condition that exceeds the NYSDEC criteria for nuisance characteristics allowing reuse of excavated contaminated soil on-site.

If groundwater is pumped at the Site, approval would be required for wastewater disposal to the sanitary sewer from Monroe County Department of Environmental Services (MCDES). If approval for discharge to the wastewater treatment plant sewer system is not obtained, disposal at an appropriately licensed off-site treatment facility would be required.

6.5.1 On-Site Re-Use of Excavated Materials

Non-impacted (uncontaminated) materials that will be re-used on-Site will need to be segregated on the basis of field screening. If field screening indicates the potential presence of contamination,

additional construction sampling and analyses are recommended. If construction sampling is performed, the analysis results will be compared to applicable SCOs and SCLs for the intended use of the Site. If concentrations are below applicable SCOs and SCLs, the soil can be reused on-Site provided that petroleum-related nuisance characteristics are not evident.

If disposal of soil/fill from this site is proposed for unregulated off-site disposal (i.e., clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC for their approval.

Staging and stockpiling management of materials should be conducted as described in the sections below.

6.5.2 Off-Site Disposal of Excavated Materials

Management of solid waste materials that will be disposed off-site will need to include characterization (sampling and laboratory analysis as required by the chosen disposal facility), management and handling, and off-site transportation and disposal at an approved landfill.

Appropriate measures for management of excavated materials must be employed. This should be either pre-characterization and pre-approval for landfill disposal, such that the material can be direct loaded onto permitted trucks for transport, or temporary stockpiling of excavated soils and solids pending disposal characterization and approval. Stockpiling must include measures to prevent soils from contaminating other materials or migrating off-site. Measures that should be incorporated into onsite soil management include:

- Stockpile locations away from storm sewers, downwind property boundaries, and drainage courses.
- Use dust suppression techniques, as necessary.
- Placement of stockpiles of contaminated soils, fill or hazardous materials (e.g., drums, containers, odiferous fill) on minimum 6-mil reinforced polyethylene (poly) with perimeter berms.
- Covering stockpiles of contaminated soils, fill, or hazardous materials (e.g. drums, containers, odiferous fill) with weighted-down poly sheeting at the end of each day of placement to prevent migration by wind-blown dust or stormwater runoff until final placement and final cover is established.

If the contaminant concentrations are elevated above applicable SCOs or SCLs or if nuisance characteristics are noted, the results shall be shared with the NYSDEC and the materials disposed of off-site at an appropriate disposal facility. All impacted material or solid waste excavated and removed from the site will be treated as contaminated and regulated solid waste and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a Solid Waste pursuant to 6NYCRR Part 360-1.2. Material that does not meet the lower of the SCOs for residential use or groundwater protection will not be taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility) without a beneficial use determination issued by NYSDEC.

Transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded. If loads contain wet material capable of producing free liquid, truck liners will be used. Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials. Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-site soil tracking.

6.5.3 Off-Site Disposal of Impacted Water

Management of water will include characterization (sampling and laboratory analysis as required by MCDES or off-site treatment or disposal facility), management, and disposal. In order to obtain approval from MCDES for discharge of potentially impacted groundwater to the sewer system or directly to a treatment plant, analyses may be required. If disposal to the MCDES sewer system is not approved, transport to and disposal at another appropriate, permitted disposal facility would be required.

Appropriate measures for management of water will need to include temporary containerization and measures to prevent water from contaminating other materials or migrating off-site. Measures that should be incorporated into such plans include:

- Containerize water prior to pumping or transport off-site.
- Stage containers away from downwind property boundaries and drainage sources.
- Pump water directly into containers.
- Perform necessary sampling prior to disposal.
- Coordinate with the MCDES or alternate facility to receive a temporary discharge permit for disposal.

7.0 INSTITUTIONAL CONTROLS

The City of Rochester has established a procedure for Institutional Control (ICs) which involves "flagging" the tax account numbers of properties that require special environmental reviews due to the known presence of residual soil and/or groundwater contamination. Upon approval of this SGMP by NYSDEC, the City will "flag" the Site parcel (by address and Tax ID number) in the City's Building Information System (BIS). This flag will indicate the Site is subject to a special environmental review by the City's Division of Environmental Quality (DEQ) prior to issuance of any permits related to Site development. DEQ staff will review permit applications for consistency with requirements of this SGMP, limited-use areas and land-use restrictions. A notification may be forwarded by DEQ to the NYSDEC at the time the permit is reviewed, if warranted, depending on the scope of the proposed work and other Site-specific factors.

8.0 ENGINEERING CONTROLS

The potential need for Engineering Controls (ECs) as part of the future Site redevelopment should be evaluated in the context of remaining contamination, as detailed in this SGMP, or as characterized by actions or sampling during Site disturbance. In the event that engineering controls are deemed necessary, NYSDEC and/or NYSDOH (see contacts in Section 9 below) should be consulted for review and approval of proposed controls.

Per the USEPA Action Memo and the CAP, a vapor barrier and sub-slab depressurization system must be incorporated into building design to mitigate the potential for vapor intrusion into future occupied buildings. Additional ECs for a site such as the 121-123 Reynolds Street parcel may include, but are not limited to:

• A clean soil cover over areas of surface or shallow impacted soil not intended to be covered by pavement, concrete or structures.

Appendix B contains excerpts from guidance by the New York State Department of Health (NYSDOH) and the United States Environmental Protection Agency (USEPA) that provide generalized design elements of sub-slab vapor mitigation systems typically used to mitigate vapor intrusion.

9.0 CONTACT INFORMATION

The following is a list of entities who can be contacted regarding environmentally-related issues at the Site:

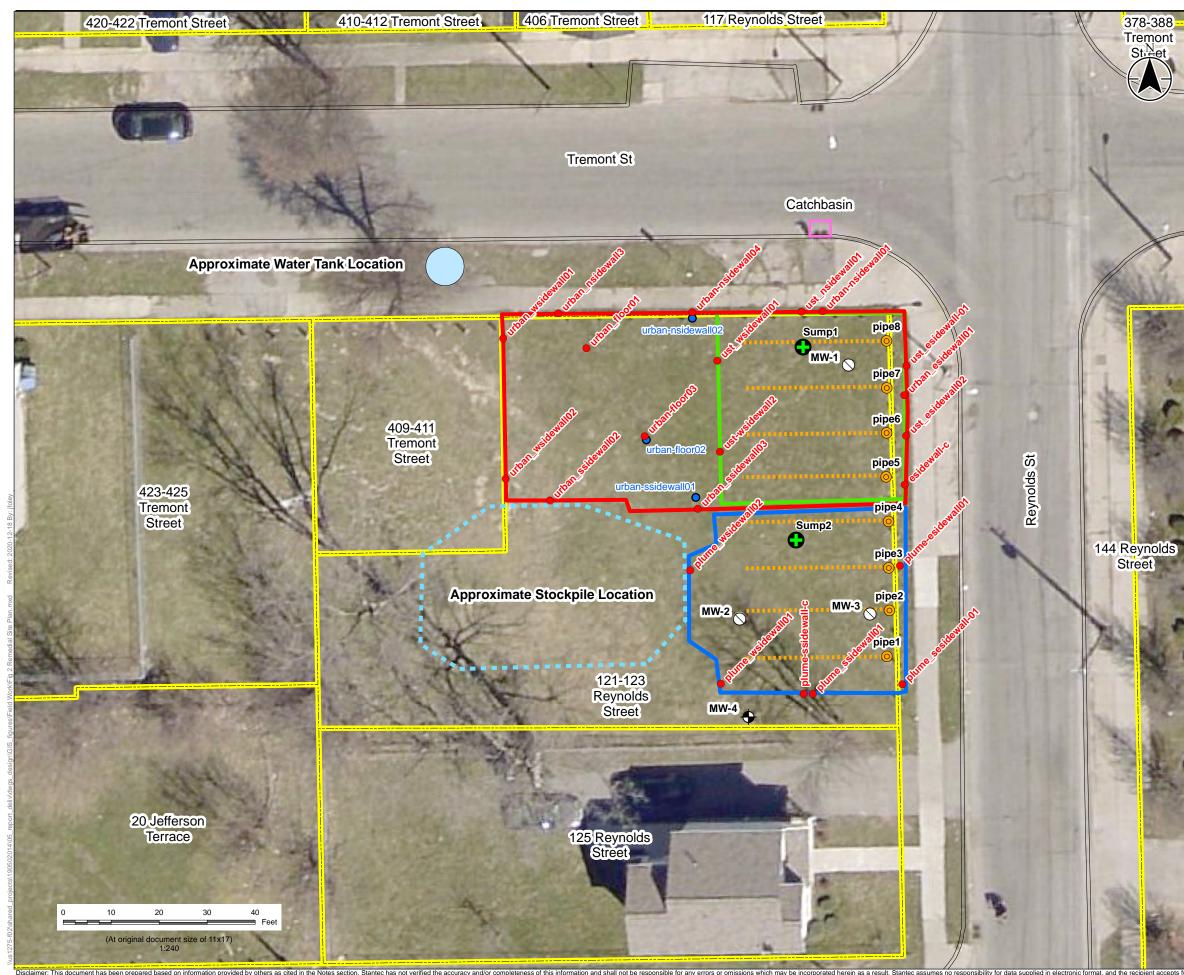
City of Rochester

Division of Environmental Quality 30 Church Street, Room 300-B Rochester, New York 14614 585-428-6649 Joseph Biondolillo, Associate Environmental Specialist

• NYSDEC Region 8

6274 Avon-Lima Road Avon, New York 14414 585-226-5428 Mike Zamiarski, P.E.

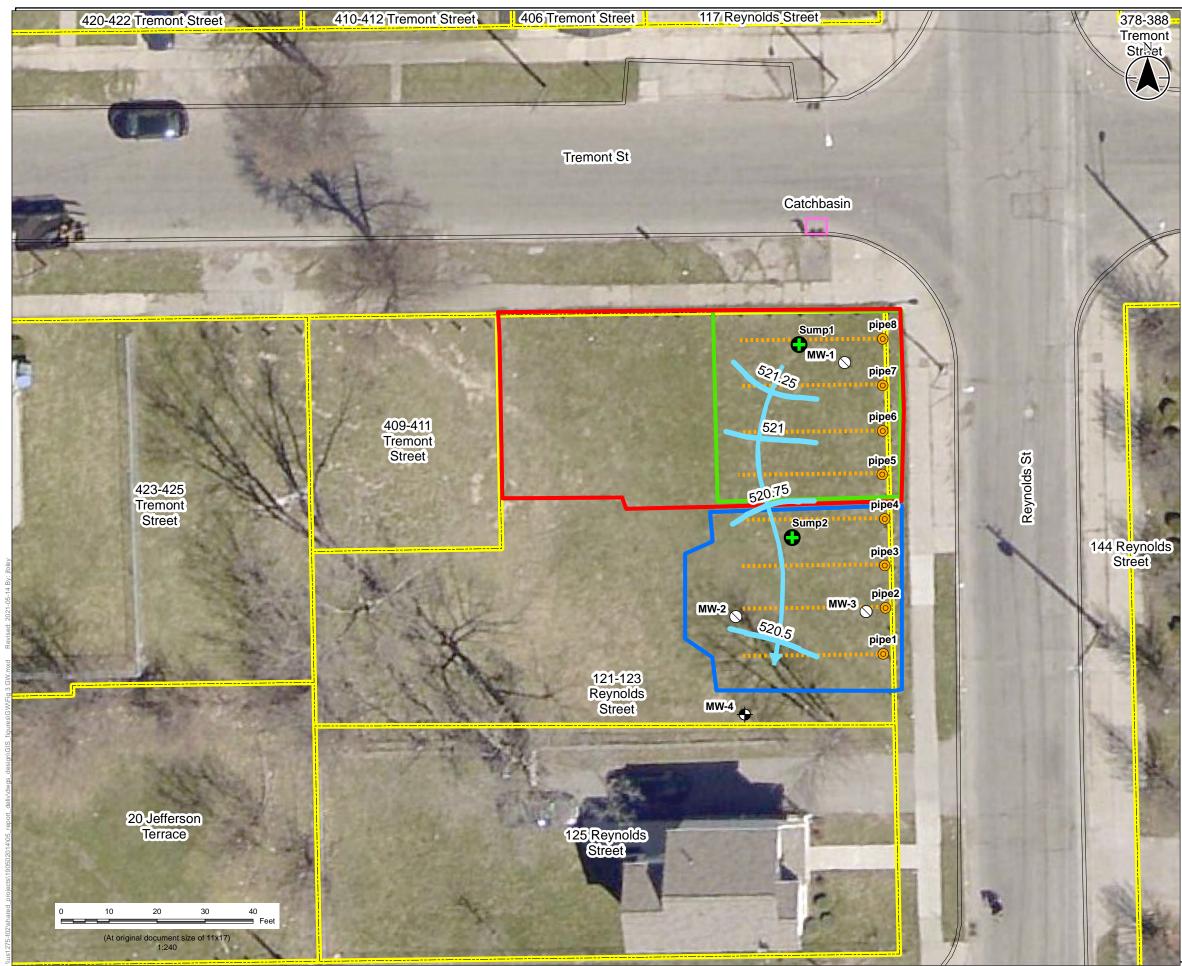
• NYSDEC Spills Hotline 1-800-457-7362


Monroe County Department of Public Health
 111 Westfall Road
 Room 952
 Rochester, New York 14620
 585-753-2991

- New York State Department of Health Corning Tower Empire State Plaza Albany, New York 12237
- Stantec Consulting Services Inc. 61 Commercial Street, Suite 100 Rochester, NY 14614 585-475-1440 Mike Storonsky

FIGURES

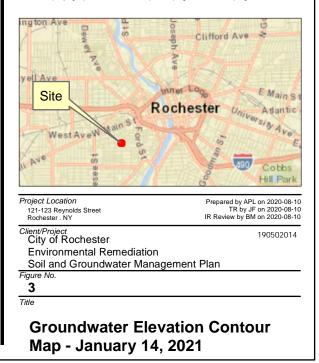



Legend

- Existing Monitoring Well
- Decommissioned Monitoring Well
- = Edge of Pavement
- Intermediate Soil Samples
- Confirmatory Soil Samples
- O Injection Piping Run and Riser Well
- Injection Piping Run and Riser Piping
- Sumps
- Urban Fill Area Excavation Limits
- UST Area Excavation Limits
- Plume Area Excavation Limits
 - Water Tank Location

- <u>Notes</u> 1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet 2. Data Sources: 3. Background: Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, MET, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User Community 4. All feature and sample locations are approximate only, as established using a Trimble GPS with sub-meter accuracy and adjusted using field measurements as appropriate. Stockpile location port euroeved
- Stochastic accuracy and adjusted using field measurements as appropriate. Stockpile location not surveyed.
 Injection pipe headers and sumps are flush-mounted.
 The parcel at 409-411 Tremont Street is owned by the City of Rochester and was used for access to the 121-123 Reynolds Street parcel, as well as material storage and temporary stockpiling.
- Intermediate soil samples were superseded by final confirmatory samples after further

excavation. 8. See accompanying report for detailed description of program and all sampling results.



Legend

- Existing Monitoring Well
- Decommissioned Monitoring Well
- Edge of Pavement
- O Injection Piping Run and Riser Well
- Injection Piping Run and Riser Piping
- Sumps
- Urban Fill Area Excavation Limits
- UST Area Excavation Limits
- Plume Area Excavation Limits
 - 1/4 Foot Groundwater Contour
- Direction of Groundwater Flow

- Notes 1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet 2. Data Sources: 3. Background: Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User Community 4. All feature and sample locations are approximate only, as established using a Trimble GPS with sub-meter accuracy and adjusted using field measurements as appropriate. Stockpile location on to surveyed
- 5. Injection pipe headers and sumps are flush-mounted.
 6. The parcel at 409-411 remont Street is owned by the City of Rochester and was used for access to the 121-123 Reynolds Street parcel, as well as material storage and temporary
- stockpiling. 7. Intermediate soil samples were superseded by final confirmatory samples after further
- excavation. 8. See accompanying report for detailed description of program and all sampling results.

TABLES

						14' South of nume	PLUME-WSIDEWALL-						URBAN-ESIDEWALL-			URBAN-NSIDEWALL	URBAN-NSIDEWALL
Sample Location				North Sidewal	-	boundary	02		SE Corner Confirmator	-		II Confirmatory	01	URBAN-FLOOR-01	URBAN-FLOOR-03	01	03
Sample Date				13-Jul-20	13-Jul-20	9-Jul-20	28-Jul-20	17-Jul-20	17-Jul-20	17-Jul-20	15-Jul-20	14-Jul-20	21-Jul-20	21-Jul-20	28-Jul-20	21-Jul-20	21-Jul-20
Sample ID				UST-NSIDEWALL-C	UST-NSIDEWALL-01	PLUME-ESIDEWALL- 01	PLUME-WSIDEWALL- 02	PLUME-SESIDEWAL 01	L- PLUME-WSIDEWALL- 01 DUP	01	C PLUME-SSIDEWALL	01	- URBAN-ESIDEWALL- 01	URBAN-FLOOR-01	URBAN-FLOOR03	01	URBAN-NSIDEWALL 03
Sample Depth				5 ft	8 ft	7.5 ft	8 ft	8 ft	9 ft	9 ft	5 ft	8 ft	3.5 ft	4 ft	4 ft	3.5 ft	3.5 ft
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				ERF	ERF	ERF	TALBU	ERF	ERF	ERF	ERF	ERF	TALBU	TALBU	TALBU	TALBU	TALBU
Laboratory Work Order				480-172301-1	480-172301-1	460-213025-1	480-173074-2 480-173074-3	480-172578-1	480-172578-1	480-172578-1	480-172462-1	480-172398-1	480-172688-1	480-172688-1 480-172688-5	480-173074-2 480-173074-8	480-172688-1	480-172688-1
Laboratory Sample ID Sample Type				480-172301-2	480-172301-1	460-213025-2	480-173074-3	480-172578-3	480-172578-2 Field Duplicate	480-172578-1	480-172462-1	480-172398-3	480-172688-1	480-172688-5	480-173074-8	480-172688-2	480-172688-4
	Units	NYSDEC-Part 375	NYSDEC CP-51	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial
Metals	mallia	ADDAB AFOC	-	-	-		-			-	1	-	125	447	12.0	10.0	10.7
Lead Semi-Volatile Organic Compounds	mg/kg	400 ^{AB} 450 ^C	n/v	-	-	-	-	-	-		-	-	135	147	12.0	13.3	13.7
Acenaphthene	µg/kg	100,000 _b ^{AB} 98,000 ^C	20,000 ^E	-	-	-	-	-	-	-	-	-	200 U	190 U	190 U	200 U	210 U
Acenaphthylene	µg/kg	100,000 ^{,AB} 107,000 ^C	100,000 ^E	-	-	-	-	-	-	· ·	-	-	200 U	190 U	190 U	200 U	210 U
Acetophenone	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	-	-	-	-	-	-	-	-	-	200 U	190 U	190 U	200 U	210 U
Anthracene Atrazine	μg/kg μg/kg	100,000 _b ^{AB} 1,000,000 _d ^C 100,000 _b ^{AB} 1,000,000 _d ^C	100,000 ^E n/v	-	-	-	-	-	-	-	-	-	200 U 200 U	190 U 190 U	190 U 190 U	200 U 200 U	210 U 210 U
Benzaldehyde	µg/kg	$100,000_{b}^{AB} 1,000,000_{d}^{C}$	n/v			-	-	-			-		200 U	190 U	190 U	200 U	210 U
Benzo(a)anthracene	µg/kg	1,000, ^{ABC}	1,000 ^E	-	-	-	-	-	-	-	-	-	200 U	240	190 U	57 J	210 U
Benzo(a)pyrene	µg/kg	1,000 ^{,AB} 22,000 ^C	1,000 ^E	-	-	· ·	-	-	-	-	-	-	200 U	290	190 U	65 J	67 J
Benzo(b)fluoranthene	µg/kg	1,000 ^{AB} 1,700 ^C	1,000 ^E	-	-	· ·	-	-	-	-	-	-	200 U	340	190 U	98 J	82 J
Benzo(g,h,i)perylene Benzo(k)fluoranthene	μg/kg μg/kg	100,000 _b ^{AB} 1,000,000 _d ^C 3.900 ^A 1.000 ^B 1.700 ^C	100,000 ^E 800 ^E					-					200 U 200 U	230 170 J	190 U 190 U	68 J 45 J	59 J 37 J
Biphenyl	μg/kg μg/kg	$3,900^{-1},000^{-1},700^{-1}$ $100,000^{AB}$ $1,000,000^{C}$	800- n/v										200 U	190 U	190 U	45 J 200 U	210 U
Bis(2-Chloroethoxy)methane	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	-	-	-		-	-	-	-	-	200 U	190 U	190 U	200 U	210 U
Bis(2-Chloroethyl)ether	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	-	-	-	-	-	-	-	-	-	200 U	190 U	190 U	200 U	210 U
Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	-	-	-	-	-	-	-	-	-	200 U	190 U	190 U	200 U	210 U
Bis(2-Ethylhexyl)phthalate (DEHP) Bromophenyl Phenyl Ether, 4-	μg/kg μg/kg	$100,000_{b}^{AB}$ 1,000,000 _d ^C 100,000 _b ^{AB} 1,000,000 _d ^C	n/v n/v										200 U 200 U	190 U 190 U	190 U 190 U	200 U 200 U	210 U 210 U
Butyl Benzyl Phthalate	µg/kg	$100,000_{b}^{AB} 1,000,000_{d}^{C}$	n/v		-	-	-	-		· .	-		200 U	350	190 U	200 U	210 U
Caprolactam	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v		-	-	-			-	-	-	200 U	190 U	190 U	200 U	210 U
Carbazole	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	-	-	-	-	-	-	-	-	-	200 U	30 J	190 U	200 U	210 U
Chloro-3-methyl phenol, 4- Chloroaniline, 4-	µg/kg	$100,000_{b}^{AB} 1,000,000_{d}^{C} 100,000_{b}^{AB} 1,000,000_{d}^{C}$	n/v	-	-	-	-	-	-	-	-	-	200 U 200 U	190 U 190 U	190 U 190 U	200 U 200 U	210 U 210 U
Chloronaphthalene. 2-	μg/kg μg/kg	$100,000_{b}^{AB} 1,000,000_{d}^{C}$	n/v n/v			-	-				-		200 U	190 U	190 U	200 U	210 U
Chlorophenol, 2- (ortho-Chlorophenol)	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v		-	-	-	-		· ·	-		380 U	370 U	360 U	380 U	410 U
Chlorophenyl Phenyl Ether, 4-	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	-	-	-	-	-	-	-	-	-	200 U	190 U	190 U	200 U	210 U
Chrysene	µg/kg	3,900 ^A 1,000 ^{BC}	1,000 ^E	-	-	-	-	-	-	-	-	-	200 U	270	190 U	70 J	77 J
Cresol, o- (Methylphenol, 2-) Cresol, p- (Methylphenol, 4-)	μg/kg μg/kg	100,000 _b ^{AB} 330 _f ^C 100,000 _b ^A 34,000 ^B 330 _f ^C	n/v n/v		-	-	-						200 U 380 U	190 U 370 U	190 U 360 U	200 U 380 U	210 U 410 U
Dibenzo(a,h)anthracene	µg/kg	330 ^{AB} 1,000,000 ^C	330 ^E				-				_		200 U	81 J	190 U	200 U	210 U
Dibenzofuran	µg/kg	59,000 ^A 14,000 ^B 210,000 ^C	n/v	-	-	-	-		-	-	-	-	200 U	190 U	190 U	200 U	210 U
Dibutyl Phthalate (DBP)	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	-	-	-	-		-	-	-	-	200 U	190 U	190 U	200 U	210 U
Dichlorobenzidine, 3,3'-	µg/kg	$100,000_{b}^{AB}$ 1,000,000_{c}^{C}	n/v	-	-	-	-	-	-	-	-	-	380 U	370 U	360 U	380 U	410 U
Dichlorophenol, 2,4- Diethyl Phthalate	μg/kg μg/kg	$100,000_{b}^{AB} 1,000,000_{d}^{C} 100,000_{b}^{AB} 1,000,000_{d}^{C}$	n/v n/v										200 U 200 U	190 U 190 U	190 U 190 U	200 U 200 U	210 U 210 U
Dimethyl Phthalate	µg/kg	100,000 ^B ^{AB} 1,000,000 ^C	n/v		-	-	-			· .	-		200 U	190 U	190 U	200 U	210 U
Dimethylphenol, 2,4-	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v	-	-	-	-	-	-	-	-	-	200 U	190 U	190 U	200 U	210 U
Dinitro-o-cresol, 4,6-	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	-	-	-	-	-	-	-	-	-	380 U	370 U	360 U	380 U	410 U
Dinitrophenol, 2,4- Dinitrotoluene, 2,4-	µg/kg	$100,000_{b}^{AB}$ 1,000,000 _d ^C 100,000 _b ^{AB} 1,000,000 _d ^C	n/v	-	-	-	-	-	-	-	-	-	1,900 U 200 U	1,800 U 190 U	1,800 U 190 U	1,900 U 200 U	2,100 U 210 U
Dinitrotoluene, 2,4-	μg/kg μg/kg	$100,000_{b}^{AB} 1,000,000_{d}^{C}$	n/v n/v			-	-				-		200 U	190 U	190 U	200 U	210 U
Di-n-Octyl phthalate	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v		-	-	-			· .	-		200 U	190 U	190 U	200 U	210 U
Fluoranthene	µg/kg	100,000 ^{AB} 1,000,000 ^C	100,000 ^E	-	-	-	-	-	-	-	-	-	200 U	410	190 U	110 J	140 J
Fluorene	µg/kg	100,000 _b ^{AB} 386,000 ^C	30,000 ^E	-	-	-	-	-	-	-	-	-	200 U	190 U	190 U	200 U	210 U
Hexachlorobenzene	µg/kg	1,200 ^A 330 ^B 3,200 ^C 100,000 ^{AB} 1,000,000 ^C	n/v	-	-	-	-	-	-	-	-	-	200 U 200 U	190 U 190 U	190 U 190 U	200 U 200 U	210 U 210 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene) Hexachlorocyclopentadiene	μg/kg μg/kg	$100,000_{b}^{AB} 1,000,000_{d}^{C}$	n/v n/v			-	-				-		200 U	190 U	190 U	200 U	210 U
Hexachloroethane	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v		-	-	-			· .	-		200 U	190 U	190 U	200 U	210 U
Indeno(1,2,3-cd)pyrene	µg/kg	500 ^{AB} 8,200 ^C	500 ^E	-	-	-	-	-	-	-	-	-	200 U	190	190 U	61 J	58 J
Isophorone	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	-	-	-	-		-	-	-	-	200 U	190 U	190 U	200 U	210 U
Methylnaphthalene, 2-	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C 100,000 _b ^{AB} 12,000 ^C	n/v	-	-	· ·		-	-	-	-	-	200 U	190 U 190 U	190 U	200 U	210 U 210 U
Naphthalene Nitroaniline, 2-	μg/kg μg/kg	$100,000_{b}^{AB} 1,000,000_{d}^{C}$	12,000 ^{DE} n/v		-								200 U 380 U	190 U 370 U	190 U 360 U	200 U 380 U	210 U 410 U
Nitroaniline, 3-	µg/kg	$100,000_{b}^{AB} 1,000,000_{d}^{C}$	n/v				-	-			-		380 U	370 U	360 U	380 U	410 U
Nitroaniline, 4-	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v	-	-	-	-	-	-	· ·	-	-	380 U	370 U	360 U	380 U	410 U
Nitrobenzene	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	-	-	-	-	-	-	· ·	-	-	200 U	190 U	190 U	200 U	210 U
Nitrophenol, 2- Nitrophenol, 4-	μg/kg μg/kg	100,000 _b ^{AB} 1,000,000 _d ^C 100,000 _b ^{AB} 1,000,000 _d ^C	n/v n/v	-		· ·		-	-	-	-	-	200 U 380 U	190 U 370 U	190 U 360 U	200 U 380 U	210 U 410 U
Nitrophenol, 4- N-Nitrosodi-n-Propylamine	μg/kg μg/kg	$100,000_{b}^{AB} 1,000,000_{d}^{C}$	n/v n/v										200 U	190 U	360 U 190 U	200 U	210 U
n-Nitrosodiphenylamine	µg/kg	$100,000_{b}^{AB} 1,000,000_{d}^{C}$	n/v	-	-	-	-	-	-	-	-		200 U	190 U	190 U	200 U	210 U
Pentachlorophenol	µg/kg	6,700 ^A 2,400 ^B 800 ^C	n/v	-	-	· ·		-	-	-	-	-	380 U *	370 U *	360 U	380 U *	410 U *
Phenanthrene	µg/kg	100,000 ^{AB} 1,000,000 ^C	100,000 ^E	-	-	· ·	· ·	-	-	-	-	-	200 U	160 J	190 U	60 J	52 J
Phenol Pyrene	µg/kg	100,000 _b ^{AB} 330 _f ^C 100,000 _b ^{AB} 1,000,000 _d ^C	n/v 100,000 ^E	-	-	· ·		-	-	-	-	-	200 U 200 U	190 U 360	190 U 190 U	200 U 100 J	210 U 100 J
Trichlorophenol, 2,4,5-	μg/kg μg/kg	$100,000_{b}$ $1,000,000_{d}$ $100,000_{b}$ AB $1,000,000_{d}$ C	100,000- n/v		-								200 U	190 U	190 U	200 U	210 U
Trichlorophenol, 2,4,6-	µg/kg	$100,000_{b}^{AB} 1,000,000_{d}^{C}$	n/v	-	-	-	-	-		· ·	-		200 U	190 U	190 U	200 U	210 U
SVOC - Tentatively Identified Compounds		· · · · · · ·											*			-	
Total SVOC TICs	µg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	ND	700 TJ	10,330 TJ	2,490 TJ	6,770 TJN
See notes on last page																	

Sample Location				North Sidewal		boundary	PLUME-WSIDEWALL- 02		SE Corner Confirmato	•		all Confirmatory	URBAN-ESIDEWALL- 01	URBAN-FLOOR-01	URBAN-FLOOR-03	01	L- URBAN-NSIDEWA
ample Date				13-Jul-20	13-Jul-20	9-Jul-20 PLUME-ESIDEWALL	28-Jul-20 PLUME-WSIDEWALL-	17-Jul-20 PLUME-SESIDEWALL	17-Jul-20 PLUME-WSIDEWALL	17-Jul-20 - PLUME-WSIDEWALL-	15-Jul-20 PLUME-SSIDEWALL-	14-Jul-20 PLUME-SSIDEWALL-	21-Jul-20 URBAN-ESIDEWALL-	21-Jul-20	28-Jul-20	21-Jul-20 URBAN-NSIDEWALI	21-Jul-20 L- URBAN-NSIDEWA
ample ID					UST-NSIDEWALL-01	01	02	01	01 DUP	01	С	01	01	URBAN-FLOOR-01	URBAN-FLOOR03	01	03
ample Depth ampling Company				5 ft STANTEC	8 ft STANTEC	7.5 ft STANTEC	8 ft STANTEC	8 ft STANTEC	9 ft STANTEC	9 ft STANTEC	5 ft STANTEC	8 ft STANTEC	3.5 ft STANTEC	4 ft STANTEC	4 ft STANTEC	3.5 ft STANTEC	3.5 ft STANTEC
aboratory				ERF	ERF	ERF	TALBU	ERF	ERF	ERF	ERF	ERF	TALBU	TALBU	TALBU	TALBU	TALBU
aboratory Work Order				480-172301-1	480-172301-1	460-213025-1	480-173074-2	480-172578-1	480-172578-1	480-172578-1	480-172462-1	480-172398-1	480-172688-1	480-172688-1	480-173074-2	480-172688-1	480-172688-1
Laboratory Sample ID				480-172301-2	480-172301-1	460-213025-2	480-173074-3	480-172578-3	480-172578-2 Field Duplicate	480-172578-1	480-172462-1	480-172398-3	480-172688-1	480-172688-5	480-173074-8	480-172688-2	480-172688-4
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial
Volatile Organic Compounds																	
	µg/kg	100,000 _b ^{AB} 50 ^C	n/v	28 U vs	130 U vs	6.2 U	28 U vs	140 U vs	30 U vs	29 UJ	27 U vsF1	28 U vs	-	-	-	T -	-
Benzene	µg/kg	4,800 ^A 2,900 ^B 60 ^C	60 ^{DE}	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Bromodichloromethane	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Bromoform (Tribromomethane)	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Bromomethane (Methyl bromide)	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Butylbenzene, n- Butylbenzene, sec- (2-Phenylbutane)	μg/kg μg/kg	100,000 ₆ ^{AB} 12,000 ^C 100,0005 ^{AB} 11,000 ^C	12,000 ^{DE} 11,000 ^{DE}	5.6 U vs 5.6 U vs	26 U vs 26 U vs	1.0 U 0.89 J	5.5 U vs 5.5 U vs	29 U vs 31 vs	6.0 U vs 6.0 U vs	5.7 U vs 5.7 U vs	5.3 U vs 5.3 U vs	5.7 U vs 5.7 U vs		-			-
Butylbenzene, tert-	µg/kg	100,000 _b ^{AB} 5,900 ^C	5,900 ^{DE}	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs		-	-	-	-
Carbon Disulfide	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	5.6 U vs	26 U vs	0.44 J	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Carbon Tetrachloride (Tetrachloromethane)	µg/kg	2,400 ^Å 1,400 ^B 760 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Chlorobenzene (Monochlorobenzene)	µg/kg	100,000 _b ^{AB} 1,100 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Chloroethane (Ethyl Chloride) Chloroform (Trichloromethane)	µg/kg µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C 49.000 ^A 10.000 ^B 370 ^C	n/v n/v	5.6 U vs 5.6 U vs	26 U vs 26 U vs	1.0 U 1.0 U	5.5 U vs 5.5 U vs	29 U vs 29 U vs	6.0 U vs 6.0 U vs	5.7 U vs 5.7 U vs	5.3 U vs 5.3 U vs	5.7 U vs 5.7 U vs	-	-	-		-
Chloromethane	μg/kg	49,000 10,000 370 100,000 ^{AB} 1,000,000 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs			-		-
Cyclohexane	µg/kg	$100,000_{\rm b}^{\rm AB}$ 1,000,000 _d ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Dibromo-3-Chloropropane, 1,2- (DBCP)	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vsF1	5.7 U vs	-	-	-	-	-
Dibromochloromethane	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Dichlorobenzene, 1,2-	µg/kg	100,000 _b ^{AB} 1,100 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Dichlorobenzene, 1,3- Dichlorobenzene, 1,4-	μg/kg μg/kg	49,000 ^A 17,000 ^B 2,400 ^C 13,000 ^A 9,800 ^B 1,800 ^C	n/v n/v	5.6 U vs 5.6 U vs	26 U vs 26 U vs	1.0 U 1.0 U	5.5 U vs 5.5 U vs	29 U vs 29 U vs	6.0 U vs 6.0 U vs	5.7 U vs 5.7 U vs	5.3 U vs 5.3 U vs	5.7 U vs 5.7 U vs		-			-
Dichlorodifluoromethane (Freon 12)	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-		
Dichloroethane, 1,1-	µg/kg	26,000 ^A 19,000 ^B 270 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Dichloroethane, 1,2-	µg/kg	3,100 ^A 2,300 ^B 20 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Dichloroethene, 1,1-	µg/kg	100,000 ₆ ^{AB} 330 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Dichloroethene, cis-1,2- Dichloroethene, trans-1,2-	µg/kg	100,000 _b ^A 59,000 ^B 250 ^C 100,000 _b ^{AB} 190 ^C	n/v	5.6 U vs 5.6 U vs	26 U vs 26 U vs	1.0 U 1.0 U	5.5 U vs 5.5 U vs	29 U vs 29 U vs	6.0 U vs 6.0 U vs	5.7 U vs	5.3 U vs 5.3 U vs	5.7 U vs 5.7 U vs	-	-	-	-	-
Dichloropropane, 1,2-	µg/kg µg/kg	100,000 ⁶ 190° 100,000 ^{AB} 1,000,000 ^C	n/v n/v	5.6 U vs 5.6 U vs	26 U VS 26 U VS	1.0 U	5.5 U vs 5.5 U vs	29 U vs 29 U vs	6.0 U vs	5.7 U vs 5.7 U vs	5.3 U vs 5.3 U vs	5.7 U vs 5.7 U vs					
Dichloropropene, cis-1,3-	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-		-	-
Dichloropropene, trans-1,3-	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Ethylbenzene	µg/kg	41,000 ^A 30,000 ^B 1,000 ^C	1,000 ^{DE}	5.6 U vs	6.2 Jvs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Ethylene Dibromide (Dibromoethane, 1,2-)	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 UJ	5.7 U vs	-	-	-	-	-
Hexanone, 2- (Methyl Butyl Ketone)	µg/kg	$100,000_{b}^{AB}$ $1,000,000_{d}^{C}$ $100,000_{b}^{AB}$ $1,000,000_{d}^{C}$	n/v 2,300 ^{DE}	28 U vs	22 Jvs	5.1 U 0.22 J	28 U vs	140 U vs	30 U vs	29 U F1vs	27 U vs	28 U vs	-	-	-	-	-
Isopropylbenzene Isopropyltoluene, p- (Cymene)	μg/kg μg/kg	$100,000_{\rm b}$ $1,000,000_{\rm d}$ $100,000_{\rm b}$	2,300 10,000 ^{DE}	5.6 U vs 5.6 U vs	13 Jvs 26 vs	0.22 J 1.7	5.5 U vs 5.5 U vs	29 U vs 33 vs	6.0 U vs 6.0 U vs	5.7 U vs 5.7 U vs	5.3 U vs 5.3 U vs	5.7 U vs 5.7 U vs					
Methyl Acetate	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v	28 U vs	130 U vs	5.1 U	28 U vs	140 U vs	30 U vs	29 U F1vs	27 U vs	28 U vs	-	-		-	
Methyl Ethyl Ketone (MEK) (2-Butanone)	µg/kg	100,000 _b ^{AB} 120 ^C	n/v	28 U vs	130 U vs	5.1 U	28 U vs	140 U vs	30 U vs	29 UJ	27 UJ	28 U vs	-	-	-	-	-
Methyl Isobutyl Ketone (MIBK)	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v	28 U vs	130 U vs	5.1 U	28 U vs	140 U vs	30 U vs	29 U F1vs	27 U vsF1	28 U vs	-	-	-	-	-
Methyl tert-butyl ether (MTBE)	µg/kg	100,000 ^A 62,000 ^B 930 ^C	930 ^D	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Methylcyclohexane	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v n/v	5.6 U vs	11 Jvs	1.0 U 0.59 J	5.5 U vs	15 Jvs	6.0 U vs 6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Methylene Chloride (Dichloromethane) Naphthalene	μg/kg μg/kg	100,000 _b ^A 51,000 ^B 50 ^C 100,000 _b ^{AB} 12,000 ^C	12,000 ^{DE}	5.6 U vs 5.6 U vs	26 U vs 160 vs	1.5 U	8.9 vs 5.5 U vs	29 U vs 29 U vs	6.0 U vs	5.7 U vs 5.7 U vs	5.3 U vs 5.3 U vs	5.7 U vs 5.7 U vs					
Propylbenzene, n-	µg/kg	100,000 ^{AB} 3,900 ^C	3,900 ^{DE}	5.6 U vs	52 vs	0.22 J	5.5 U vs	9.5 Jvs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-		-	-
Styrene	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-		-
Tetrachloroethane, 1,1,2,2-	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	5.6 U vs	7.2 Jvs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U F1vs	5.3 UJ	5.7 U vs	-	-	-	-	-
Tetrachloroethene (PCE)	µg/kg	19,000 ^A 5,500 ^B 1,300 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Toluene Trichlorobenzene, 1,2,4-	µg/kg	100,000 _b ^{AB} 700 ^C 100,000 _b ^{AB} 1,000,000 _d ^C	700 ^{DE} n/v	5.6 U vs 5.6 U vs	26 U vs 26 U vs	1.0 U 1.0 U	5.5 U vs 5.5 U vs	29 U vs 29 U vs	6.0 U vs 6.0 U vs	5.7 U vs 5.7 U vs	5.3 U vs 5.3 U vs	5.7 U vs 5.7 U vs	-	-	-	-	-
Trichloroethane, 1,2,4-	μg/kg μg/kg	100,000 _b 1,000,000 _d 100,000 _b ^{AB} 680 ^C	n/v n/v	5.6 U vs 5.6 U vs	26 U vs 26 U vs	1.0 U	5.5 U vs 5.5 U vs	29 U vs 29 U vs	6.0 U vs	5.7 U vs 5.7 U vs	5.3 U vs 5.3 U vs	5.7 U vs 5.7 U vs			-		
Trichloroethane, 1,1,2-	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 UJ	5.7 U vs	-	-	-	-	-
Trichloroethene (TCE)	µg/kg	21,000 ^Å 10,000 ^B 470 ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Trichlorofluoromethane (Freon 11)	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Trichlorotrifluoroethane (Freon 113)	µg/kg	100,000 _b ^{AB} 1,000,000 _d ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,3,5-	μg/kg μg/kg	52,000 ^A 47,000 ^B 3,600 ^C 52,000 ^A 47,000 ^B 8,400 ^C	3,600 ^{DE} 8,400 ^{DE}	5.6 U vs 5.6 U vs	510 vs 140 vs	0.74 J 0.30 J	5.5 U vs 5.5 U vs	31 vs 29 U vs	6.0 U vs 6.0 U vs	5.7 U vs 5.7 U vs	5.3 U vs 5.3 U vs	5.7 U vs 5.7 U vs		-			
Vinyl Chloride	μg/kg μg/kg	52,000 ⁻⁴ 7,000 ⁻ 8,400 ⁻ 900 ^A 210 ^B 20 ^C	8,400 n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs		-			
Xylene, m & p-	µg/kg	100.000 h a ^{AB} 1.600 c	n/v	11 U vs	29 Jvs	1.0 U	11 U vs	57 U vs	12 U vs	11 U vs	11 U vs	11 U vs	-	-	-		-
Xylene, o-	µg/kg	100,000 _{b.p} ^{AB} 1,600 _p ^C	n/v	5.6 U vs	26 U vs	1.0 U	5.5 U vs	29 U vs	6.0 U vs	5.7 U vs	5.3 U vs	5.7 U vs	-	-	-	-	-
Xylenes, Total	µg/kg	100,000 _b ^{AB} 1,600 ^C	260 ^{DE}	11 U vs	29 Jvs	2.1 U	11 U vs	57 U vs	12 U vs	11 U vs	11 U vs	11 U vs	-	-	-	-	-
/OC - Tentatively Identified Compounds	i																
otal VOC TICs	µg/kg	n/v	n/v	ND	3,270 TJN	223 TJN		4,070 TJN	ND	ND	ND	ND					

diff max max <th>Sample Location</th> <th></th> <th></th> <th></th> <th>URBAN-NSIDEWALL- 04</th> <th>URBAN-SSIDEWALL- 02</th> <th>URBAN-SSIDEWALL- 03</th> <th>URBAN-WSIDEWALL- 01</th> <th>URBAN-WSIDEWALL- 02</th> <th>UST Source Area</th> <th>12.5' South of Sidewalk, 7.5' down</th> <th>27' South of Sidewalk</th> <th>We</th> <th>est Sidewall Confirma</th> <th>tory</th>	Sample Location				URBAN-NSIDEWALL- 04	URBAN-SSIDEWALL- 02	URBAN-SSIDEWALL- 03	URBAN-WSIDEWALL- 01	URBAN-WSIDEWALL- 02	UST Source Area	12.5' South of Sidewalk, 7.5' down	27' South of Sidewalk	We	est Sidewall Confirma	tory
Image Image <th< th=""><th>Sample Date</th><th></th><th></th><th> </th><th></th><th>28-Jul-20</th><th>5-Aug-20</th><th>28-Jul-20</th><th></th><th>23-Jul-20</th><th></th><th>9-Jul-20</th><th>14-Jul-20</th><th></th><th>15-Jul-20</th></th<>	Sample Date					28-Jul-20	5-Aug-20	28-Jul-20		23-Jul-20		9-Jul-20	14-Jul-20		15-Jul-20
	Sample ID									ESIDEWALL - C	UST-ESIDEWALL-01	UST-ESIDEWALL-02	UST-WSIDEWALL-01		UST-WSIDEWALL-02
which when when when when when when when whe	•														
name name <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
scheen pring scheen pringres <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
math math <t< td=""><td>Laboratory Work Order</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>480-172462-1</td></t<>	Laboratory Work Order														480-172462-1
Box Box <td>Laboratory Sample ID</td> <td></td> <td></td> <td></td> <td>480-173074-4</td> <td>480-173074-7</td> <td>480-173445-1</td> <td>480-173074-1</td> <td>480-173074-2</td> <td>480-172912-1</td> <td>480-172151-1</td> <td>460-213025-1</td> <td>480-172398-1</td> <td>480-172398-2</td> <td>480-172462-2</td>	Laboratory Sample ID				480-173074-4	480-173074-7	480-173445-1	480-173074-1	480-173074-2	480-172912-1	480-172151-1	460-213025-1	480-172398-1	480-172398-2	480-172462-2
Instruct	Sample Type													Field Duplicate	
bit bit <th></th> <th>Units</th> <th>NYSDEC-Part 375</th> <th>NYSDEC CP-51</th> <th>Initial</th>		Units	NYSDEC-Part 375	NYSDEC CP-51	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial
bit bit <td>Metals</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Metals							1							
	Lead	mg/kg	400 ^{AB} 450 ^C	n/v	10.7	13.4	8.4	24.1	5.4	-	-	-	-	-	-
Mathem Mathem Mathem Mathem Mathem Mathem Mathem Mathem Mathem Mathema Mathma Mathma Mathma <td>Semi-Volatile Organic Compounds</td> <td></td>	Semi-Volatile Organic Compounds														
	Acenaphthene	µg/kg	100,000 _b ^{AB} 98,000 ^C	20,000 ^E	190 U	190 U	190 U	190 U	200 U	-	-	-	-	-	-
minu minu <thminu< th=""> minu minu <thm< td=""><td>Acenaphthylene</td><td>µg/kg</td><td></td><td>100,000^E</td><td>190 U</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></thm<></thminu<>	Acenaphthylene	µg/kg		100,000 ^E	190 U					-	-	-	-	-	-
mark mark <th< td=""><td>Acetophenone</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Acetophenone									-	-	-	-	-	-
conditional dot of the set	Anthracene									-	-	-	-	-	-
wale wale <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></th<>										-	-	-	-	-	
Second process Second										-		-	-	-	-
construction lab lab S2															
										-				-	
θeam θeam Box Box<										-	· ·	-	-	-	
phery phery <th< td=""><td>Benzo(k)fluoranthene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td></td></th<>	Benzo(k)fluoranthene									-		-	-	-	
mich mich <th< td=""><td>Biphenyl</td><td></td><td>100,000_b^{AB} 1,000,000_d^C</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Biphenyl		100,000 _b ^{AB} 1,000,000 _d ^C							-	-	-	-	-	-
Mache Constraint Mache Constraint<	Bis(2-Chloroethoxy)methane		100,000 _b ^{AB} 1,000,000 _d ^C							-		-	-	-	-
Bits Or Non-sequence is a - set of	Bis(2-Chloroethyl)ether									-		-	-	-	-
member A	Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	µg/kg	100,000 ^{AB} 1,000,000 ^C	n/v	190 U	190 U			200 U	-	-	-	-	-	-
ny field	Bis(2-Ethylhexyl)phthalate (DEHP)	µg/kg	100,000 ^{AB} 1,000,000 ^C							-	-	-	-	-	-
spinsof spinsof <t< td=""><td>Bromophenyl Phenyl Ether, 4-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	Bromophenyl Phenyl Ether, 4-									-	-	-	-	-	-
selection isolary	Butyl Benzyl Phthalate									-	-	-	-	-	· ·
bick-setup bick-se	Caprolactam										-	-	-	-	-
Substrate Substrate <t< td=""><td>Carbazole</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>· ·</td></t<>	Carbazole									-	-	-	-	-	· ·
biosegradium biosegradium<										-	-	-	-	-	-
Interpretation interpr										-	-	-	-	-	-
Interplane inport No NO NO NO NO										-	-	-	-	-	· ·
Inspire Up bit 3.30 ⁴ 1.00 ⁴ 1.00 ⁴ 1.00 ⁴ 2.00 ⁴ 1.00 ⁴ 2.00 ⁴ 1.00 ⁴ 2.00 ⁴ 1.00 ⁴ <th< td=""><td></td><td></td><td>100,000⁶ - 1,000,000⁶</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>			100,000 ⁶ - 1,000,000 ⁶							-	-	-	-	-	-
miniol miniol<										-	-	-	-	-	-
med. p. (miny plane), +) mispace mod. p. (miny plane), +)												-		-	
between															
beschering bink Bood														_	
bind mode mode <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></th<>														-	
bitch bitch <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></th<>														-	
higher behaviour index											-	-	-	-	
network ypin 10000, ⁴ 100000, ⁴ 10000, ⁴ 1000	Dichlorophenol, 2,4-		100.000^{AB} $1.000.000^{C}$								-	-	-	-	
minimative minimat	Diethyl Phthalate									-	-		-	-	
imitery by a 100,000, ² /2 100,000, ² /2 w/V inv 370 U 190 U 190 U 190 U 200 U -	Dimethyl Phthalate										-	-	-	-	
initial constrained of the second of the	Dimethylphenol, 2,4-										-	-	-	-	
initial control intervalues 2.4 initial contro	Dinitro-o-cresol, 4,6-		100,000 _b ^{AB} 1,000,000 _d ^C							-	-	-	-	-	· ·
initradiuse, 2.4 µg/s 100.00, ⁶ 100.00,0, ⁶ 10	Dinitrophenol, 2,4-			n/v	1,900 U	1,900 U	1,800 U	1,800 U F2	1,900 U	-	-	-	-	-	· ·
in-Oct phthalate ip for up on the for	Dinitrotoluene, 2,4-			n/v	190 U	190 U	190 U	190 U	200 U	-	-	-	-	-	-
ubarane up 6 100,000, ⁴ 100,000, ⁶ 100,000,00, ⁶ 100,000, ⁶ 1	Dinitrotoluene, 2,6-	µg/kg		n/v						-	-	-	-	-	
uburene up/g 100.000, ⁴ 388.000 ⁶ 30.00 ⁶ 190 U 1	Di-n-Octyl phthalate			n/v						-	-	-	-	-	-
lescal-londenzame yp/sq 1,200 ⁺ 320 ⁺ 32,00 ⁺ 100,00,0 ⁺ 100,00,00,0 ⁺	Fluoranthene									-		-	-	-	-
iscachiorol.3-buildinge (Hoscolorol.5-buildinge) nv 190 U 190 U 190 U 200 U - - - - </td <td>Fluorene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>· ·</td>	Fluorene									-	-	-	-	-	· ·
beachborocyclopentadione µg/kg 100,000, ⁴ 1,000,000, ⁵ N/V 190 U 190 U 190 U 200 U -	Hexachlorobenzene									-	-	-	-	-	-
lexachlorechane μg ⁵ kg 100,000, ⁶ 1,000,000, ⁶ 0, ⁷ 0,000,00, ⁶ 100,000,	Hexachlorobutadiene (Hexachloro-1,3-butadiene)									-	-	-	-	-	-
defand (1.3cd) pyrene µg/kg 500, ^{Ad} 8, 200 ^{-C} S00 ^{Ad} 1, 900, 000, ^C NV 190 U 190 U 190 U 200 U - - - - </td <td>Hexachlorocyclopentadiene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Hexachlorocyclopentadiene									-		-	-	-	-
opchore w 190 U 190 U 190 U 190 U 200 U - - - -<				-						-		-	-	-	
tethylaphalene,2· μg/kg 100.000, ⁴¹ 1,000.00, ⁶ n/v 190 U 190 U 190 U 200 U - - - - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td>										-	-	-	-	-	
laphthalene up/g 100,000, ⁴⁶ 12,000 ^C 12,000 ^C 190,U 190,U 190,U 200,U - -			100,000b 1,000,000d C							-	-	-	-	-	
ittraaniline, 2- jujkg 100,000, ^{ka} h 1,000,000, ^{co} n/v 370 U 370 U 360 U 380 U -										-	· ·	-	-	-	
ittraamiling 3- jug/kg 100.000, ^{6k} 10			100,000b 12,000 100,000 ^{AB} 1,000,000 ^C							-				-	
litroaniline, 4- ug/kg 100,000_A^{AB} 1,000,000_G^{C} n/v 370 U 370 U 360 U 360 U F2 380 U - <td></td> <td></td> <td>100,000_b 1,000,000_d</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td>			100,000 _b 1,000,000 _d							-		-	-	-	
lithophenol yg/kg 100,000, ^{AB} 1,000,000, ^C n/v 190 U 190 U 190 U 200 U - </td <td>Nitroaniline, 4-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>· ·</td> <td>-</td> <td></td> <td>-</td> <td>· ·</td>	Nitroaniline, 4-									-	· ·	-		-	· ·
hubble hubb	Nitrobenzene									-	· ·	-		-	
http://space http://space 100,000_A^B 1,000,000_C^C n/v 370 U 370 U 370 U 360 U 380 U -	Nitrophenol, 2-									-	-	-	-	-	· ·
Initiase yg/kg 100,000_A^B 1,000,000_C^C n/v 190 U 190 U 190 U 190 U 200 U - </td <td>Nitrophenol, 4-</td> <td></td> <td>100,000^{AB} 1,000,000^C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Nitrophenol, 4-		100,000 ^{AB} 1,000,000 ^C							-	-	-	-	-	-
-Nitrosoliphenylamine µg/kg 100,000,A ^B 1,000,000,C n/v 190 U 190 U 190 U 200 U -	N-Nitrosodi-n-Propylamine		100.000 ^{AB} 1.000.000 ^C							-	-	-	-	-	-
international print µg/kg 6,700 ^A 2,400 ^A 4,000,000 ^C d n/v 370 U 370 U 360 U 360 U 380 U -<	n-Nitrosodiphenylamine		100,000 _b ^{AB} 1,000,000 _d ^C			190 U		190 U		-		-	-	-	-
henanthrene µg/kg 100,000, ^{AB} 1,000,000, ^C 100,000, ^B 330, ^C 100 U 190 U 190 U 200 U - <td>Pentachlorophenol</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Pentachlorophenol									-		-	-	-	-
henol µg/kg 100,000,A ^B 330,C n/v 190 U 190 U 190 U 200 U -	Phenanthrene		100,000 _b ^{AB} 1,000,000 _d ^C	100,000 ^E	190 U		190 U		200 U	-		-	-	-	-
richlorophenol, 2,4,5- richlorophenol, 2,4,6- WCC - Tentatively Identified Compounds	Phenol		100,000 _b ^{AB} 330 _f ^C	n/v		190 U				-	-	-	-	-	
richlorophenol, 2,4,5- richlorophenol, 2,4,6- WOC - Tentatively Identified Compounds	Pyrene		100,000 ^{AB} 1,000,000 ^C	100,000 ^E						-	-	-	-	-	
richlorophenol, 2,4,6- µg/kg 100,000, ^{AB} 1,000,000, ^C n/v 190 190 190 190 200	Trichlorophenol, 2,4,5-	µg/kg		n/v						-	-	-	-	-	-
	Trichlorophenol, 2,4,6-		100,000 ^{AB} 1,000,000 ^C	n/v	190 U	190 U	190 U	190 U	200 U	-		-	-	-	-
	SVOC - Tentatively Identified Compounds														
		ua/ka	n/v	n/v	ND	520 T.IN	ND	ND	ND	-	-	-	-	-	-

math math <th< th=""><th>instruct Image Baller Baller</th><th>Sample Location</th><th></th><th></th><th></th><th>URBAN-NSIDEWALL- 04</th><th>URBAN-SSIDEWALL- 02</th><th>URBAN-SSIDEWALL- 03</th><th>URBAN-WSIDEWALL</th><th>URBAN-WSIDEWALL-</th><th>UST Source Area</th><th>12.5' South of Sidewalk, 7.5' down</th><th>27' South of Sidewalk</th><th>w W</th><th>est Sidewall Confirma</th><th>tory</th></th<>	instruct Image Baller	Sample Location				URBAN-NSIDEWALL- 04	URBAN-SSIDEWALL- 02	URBAN-SSIDEWALL- 03	URBAN-WSIDEWALL	URBAN-WSIDEWALL-	UST Source Area	12.5' South of Sidewalk, 7.5' down	27' South of Sidewalk	w W	est Sidewall Confirma	tory
member net net<	Shift A Image B <th< th=""><th>Sample Date</th><th></th><th></th><th></th><th>28-Jul-20</th><th>28-Jul-20</th><th>5-Aug-20</th><th></th><th>28-Jul-20</th><th>23-Jul-20</th><th></th><th>9-Jul-20</th><th>14-Jul-20</th><th></th><th>15-Jul-20</th></th<>	Sample Date				28-Jul-20	28-Jul-20	5-Aug-20		28-Jul-20	23-Jul-20		9-Jul-20	14-Jul-20		15-Jul-20
Subs Change Image Change State State <th>Bandy Depairs (and Depairs Constrained) Instrained (and Depairs) Bandy (and Depairs) <ths< th=""><th>Sample ID</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ESIDEWALL - C</th><th>UST-ESIDEWALL-01</th><th>UST-ESIDEWALL-02</th><th>UST-WSIDEWALL-01</th><th></th><th>UST-WSIDEWALL-0</th></ths<></th>	Bandy Depairs (and Depairs Constrained) Instrained (and Depairs) Bandy (and Depairs) <ths< th=""><th>Sample ID</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ESIDEWALL - C</th><th>UST-ESIDEWALL-01</th><th>UST-ESIDEWALL-02</th><th>UST-WSIDEWALL-01</th><th></th><th>UST-WSIDEWALL-0</th></ths<>	Sample ID									ESIDEWALL - C	UST-ESIDEWALL-01	UST-ESIDEWALL-02	UST-WSIDEWALL-01		UST-WSIDEWALL-0
Date Firsters Firsters <th< th=""><th>Interface FIANTER FIANTER</th><th>•</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Interface FIANTER	•														
states in the base	Laberate France Bate Trades B								STANTEC		STANTEC	STANTEC				STANTEC
statury alter bit mater mater de 7724/2 de 7726/2 de 7726/2 <thde 2<="" 7726="" th=""></thde>	Lake market Part of the second s															
mpt mpt <th>Same Partie Professor Partie Profe</th> <th></th>	Same Partie Professor Partie Profe															
Image Martice Parts Number Parts	Description Unit WINDE CPUID Name Name <th></th> <th></th> <th></th> <th></th> <th>480-1/30/4-4</th> <th>480-1/30/4-/</th> <th>480-173445-1</th> <th>480-1/30/4-1</th> <th>480-173074-2</th> <th>480-172912-1</th> <th>480-1/2151-1</th> <th>460-213025-1</th> <th>480-172398-1</th> <th></th> <th>480-1/2462-2</th>					480-1/30/4-4	480-1/30/4-/	480-173445-1	480-1/30/4-1	480-173074-2	480-172912-1	480-1/2151-1	460-213025-1	480-172398-1		480-1/2462-2
State State <th< th=""><th>Access Boole Hump "M" PV I I PV BOUL PU BOUL PU PU</th><th>Sample Type</th><th>Units</th><th>NYSDEC-Part 375</th><th>NYSDEC CP-51</th><th>Initial</th><th>Initial</th><th>Initial</th><th>Initial</th><th>Initial</th><th>Initial</th><th>Initial</th><th>Initial</th><th>Initial</th><th></th><th>Initial</th></th<>	Access Boole Hump "M" PV I I PV BOUL PU BOUL PU	Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial		Initial
State State <th< td=""><td>Action Section Unit Not Not Not Not Not Not Not Not Not No</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Action Section Unit Not Not Not Not Not Not Not Not Not No															
constrained issue data constrained issue data constrained	Bacea Imp Add * 2 Mode M C -	° 1		400.000 AB 50C	-	T	[[<u>г</u> г	20.11.00	12 h/s	10	20111	20 11.00	20.11.0
	Bandbillower Important Second Processing Important Sec					-		-	-	-						
namber finderenden namber finderenden serverser server serverser serverser serverser server	Bencher, Franzensensensensensensensensensensensensense		µg/kg			-	-	-	-	-						
distanta - - - - </td <td>Bindbookses Display Display</td> <td></td> <td>µg/kg</td> <td>100,000^{AB} 1,000,000^C_d</td> <td>n/v</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Bindbookses Display		µg/kg	100,000 ^{AB} 1,000,000 ^C _d	n/v	-	-	-	-	-						
observer. objet 1000000000000000000000000000000000000	Bitchersonser: Provybation app 10000 ⁴					-	-	-	-	-						
dotes dotes <th< td=""><td>Bindhearnan, brit bit Ballar, String 6,00⁻² 1 1 Ballar, String 6,00⁻² 5,00⁻² 0⁻² <</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Bindhearnan, brit bit Ballar, String 6,00 ⁻² 1 1 Ballar, String 6,00 ⁻² 5,00 ⁻² 0 ⁻² <					-	-	-	-	-						
Biologic Marketing Biologi	Cale of During Div - - - -			100,000 _b ^{AB} 5,000 ^C		-	-	-	-	-						
abox 1 1 1 1 1 1 1 1 1 1 0 30 /s 51 /s /s <t< td=""><td>Calcol Transcripting (b) L, (c) <thl, (c)<="" th=""> <</thl,></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Calcol Transcripting (b) L, (c) L, (c) <thl, (c)<="" th=""> <</thl,>															
machemen (beordenstation) element (beordenstat	Chardborns MicroCrassizered joing 000.05, 11.000, 100.					-	-	-	-	-						
new mere find (Ducking) in the construction of the construction o	Choosename (Chr (Choise) up a (0000, "1000", "		µg/kg	100,000 _b ^{AB} 1,100 ^C		-	-	-	-	-						
Incometence	Debusyme opposite		µg/kg			-	-	-	-	-						
upbelser	Chardbarrand open 100000 ⁺ /- 00000 ⁺ /- 00000 ⁺ /- 0000 ⁺ /-					-	-	-	-	-						
barrow-O-finanzana 1.2 CCP - -	Determode Light Light <thlight< th=""> Light Light</thlight<>					-	-	-	-	-						
biomoshime	Bioscontinuerity up/s 1000000000000000000000000000000000000								-							
determinents 2 - - - - 550 vs 550 vs 110 550 vs 570 vs 550 vs 550 vs 550 vs 510 vs 550 v	Debiconstrume, 1.2 uping topologies, 100 ⁻¹ m.v - - - S5 Uva S5 Uva 11 U S5 Uva S5 Uva <ths5 th="" uva<=""> S5 Uva S5 U</ths5>					-	-	-	-	-						
checkensensis with # 4000 Trade 2.00° m/ - - - - 550 with 500 with 500 with	Disk Disk <thdisk< th=""> Disk Disk <thd< td=""><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>1.1 U</td><td></td><td></td><td></td></thd<></thdisk<>					-	-	-	-	-			1.1 U			
selected.marentere (Fron 17) and (100,000 ²) and (100,00	Disklosticonsentse (Frien 12) Up B 100000, ⁴⁺ 10000, ⁴⁺ 100000, ⁴⁺ 100000, ⁴⁺ 100000, ⁴⁺ 100000, ⁴⁺ 10000, ⁴⁺ 100000, ⁴⁺ 100000, ⁴⁺ 10000, ⁴⁺ 10000, ⁴⁺ 10000, ⁴⁺ 100000, ⁴⁺			49,000 ^A 17,000 ^B 2,400 ^C		-	-	-	-	-						
calloreding, 1, 1 isple 2.000, 15.00 ² 20 ² nv - - - 5.00 vs 5.50 vs 11.00 5.90 vs 5.50 vs 5	Diable Delations: 1:1 up of b 3 8 0 U f 1 0 U f 5 U u f 6 U u f 5 U u f					-		-	-	-						
biologeners 1.2 up by biologeners 1.1 U 5.9 Uw 1.1 U 5.9 Uw 5.9	Dickhordensen, 1-2- upper 3,107-2,307-2,0° n/v - - - - 5,50 usy 5,50 usy 1,10 5,90 usy 6,70 usy Derivordensen, 0:1-2- upper 100,007, 50,007 2,00° n/v - - 5,80 usy 5,50 usy 1,10 5,90 usy 6,70 usy Derivordensen, 0:1-2- upper 100,007, 50,007 2,00° n/v - - 5,80 usy 5,50 usy 1,10 5,90 usy 6,70 usy Derivordensen, 1:2- upper 100,007, 50,000,00° n/v - - 5,80 usy 5,50 usy 1,110 5,90 usy 6,70 usy Derivordensen, 1:2- upper 100,007, 50,000,00° n/v - - - 5,80 usy 5,50 usy 1,110 5,90 usy 6,70 usy Derivordensen, 1:2- upper 100,000,7° 100,000,7° 100,000,7° 100,000,7° 100,000,7° 100,000,7° 100,000,7° 100,000,7° 100,000,7° 100,000,7° 100,000,7° 100,000,7° 100,000,7° 100,000,7° 10					-	-	-	-	-						
extensemente, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Dichlosoptems, 1,1- upbg 100,00, ⁴ 300 ⁷ vi - - - - 6.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Dehosptems, ran-1,2- upbg 100,00, ⁴ 100 ⁷ vi - - - 6.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Dehosptems, ran-1,2- upbg 100,00, ⁴ 1000 vi - - 6.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Dehosptems, ran-1,3- upbg 100,00, ⁴ 1000 vi - - 6.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Dehosptems, ran-1,3- upbg 100,00, ⁴ 1000 vi - - 6.9 Uvs 6.5 Uvs 0.8 Uvs 5.7 Uvs Ehytern Disonet, 100,000, ⁴ 1000 vi - - - 6.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Belytern Disonet, 100,000, ⁴ 1000 vi - - - 6.9 Uvs 5.5 Uvs 5.0 Uvs 5.7 Uvs Dis					-	-	-	-	-						
ekbronenes, sin-1.2. Upb 1 100.00, "sin or 200" exp	Dichlorenter, di-12 Up30 U 00.00, ² bio 0, ² bio ² NV - - - - 5.0 Uvs 5.1 Uvs 5.7 Uvs 5.7 Uvs Dichlorenter, tim-12- H95 10.000, ² bio 0, ² bio 0, ² bio 0, ² NV - - 5.0 Uvs 5.1 Uvs 5.1 Uvs 5.7 Uvs Dichlorenter, tim-12- H95 10.000, ² bio 0, ² bio 0, ² NV - - - 5.0 Uvs 5.1 Uvs 5.1 Uvs 5.7 Uvs Dichlorenter, tim-12- H95 10.000, ² bio 0, ² NV - - - 5.0 Uvs 5.1 Uvs 5.1 Uvs 5.7 Uvs Einylenzene H95 10.000, ² bio 0, ² NV - - - 5.0 Uvs 5.7 Uvs Dichorenter, tim-12- H95 10.000, ² bio 0, ² NV - - 5.0 Uvs															
characterization yping flux bit on 000, ⁴ 1000 r/v - - - - <td>Dickborgenergene, 12-2 upple 100,000,⁴ 100,000,⁴ N/V - - - - 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Dickborgene, 12-3 Upple 100,000,⁴ 100,000,⁴ N/V - - - - 5.8 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Dickborgene, 13-3 Upple 100,000,⁴ 100,000,⁴ N/V - - - - 5.8 Uvs 5.5 Uvs 1.1 U 5.8 Uvs 5.7 Uvs Ehylwen 00 Upple 100,000,⁴ 100,000,⁴ 100,000,⁴ 100,000</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Dickborgenergene, 12-2 upple 100,000, ⁴ 100,000, ⁴ N/V - - - - 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Dickborgene, 12-3 Upple 100,000, ⁴ 100,000, ⁴ N/V - - - - 5.8 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Dickborgene, 13-3 Upple 100,000, ⁴ 100,000, ⁴ N/V - - - - 5.8 Uvs 5.5 Uvs 1.1 U 5.8 Uvs 5.7 Uvs Ehylwen 00 Upple 100,000, ⁴ 100,000					-		-	-	-						
ehborgsprein, 12- ehborgsprein,	Dehotopropen. 1.2- up by 100.00, "10		µg/kg		n/v	-		-	-	-	5.9 U vs	5.5 U vs	1.1 U	5.9 U vs	5.7 U vs	5.5 U vs
index operation jpg jpg jbg	Dichtorgonen, trans-1.3- up/g 10,000,0 ⁴ , 10,000,0 ⁴ , 2 n/v - - - 5.8 U vs 5.5 U vs 5.7 U vs Einytenzame Up/g 10,000,0 ⁴ , 10,000,00 ⁴ , 10,000,0 ⁴		µg/kg			-	-	-	-	-						
https://seame jpbig	Emydenzene up 6 1000 ⁰ 1.000 ⁰ 1.000 ⁰ 5.7 U vs Emyden Disronie (Disronechan, 1.2) up 6 100.000, ⁶ 1.0000, ⁶ 1.00000, ⁶ 1.0000, ⁶ 1.00000, ⁶					-	-	-	-	-						
https://standars.12.1 upits 100.000_{1} ¹⁰ (0.0000_{1} ¹⁰ (0.0000_{1}^{10}) 100.000_{1} ¹⁰ (0.0000_{1}^{10}) 2.300 ¹⁰ (0.0000_{1}^{10}) <t< td=""><td>Ethylene Dibornie (Dibornethane, 1.2) up 3 100,000,⁴ 100,000,⁴</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Ethylene Dibornie (Dibornethane, 1.2) up 3 100,000, ⁴					-	-	-	-	-						
examone, 2.4 Memby Bunk Keenon) in page 100,000, ⁶ 100,000,000, ⁶ 100,000,000, ⁶ 100,000,000, ⁶ 100,000,000, ⁶ 100,000,000, ⁶ 100,000,000, ⁶ 100,000,000,000, ⁶ 100,000,000,000,000,000,000,000,000,000	Heatanoneupfor100,000, $\frac{1}{6}$ 100,000, $\frac{1}{6}$ 100,000, $\frac{1}{6}$ 100,000, $\frac{1}{6}$ 100,000, $\frac{1}{6}$ 200 Us28 Uvs58 Uvs<															
oppoplications ip by 100.000, [±]	lsoppopularization uping 100.000, ⁶⁺ , 100.000, ⁰⁺ , 100.					-			-	-						
μethy Acatate μp/s 100.000, ⁶ 1	Methy Acetate µg/kg 100.000," $1000,000,"$ nv - - - - 30 Uvs 22 Uvs 5.4 U 30 Uvs 27 Uvs Methy het chuld whet (MTRE) µg/kg 100.000," 10,000,00,00,00,00,00,00,00,00,00,00,00,		µg/kg			-	-	-	-	-						
μethy Acatate μp/s 100.000, ⁶ 1	Methy Acetate µg/kg 100.000," $1.000,000,"$ n/v - - - - 30 Uvs 22 Uvs 5.4 U 30 Uvs 27 Uvs Methy/isochorane µg/kg 100.000," 10000," 10000," 10000," n/v - - 5.9 Uvs 5.5 Uvs 11 5.9 Uvs 5.7 Uvs Naphthere 100.000," 12,0000," n/v - - - 5.9 Uvs 5.5 Uvs 11 5.9 Uvs 5.7 Uvs Prophenzene, n µg/kg 100.000," 1000,000," n/v - - 5.9 Uvs 5.5 Uvs 11.1 U 5.9 Uvs 5.		µg/kg		10,000 ^{DE}	-	-	-	-	-						
ethyl isoburk (ktone (MIBk) μg/kg 100,000, ^k / ₂ ,000,000, ^k / ₂ n/v - - - - 30 Uvs 54 Uvs 54 Uvs 28 Uvs 28 Uvs 28 Uvs 28 Uvs 54 Uvs 30 Uvs 54 Uvs </td <td>Methy labolity/ ketone (MIBK) µp/kg 100,000,⁴⁶ 1,000,000,² nv - - - - 30 Us 28 Uvs 54 U 30 UJ 28 Uvs Methy loch/up/chexane µp/kg 100,000,⁴⁶ 1,000,000,² nv - - 50 Uvs 55 Uvs 51 Uvs 57 Uvs 57 Uvs Methyloch/dvide (bichtormethane) µp/kg 100,000,⁴⁶ 1,200⁶ nv - - 50 Uvs 55 Uvs 51 Uvs 57 Uvs Naphthalene µp/kg 100,000,⁴⁶ 1,200⁶ 12,000^{9E} - - - 50 Uvs 55 Uvs 37 59 Uvs 57 Uvs Styrene µp/kg 100,000,⁴⁶ 1,000,00,⁶ nv - - - 50 Uvs 55 Uvs 11 59 Uvs 57 Uvs Styrene µp/kg 100,000,⁴ 1,000,00,⁶ nv - - - 50 Uvs 55 Uvs 11.1 U 59 Uvs 57 Uvs Tetrachorenthene (PCE) µp/kg 100,000,⁴ 1,000,00,⁶ nv - - -</td> <td></td> <td>µg/kg</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Methy labolity/ ketone (MIBK) µp/kg 100,000, ⁴⁶ 1,000,000, ² nv - - - - 30 Us 28 Uvs 54 U 30 UJ 28 Uvs Methy loch/up/chexane µp/kg 100,000, ⁴⁶ 1,000,000, ² nv - - 50 Uvs 55 Uvs 51 Uvs 57 Uvs 57 Uvs Methyloch/dvide (bichtormethane) µp/kg 100,000, ⁴⁶ 1,200 ⁶ nv - - 50 Uvs 55 Uvs 51 Uvs 57 Uvs Naphthalene µp/kg 100,000, ⁴⁶ 1,200 ⁶ 12,000 ^{9E} - - - 50 Uvs 55 Uvs 37 59 Uvs 57 Uvs Styrene µp/kg 100,000, ⁴⁶ 1,000,00, ⁶ nv - - - 50 Uvs 55 Uvs 11 59 Uvs 57 Uvs Styrene µp/kg 100,000, ⁴ 1,000,00, ⁶ nv - - - 50 Uvs 55 Uvs 11.1 U 59 Uvs 57 Uvs Tetrachorenthene (PCE) µp/kg 100,000, ⁴ 1,000,00, ⁶ nv - - -		µg/kg			-	-	-	-	-						
uerby there (MTBE) up 3x 100.000, *2.000* 93.00° 930° - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs ethyloscholarsen up 3x 100.000, *1.000* 51.000* 50° n/v - - - 5.9 Uvs 5.5 Uvs 0.53 Uvs 5.7 Uvs 5.5 Uvs ethyloscholarsen up 3x 100.000, *1.000* 51.000* 50° n/v - - - 5.9 Uvs 5.5 Uvs 0.53 Uvs 5.7 Uvs 5.5 Uvs rop/benzene.n- up 3x 100.000, *1.000* 0.000.000* n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs rop/benzene.n- up 40x 100.000, *1.000 n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs strachoroschane, 1.1.2 up 40x 100.000, *1.000 n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs scholoroschane, 1.1.2 up 40x 100.000, *0.0000 n/v - -	Methylether (MTBE)up/kg100.000, $^{A}{2}$ (2000, $^{A}{2}$ (300, $^{A}{2}$					-	-	-	-	-						
inplication	Methylogolohozane up/kg 100.000x $^{6}1.000.00x _{1}^{6}$ n/v - - - 5.8 U vs 5.5 U vs 11 5.9 U vs 5.7 U vs Naphthalene up/kg 100.000x $^{6}1.000^{6}$ 12000 ⁵ n/v - - 5.9 U vs 5.5 U vs 0.5 J U vs 5.7 U vs Naphthalene up/kg 100.00x $^{6}1.000.00x _{1}^{6}$ 12000 ⁵ n/v - 5.9 U vs 5.5 U vs 3.7 5.9 U vs 5.7 U vs Syman up/kg 100.00x $^{6}1.000.00x _{0}^{6}$ n/v - - 5.9 U vs 5.5 U vs 11 5.9 U vs 5.7 U vs Tetrachorochane, 1.12.2 up/kg 100.00x $^{6}1.000.00x _{0}^{6}$ n/v - - 5.9 U vs 5.5 U vs 1.1 U 5.9 U vs 5.7 U vs Totachorochane, 1.12.2 up/kg 100.00x $^{6}1.000.00x _{0}^{6}$ n/v - - 5.9 U vs 5.5 U vs 1.1 U 5.9 U vs 5.7 U vs Trichorochane, 1.2.4 up/kg 100.00x $^{6}1.000.00x _{0}^{6}$ n/v -					-	-	-	-	-						
terthylene Chloride (Dichloromethane) up/kg 100,000_{1}^{+51,000}6.90 ² nv - - - 5.9 Uvs 5.5 Uvs 0.53 J 5.9 Uvs 5.7 Uvs 5.7 Uvs 5.5 Uvs 5.1 Uvs 5.7 Uvs 5.7 Uvs 5.5 Uvs 5.1 Uvs 5.7 Uvs <t< td=""><td>Methylane Chloride (Dichloromethane) up/kg 100,000,$^{h}_{1}51,000^{b}$ n.v - - - 5.6 Uvs 5.5 Uvs 0.53 J 5.9 Uvs 5.7 Uvs Propybenzene, n- µg/kg 100,000,$^{h}_{4}3,000^{c}$ 12,0000^L - - 5.0 Uvs 5.5 Uvs 3.7 Uvs Stynen µg/kg 100,000,$^{h}_{4}1,000,000^{h}_{4}^{c}$ 3.900^c - - 5.0 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Stynen µg/kg 100,000,$^{h}_{4}1,000,000^{h}_{4}^{c}$ nv - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Tetrachtorethene, 1,1,2.2 µg/kg 100,000,$^{h}_{4}000,000^{h}_{4}^{c}$ nv - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Tetrachtorethene (PCE) µg/kg 100,000,$^{h}_{4}00,000^{h}_{4}^{c}$ nv - - 6.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Trichtorethane, 1,1.1 µg/kg 100,000,$^{h}_{4}00,000,00^{h}_{4}^{c}$ nv - 6.0 Uv</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Methylane Chloride (Dichloromethane) up/kg 100,000, $^{h}_{1}51,000^{b}$ n.v - - - 5.6 Uvs 5.5 Uvs 0.53 J 5.9 Uvs 5.7 Uvs Propybenzene, n- µg/kg 100,000, $^{h}_{4}3,000^{c}$ 12,0000 ^L - - 5.0 Uvs 5.5 Uvs 3.7 Uvs Stynen µg/kg 100,000, $^{h}_{4}1,000,000^{h}_{4}^{c}$ 3.900 ^c - - 5.0 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Stynen µg/kg 100,000, $^{h}_{4}1,000,000^{h}_{4}^{c}$ nv - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Tetrachtorethene, 1,1,2.2 µg/kg 100,000, $^{h}_{4}000,000^{h}_{4}^{c}$ nv - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Tetrachtorethene (PCE) µg/kg 100,000, $^{h}_{4}00,000^{h}_{4}^{c}$ nv - - 6.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Trichtorethane, 1,1.1 µg/kg 100,000, $^{h}_{4}00,000,00^{h}_{4}^{c}$ nv - 6.0 Uv															
aphthalene μg/kg 100.000, ^{kg} / ₁ 12,000 ^b 1.200 ^b - - - - - 5.9 Uvs 5.5 Uvs 3.7 5.9 Uvs 5.7 Uvs 5.5 Uvs yme μg/kg 100.000, ^{kg} / ₄ 100.000, ^{kg} 3.900 ^b - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs tradhtorethane. 1.1 2.2 μg/kg 100.000, ^{kg} / ₄ 1.300 ^o n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs tradhtorethane. 1.1 2.2 μg/kg 100.000, ^{kg} / ₄ 1.300 ^o n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs tradhtorethane. 1.2.4 100.000, ^{ch} 700 ^o 700 ^o - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs 5.1 Uvs 1.1 U 5.9 Uvs 5.0 Uvs 5.1 Uvs 1.1 U 5.9 Uvs 5.1 Uvs 1.1 U 5.9	Naphtmalene $\mu_{0}k_{0}$ 100.000, $\mu^{AB} 12.000^{C}$ 12.000 ^{PE} 5.9 U vs5.5 U vs3.7 Th5.9 U vs5.7 U vsPropybenzene, n. $\mu_{0}k_{0}$ 100.000, $\mu^{A} 3.900^{C}$ 3.900 ^{PE} 5.9 U vs5.5 U vs11.05.9 U vs5.7 U vsTetrachiorethane, 1,1,2- $\mu_{0}k_{0}$ 100.000, $\mu^{A} 1.00.000, 0^{C}$ n/V5.9 U vs5.5 U vs11.05.9 U vs5.7 U vsTetrachiorethane (PCE) $\mu_{0}k_{0}$ 100.000, $\mu^{A} 1.00.000, 0^{C}$ n/V5.9 U vs5.5 U vs1.1 U5.9 U vs5.7 U vsTolknore $\mu_{0}k_{0}$ 100.000, $\mu^{A} 1.00.000, 0^{C}$ n/V5.9 U vs5.5 U vs1.1 U5.9 U vs5.7 U vsTolknore $\mu_{0}k_{0}$ 100.000, $\mu^{A} 1.00.000, 0^{C}$ n/V5.9 U vs5.5 U vs1.1 U5.9 U vs5.7 U vsTichloroethane, 1,1.1 $\mu_{0}k_{0}$ 100.000, $\mu^{A} 1.00.000, 0^{C}$ n/V5.9 U vs5.5 U vs1.1 U5.9 U vs5.7 U vsTichloroethane, 1,1.2 $\mu_{0}k_{0}$ 100.000, $\mu^{A} 1.00.000, 0^{C}$ n/V5.9 U vs5.5 U vs1.1 U5.9 U vs5.7 U vsTichloroethane, 1,1.2 $\mu_{0}k_{0}$ 100.000, $\mu^{A} 1.00.000, 0^{C}$ n/V5.9 U vs5.5 U vs1.1 U5.9 U vs5.7 U vsTichloroethane, 1,1.2 <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					-			-	-						
tyrene ug/kg 100,000/m 100,000/m 100,000/m 5.5 Uxs 1.1 U 5.9 Uxs 5.5 Uxs 5.5 Uxs 5.5 Uxs 5.7 Uxs 5.5 Uxs trachlorethene (PCE) ug/kg 100,000/m 100,000/m 00000/m 00000/m 00000/m 00000/m 0000/m 5.5 Uxs 1.1 U 5.9 Uxs 5.5 Uxs 1.1 Uxs 5.	Styreneµg/kg100,000, $\frac{h^{6}}{1,000,000,c}$ n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTetrachloroethane, 1,12µg/kg19,000, $\frac{5}{5,00^{6}}$ n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTatcachloroethane, (PCE)µg/kg19,000, $\frac{5}{5,00^{6}}$ n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTolueneµg/kg100,000, $\frac{h^{6}}{1,000,000,c}$ n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrichloroethane, 1,1.2µg/kg100,000, $\frac{h^{6}}{1,000,000,c}$ n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrichloroethane, 1,1.2µg/kg100,000, $\frac{h^{6}}{1,000,000,c}$ n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrichloroethane, 1,12µg/kg100,000, $\frac{h^{6}}{1,000,000,c}$ n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrichloroethane (Fcon 11)µg/kg10,000, $\frac{h^{6}}{1,000,000,c}$ n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrichloroethane (Fcon 11)µg/kg100,000, $\frac{h^{6}}{1,000,000,c}$ n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrichloroethane, 1,2.4µg/kg100,0		µg/kg	100,000 ^{AB} 12,000 ^C	12,000 ^{DE}	-	-	-	-	-				5.9 U vs	5.7 U vs	
tyrene tyrene<	Styrenejg/kg100,000_{1}^{6^{4}} 1,000,000_{2}^{-1} 1,015.9 Uxs5.5 Uxs1.1 U5.9 Uxs5.7 UxsTetrachloroethene, 1,12-2-jg/kg19,000^{4},5,000^{2},100,000_{2}^{-1} n/V5.9 Uxs5.5 Uxs1.1 U5.9 Uxs5.7 UxsTotlachjg/kg19,000^{4},5,000^{2},100,000_{2}^{-1} n/V5.9 Uxs5.5 Uxs1.1 U5.9 Uxs5.7 UxsTotlacejg/kg100,000_{1}^{47} 0,00^{2}700^{0E}5.9 Uxs5.5 Uxs1.1 U5.9 Uxs5.7 UxsTrichoroethane, 1,12-jg/kg100,000_{1}^{46} 1,000,000_{1}^{2}n/V5.9 Uxs5.5 Uxs1.1 U5.9 Uxs5.7 UxsTrichoroethane, 1,12-jg/kg100,000_{1}^{46} 1,000,000_{1}^{2}n/V5.9 Uxs5.5 Uxs1.1 U5.9 Uxs5.7 UxsTrichoroethane, 1,12-jg/kg100,000_{1}^{46} 1,000,000_{1}^{2}n/V5.9 Uxs5.5 Uxs1.1 U5.9 Uxs5.7 UxsTrichoroethane (Fcon 11)jg/kg100,000_{1}^{47} 0,000,000_{1}^{2}n/V5.9 Uxs5.5 Uxs1.1 U5.9 Uxs5.7 UxsTrichoroethane (Fcon 11)jg/kg100,000_{1}^{47} 0,000,000_{1}^{2}n/V5.9 Uxs5.5 Uxs1.1 U5.9 Uxs5.7 UxsTrichoroethane (Fcon 11)jg/kg100,000_{1}^{47} 0,000^{6} 3,600^{2}	Propylbenzene, n-	µg/kg	100,000 _b ^{AB} 3,900 ^C		-	-	-	-	-						
μμφ (c) μμφ (c) 19,000 ⁶ /5,500 ⁹ 1,300 ^C n/v - - - - 5,5U vs 5,5U vs 5,7U vs 5,5U vs oluene μμφ (c) 100,000, ⁴⁸ 700 ^C 700 ^{DE} - - - - 5,8U vs 5,5U vs 5,1U vs 5,7U vs 5,5U vs 5,5U vs 5,5U vs 5,5U vs 5,7U vs 5,5U vs 5,5U vs 5,5U vs 5,5U vs 5,7U vs 5,5U vs 5,5U vs 5,5U vs 5,5U vs 5,5U vs 5,7U vs 5,5U vs 5,5U vs 5,5U vs 5,5U vs 5,7U vs 5,5U vs 5,5U vs 5,7U vs 5,5U vs 5,5U vs 5,7U vs 5,5U vs	Tetrachloroethene (PCE)µg/kg19,000 ^A 5,000 ^B 1,000 ^C n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTolueneµg/kg100,000 ^{AB} 1,000,000 ^C 700^{OE} 5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrichloroethane, 1,1.1µg/kg100,000 ^{AB} 1,000,000 ^C n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrichloroethane, 1,1.2µg/kg100,000 ^{AB} 1,000,000 ^C n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrichloroethane, 1,1.2µg/kg100,000 ^{AB} 1,000,000 ^C n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrichloroethane, (TCE)µg/kg100,000 ^{AB} 1,000 ^{AB} 1,000,000 ^C n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrichloroethane (Freon 11)µg/kg100,000 ^{AB} 1,000 ^{AB} 1,000,000 ^C n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrinehtylbenzene, 1,2.4µg/kg100,000 ^{AB} 1,000 ^{AB} 1,000,000 ^C n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrichloroethane (Freon 11)µg/kg100,000 ^{AB} 1,000,000 ^C n/v5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 UvsTrimethylbenzene, 1,2.4µg/kg <td></td> <td>µg/kg</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		µg/kg			-	-	-	-	-						
oluene jg/kg 100,000, ⁴⁸ 700 ^c 700 ^{PE} - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs inchorobarzene, 1,2.4- jg/kg 100,000, ⁴⁸ 700 ^c n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs inchorobarae, 1,1.4- jg/kg 100,000, ⁴⁸ 1,000,000 ^c n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs inchorobarae, 1,1.2- jg/kg 100,000, ⁴⁸ 1,000,000 ^c n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs inchoroburgene (TCE) jg/kg 100,000, ⁴⁸ 1,000,000 ^c n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs inchoroburgene, 1.2,4- jg/kg 100,000, ⁴⁶ 1,000,000 ^c n/v - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs <td>Tolueneμ_{g}/kg100,000,h^{a}700^{c}700^{cE}5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichlorochane, 1,2,4-μ_{g}/kg100,000,h^{a} 0,000,00^{c}n/v5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichlorochane, 1,1-μ_{g}/kg100,000,h^{a} 1,000,000^{c}n/v5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichlorochane, 1,1.2-μ_{g}/kg100,000,h^{a} 1,000,000^{c}n/v5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichlorochane (TCE)μ_{g}/kg21,000^{c} 1,0000,000^{c}n/v5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichlorochane (Freon 11)μ_{g}/kg100,000,h^{a} 1,000,000^{c}n/v5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichlorochane (Freon 113)μ_{g}/kg100,000,h^{a} 1,000,000^{c}n/v5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrimehyberzene, 1,2,4-μ_{g}/kg52,000^{4} 47,000^{8},400^{0} & 3,600^{0E}5,9 Uvs5,9 Uvs5,9 Uvs5,9 Uvs5,9 Uvs5,7 UvsTrimehyberzene, 1,3,5-μ_{g}/kg900,200^{4} 4,000^{5} & 1,0005,9 Uvs5,9 Uvs5,9 Uvs5,9 Uvs5,9 Uvs5,7 Uvs<td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td>	Toluene μ_{g}/kg 100,000,h^{a}700^{c}700^{cE}5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichlorochane, 1,2,4- μ_{g}/kg 100,000,h^{a} 0,000,00^{c}n/v5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichlorochane, 1,1- μ_{g}/kg 100,000,h^{a} 1,000,000^{c}n/v5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichlorochane, 1,1.2- μ_{g}/kg 100,000,h^{a} 1,000,000^{c}n/v5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichlorochane (TCE) μ_{g}/kg 21,000^{c} 1,0000,000^{c}n/v5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichlorochane (Freon 11) μ_{g}/kg 100,000,h^{a} 1,000,000^{c}n/v5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichlorochane (Freon 113) μ_{g}/kg 100,000,h^{a} 1,000,000^{c}n/v5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrimehyberzene, 1,2,4- μ_{g}/kg 52,000^{4} 47,000^{8},400^{0} & 3,600^{0E}5,9 Uvs5,9 Uvs5,9 Uvs5,9 Uvs5,9 Uvs5,7 UvsTrimehyberzene, 1,3,5- μ_{g}/kg 900,200^{4} 4,000^{5} & 1,0005,9 Uvs5,9 Uvs5,9 Uvs5,9 Uvs5,9 Uvs5,7 Uvs <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					-	-	-	-	-						
richlorobenzene, 1,2,4- yg/kg 100,000, ⁴⁸ 1,000,000, ⁴⁰ 0,000, ⁴⁰ 0,	Trichlorobenzene, 1,2,4- μ_{0}/k_{0} $100,000_{h}^{AB}$ $100,000_{h}^{AB}$ $100,000_{h}^{AB}$ $100,000_{h}^{AB}$ $100,000_{h}^{AB}$ $5,00,000_{h}^{AB}$ $5,00,000_{h}^{AB}$ $5,00,000_{h}^{AB}$ $5,00,000_{h}^{AB}$ $5,00,000_{h}^{AB}$ $5,00,000,00_{h}^{AB}$ $5,00,000,000_{h}^{AB}$ $5,00,000,000,00_{h}^{AB}$ $5,00,000,000,00_{h}^{AB}$ $5,00,000,000,00_{h}^{AB}$ $5,00,000,000,00_{h}^{AB}$ $5,00,000,000,00_{h}^{AB}$ $5,00,000,000,000,000,000,00_{h}^{AB}$ $5,00,000,000,000,000,000,00_{h}^{AB}$ $5,00,000,000,000,000,000,000,000,000,00$					-	-	-	-	-						
inclore thane, 1,1.1- jug/kg 100,000, ^{AB} 1,000,00, ^C n/v - - - 5.9 U vs 5.5 U vs 1.1 U 5.9 U vs 5.7 U vs 5.5 U vs richlore thane, 1,1,2- jug/kg 100,000, ^{AB} 1,000,000, ^C n/v - - 5.9 U vs 5.5 U vs 1.1 U 5.9 U vs 5.7 U vs 5.5 U vs richlore thane (TCE) jug/kg 100,000, ^{AB} 1,000,000, ^C n/v - - - 5.9 U vs 5.5 U vs 1.1 U 5.9 U vs 5.7 U vs 5.5 U vs richlore thane (TCE) jug/kg 100,000, ^{AB} 1,000,000, ^C n/v - - - 5.9 U vs 5.5 U vs 1.1 U 5.9 U vs 5.7 U vs 5.5 U vs 5.5 U vs 1.1 U 5.9 U vs 5.5 U vs 1.1 U vs 5.7 U vs 5.5 U vs 1.1 U vs 5.7 U vs 5.5 U vs 1.0	Trichloroethane, 1,1,1- μ_{9}/k_{9} 100,000, $h^{48} 680^{\circ}$ n/v 5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichloroethane, 1,1,2- μ_{9}/k_{9} 100,000, h^{48} 100,000, h^{48} n/v 5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichloroethane, (TCE) μ_{9}/k_{9} 100,000, h^{48} n/v 5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichloroethane (Freon 11) μ_{9}/k_{9} $100,000, h^{48}$ $100,000, h^{48}$ $100,000, h^{40}$ n/v 5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrichloroethane (Freon 113) μ_{9}/k_{9} $100,000, h^{48}$ $100,000, h^{40}$ n/v 5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrimethybenzene, 1,2,4- μ_{9}/k_{9} $52,000^{\circ}$ n/v 5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsTrimethybenzene, 1,3,5- μ_{9}/k_{9} $52,000^{\circ}$ $3,600^{\circ E}$ 5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsViny Choride μ_{9}/k_{9} 900° $100,000,n^{\circ}$ n/v 5,9 Uvs5,5 Uvs1.1 U5,9 Uvs5,7 UvsViny Choride μ_{9}/k_{9} 900° $100,000,n^{\circ}$ n/v 5,9 Uvs <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								_	_						
inclore than e, 1, 1, 2- µg/kg 100,000_m^{A1} 1,000,00,00,00,00,00 n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs richlore than e, 1, 1, 2- µg/kg 21,000^{A1} 0,000,00,00,00 n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs richlore than e, 10,000,40 100,000,40 100,000,40 100,000,40 0.000	Trichloroethane, 1,1,2- µg/kg 100,000_{0}^{00} 10,000_{0}^{00} n/v - - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Trichloroethane (TCE) µg/kg 21,000^{A} 10,000_{0}^{16} 1,000,000_{0}^{C} n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Trichloroethane (Freon 11) µg/kg 100,000_{0}^{16} 1,000,000_{0}^{C} n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Trichloroethane (Freon 113) µg/kg 100,000_{0}^{16} 1,000,000_{0}^{C} n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Trimethylbenzene, 1,3,5- µg/kg 52,000^{A} 7,000^{B} 3,600^{C} 3,600^{DE} - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Vinyl Choride µg/kg 900^{A} 21,000^{C} 0,00^{C} 0,00^			100.000 ^{AB} 680 ^C		-		-	-	-				5.9 U vs	5.7 U vs	
richlorofluoromethane (Freon 11) µg/kg 100,000/ ^{AB} ,000,000 ^C n/v - - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs richlorofluoromethane (Freon 113) µg/kg 100,000/ ^{AB} ,00000 ^C n/v - - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs rinethylbenzene, 1,2,4- µg/kg 52,000 ^A ,47,000 ^B ,8,600 ^C 3,600 ^{DE} - - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs rinethylbenzene, 1,3,5- µg/kg 52,000 ^A ,47,000 ^B ,8,400 ^C 8,400 ^{DE} - - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs inlyl Choride µg/kg 900 ^A 210 ^B ,20 ^C n/v - - - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs 5.5 Uvs inlyl Choride µg/kg 100,000 _b ^{AB} ,1600 ^C n/v - - - - 5.9 Uvs 5.5 Uvs 1.1 Uvs 5.	Trichlorofluoromethane (Freon 11) $\mu g/kg$ 100,000_{AB}^{AB} 1,000,000_{C}^{C} n/v - - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Trichlorotrifluoroethane (Freon 113) $\mu g/kg$ 100,000_{AB}^{AB} 1,000,000_{C}^{C} n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Trimethylbenzene, 1,2,4- $\mu g/kg$ 52,000^{A} 47,000^{B} 3,600^{C} 3,600^{DE} - - - 5.9 Uvs 5.5 Uvs 5.9 Uvs 5.7 Uvs Trimethylbenzene, 1,3,5- $\mu g/kg$ 52,000^{A} 47,000^{B} 3,600^{C} 3,600^{DE} - - - 5.9 Uvs 5.5 Uvs 5.9 Uvs 5.7 Uvs Viny Choride $\mu g/kg$ 900^{A} 2/16 20^{C} n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Viny Choride $\mu g/kg$ 900^{A} 2/16 20^{C} n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Xylene, o- $\mu g/kg$ 100,000_{L}^{AB} 1,600_{L}^{C} n/v - - -			100,000 _b ^{AB} 1,000,000 _d ^C	n/v	-		-	-	-	5.9 U vs	5.5 U F1vs	1.1 U	5.9 U vs	5.7 U vs	5.5 U vs
independence (Freen 113) $\mu g/kg$ $100,000_{k}^{AB} 1,000,000_{k}^{C}$ n/v 5.9 Uvs5.5 Uvs1.1 U5.9 Uvs5.7 Uvs5.5 Uvsimmethylbenzene, 1,2,4- $\mu g/kg$ $52,00^{4} 47,000^{8} 3,600^{C}$ $3,600^{DE}$ 5.9 Uvs5.5 Uvs5.9 Uvs5.9 Uvs5.5 Uvs5.9 Uvs5.5 Uvs5.5 Uvs5.7 Uvs5.5 Uvs5.5 Uvs5.5 Uvs5.7 Uvs5.5 Uvs5.5 Uvs5.5 Uvs5.7 Uvs5.5 Uvs5.5 Uvs5.7 Uvs5.5 Uvs5.5 Uvs5.7 Uvs5.5 Uvs5.5 Uvs5.7 Uvs5.7 Uvs5.5 Uvs5.7 Uvs5.5 Uvs5.7 Uvs	Tricholographication $\mu g/kg$ $100,000_{A}^{AB}, 1000,000_{a}^{C}$ n/v $ -$ <th< td=""><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>					-	-	-	-	-						
rimethylbenzene, 1,2,4- iminethylbenzene, 1,3,5- iminethylbenzene, 1	Trimethylbenzene, 1,2,4- $\mu g/kg$ $52,000^{6}47,000^{6}3,600^{C}$ $3,600^{DE}$ - - - - 5.9 Uvs 5.9 Uvs 5.9 Uvs 5.7 Uvs Trimethylbenzene, 1,3,5- $\mu g/kg$ $52,000^{6}47,000^{6}8,400^{C}$ $8,400^{DE}$ - - - - 5.9 Uvs 5.5 Uvs 19 0.43 Jvs 5.7 Uvs Vinyl Choride $\mu g/kg$ $900^{6}2/0^{2}0^{C}$ n/V - - - 5.9 Uvs 5.5 Uvs 1.1 Uvs 5.7 Uvs Xylene, m & p- $\mu g/kg$ $900^{6}2/0^{6}20^{C}$ n/V - - - - 5.9 Uvs 5.5 Uvs 1.1 Uvs 5.7 Uvs Xylene, o- $\mu g/kg$ $900^{6}2/0^{6}20^{C}$ n/V - - - 5.9 Uvs 5.5 Uvs 1.1 Uvs 5.7 Uvs Xylene, o- $\mu g/kg$ $100,000_{n}e^{B}1,600_{n}C^{C}$ n/V - - - 12 Uvs 11 Uvs 5.9 Uvs 5.0 Uvs 5.9 Uvs 5.7 Uvs 11 Uvs 5.7 Uvs 11 Uvs 5.7 Uvs 5.7 Uvs 5.9 Uvs 5.7 Uvs 5.7 Uvs 5.7 Uvs 5.7 Uvs <					-	-	-	-	-						
rimethylbenzene, 1,3,5- µg/kg 52,00^A 47,000 ⁸ 8,400 ^C 8,400 ^{DE} - - - 5.9 Uvs 5.5 Uvs 19 0.43 Jvs 5.7 Uvs 5.5 Uvs inyl Chloride µg/kg 900 ^A 210 ^S 2 ^C n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs ylene, m & p- µg/kg 100,000 _b A ^B , 1,600 ^C n/v - - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs 5.5 Uvs 11 Uvs 5.9 Uvs 5.7 Uvs 5.5 Uvs 5.5 Uvs 11 Uvs 5.9 Uvs 5.7 Uvs 5.5 Uvs 5.5 Uvs 11 Uvs 5.9 Uvs 5.7 Uvs 5.5 Uvs 5.5 Uvs 5.7 Uvs 5.5 Uvs 5.5 Uvs 5.7 Uvs 5.5 Uvs 5.5 Uvs 5.7 Uvs 5.7 Uvs 5.5 Uvs 5.7 Uv	Trimethylbenzene, 1,3,5- $\mu g/kg$ $52,000^{A}47,000^{B}8,400^{C}$ $8,400^{DE}$ - - - - 5.9 Uvs 5.5 Uvs 19 0.43 Jvs 5.7 Uvs Viny Choride $\mu g/kg$ $900^{A}210^{2}0^{C}$ n/v - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Xylene, m & p- $\mu g/kg$ $100,000_{p}, {}^{AB}1,600_{p}, {}^{C}$ n/v - - - 12 Uvs 5.1 Uvs 5.1 Uvs 5.1 Uvs 5.1 Uvs 5.7 Uvs 11 Uvs 5.7 Uvs </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					-	-	-	-							
int/ Chloride µg/kg 900 ^A 210 ^B 80 ^C n/v - - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs ylene, m & p- µg/kg 100,000, ^{AB} 1,600, ^C n/v - - - - 5.9 Uvs 5.5 Uvs 1.1 U 5.9 Uvs 5.7 Uvs 5.5 Uvs ylene, m & p- µg/kg 100,000, ^{AB} 1,600, ^C n/v - - - - - 12 Uvs 11 Uvs 6.8 12 Uvs 11 Uvs 5.9 Uvs 5.7 Uvs 5.5 Uvs 11 Uvs 5.9 Uvs 5.7 Uvs 5.5 Uvs 11 Uvs 5.7 Uvs 5.7 Uvs 5.5 Uvs 11 Uvs 5.9 Uvs 5.7 Uvs 5.5 Uvs 5.7 Uvs 5.7 Uvs 5.5 Uvs 5.7 Uvs 5.7 Uvs 5.5 Uvs 5.7	Vinyl Chloride μg/kg 900 ² 210 ⁸ 20 ^C n/v - - - - 5.9 Uvs 5.1 Uvs 1.1 U 5.9 Uvs 5.7 Uvs Xylene, m & p- μg/kg 100,000_n ^{AB} 1,600_c ^C n/v - - - 12 Uvs 11 Uvs 5.9 Uvs 11 Uvs Xylene, o- μg/kg 100,000_n ^{AB} 1,600_c ^C n/v - - - 12 Uvs 11 Uvs 5.9 Uvs 5.9 Uvs 5.9 Uvs 5.9 Uvs 10 Uvs 1					1 1										
ylene, n & p- yg/kg 100,000 a h (1,600 c) c h (1,600 c) c h (1,000 c) a	Xylene, m & p- µg/kg 100,000 b_p^A 1,600 C n/v n/v - - - - 11 U vs 11 U vs 11 U vs Xylene, o- µg/kg 100,000 b_p^A 1,600 C n/v - - - - 12 U vs 11 U vs 6.8 12 U vs 11 U vs Xylene, o- - - - - 5.9 U vs 5.5 U vs 0.26 J 5.9 U vs 5.7 U vs			900 ^A 210 ^B 20 ^C			-	-	-	-						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Xylene, o	5		100.000 h a ^{AB} 1.600 C		-	-	-	-	-						
ylenes, Total µg/kg 100,000, ^{AB} 1,600 ^C 260 ^{DE} 12 U vs 11 U vs 7.0 12 U vs 11 U v	Xylenes, Total µg/kg 100,000, ^{AB} 1,600 ^C 260 ^{DE} 12 U vs 11 U vs 7.0 12 U vs 11 U vs			100,000h and 1,600 c	n/v	-	-	-	-	-	5.9 U vs	5.5 U vs	0.26 J	5.9 U vs	5.7 U vs	5.5 U vs
			µg/kg	100,000 _b ^{AB} 1,600 ^Č	260 ^{DE}	-	-	-	-	-	12 U vs	11 U vs	7.0	12 U vs	11 U vs	11 U vs
	VOC - Tentatively Identified Compounds	VOC - Tentatively Identified Compounds	s													

Notes:	
NYSDEC-Part 375	NYSDEC 6 NYCRR Part 375 Soil Clean-up Objectives (SCOs)
А	NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Restricted Residential
в	NYSDEC 6 NYCRR Part 375 - Restricted Use Soil Cleanup Objectives - Protection of Human Health - Residential
С	NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Groundwater
NYSDEC CP-51	New York State Department of Environmental Conservation, DEC Policy CP-51, October 21, 2010
D	Table 2 Soil Cleanup Levels for Gasoline Contaminated Soils
E	Table 3 Soil Cleanup Levels for Fuel Oil Contaminated Soil
6.5 ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
0.50 U	Laboratory reporting limit was greater than the applicable standard.
0.03 U	Analyte was not detected at a concentration greater than the laboratory reporting limit.
n/v	No standard/guideline value.
-	Parameter not analyzed / not available.
AB	The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum value of 100 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.
AB b,p	The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum value of 100 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.
d	The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg (Organics) and 10000 mg/kg (Inorganics). See 6 NYCRR Part 375 TSD Section 9.3.
ABC f	For constituents where the calculated SCO was lower than the CRQL, the CRQL is used as the SCO value.
ABC g	For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.
P	The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.
*	Indicates analysis is not within the quality control limits.
J	The reported result is an estimated value.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits.

- Reported analyte concentrations are below 200 ug/kg and may be biased low due to the sample not being collected according to 5035A-L low-level specifications. vs N
- Presumptive evidence of material.
- Т Result is a tentatively identified compound (TIC) and an estimated value.
- ERF Eurofins TestAmerica

Table 2Summary of Groundwater Field Parameters121-123 Reynolds Street RemediationCity of Rochester

	Sample Location		Sump 1	- North			Sump 2	2 - South		MW-4			
	Purge Date	1-Oct-20	14-Jan-21	20-Apr-21	15-Jul-21	1-Oct-20	14-Jan-21	20-Apr-21	15-Jul-21	1-Oct-20	14-Jan-21	20-Apr-21	15-Jul-21
	Purge Method	Pump	Pump	Pump	Pump	Pump	Pump	Pump	Pump	Bailer	Bailer	Bailer	Bailer
	Sample Date	1-Oct-20	14-Jan-21	20-Apr-21	15-Jul-21	1-Oct-20	14-Jan-21	20-Apr-21	15-Jul-21	1-Oct-20	14-Jan-21	20-Apr-21	15-Jul-21
	Sampling Method	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer
Field Parameters	Units												
Conductivity	mS/cm	2.01	3.85	3.38	3.27	2.94	3.75	3.395	3.33	1.87	2.84	2.608	3.14
Dissolved Oxygen	mg/L	7.31	3.61	6.70	4.88	6.69	6.04	4.84	2.22	3.44	4.84	4.41	1.98
Oxidation Reduction Potential	mV	-62.5	204.4	100.5	32.9	58.8	175.0	57.2	92.2	-49.0	-38.5	-24.5	-57.3
рН	S.U.	6.90	7.07	7.08	7.37	6.74	7.04	7.09	7.18	6.93	7.02	6.74	7.24
Temperature	deg C	17.5	10.7	11.1	15.5	17.5	10.5	11.3	15.9	15.6	10.8	9.9	15.9
Volume Purged	gal	65	78	90	75	46	65	75	65	2	2.6	4.5	2.5

Table 3 Summary of Groundwater Analyses 121-123 Reynolds St., Rochester, NY City of Rochester

Sample Location				M	W4				SUMP1				SL	JMP2			TRIP BL	ANK	
Sample Date Sample ID Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type	Units	TOGS	1-Oct-20 MW4-01 STANTEC PARAROCH 204662 204662-03	14-Jan-21 MW-4-Q2 STANTEC ERF 480-180265-1 480-180265-3	20-Apr-21 MW-4-Q3 STANTEC ERF 480-183642-1 480-183642-3	15-Jul-21 MW-4-Q4 STANTEC TALBU 480-187354-1 480-187354-3	1-Oct-20 SUMP1-01 STANTEC PARAROCH 204662 204662-01	14-Jan-21 SUMP1-NORTH-Q2 STANTEC ERF 480-180265-1 480-180265-1	20-Apr-21 SUMP1-NORTH-Q3 STANTEC ERF 480-183642-1 480-183642-1	15-Jul-21 SUMP1-NORTH-Q4 STANTEC TALBU 480-187354-1 480-187354-1	15-Jul-21 GW-DUP STANTEC TALBU 480-187354-1 480-187354-4 Field Duplicate	1-Oct-20 SUMP2-01 STANTEC PARAROCH 204662 204662-02	14-Jan-21 SUMP2-SOUTH-Q2 STANTEC ERF 480-180265-1 480-180265-2	20-Apr-21 SUMP2-SOUTH-Q3 STANTEC ERF 480-183642-1 480-183642-2	15-Jul-21 SUMP2-SOUTH-Q4 STANTEC TALBU 480-187354-1 480-187354-2	1-Oct-20 Trip Blank T1009 STANTEC PARAROCH 204662 204662-04 Trip Blank	14-Jan-21 TRIP BLANK STANTEC ERF 480-180265-1 480-180265-4 Trip Blank	20-Apr-21 TRIP BLANK STANTEC ERF 480-183642-1 480-183642-4 Trip Blank	15-Jul-21 TRIP BLAN STANTEC TALBU 480-187354 480-187354 Trip Blank
Volatile Organic Compounds	·																		<u></u>
Benzene	µg/L	1 ^B	1.77 ^B	1.0 U	0.50 J	1.0 U	1.43 ^B	1.0 U	1.0 U	1.0 U	1.0 U	1.00 U	1.0 U	1.0 U	1.0 U F1	1.00 U	1.0 U	1.0 U	1.0 U
Butylbenzene, n-	µg/L	5 ^B	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U
Butylbenzene, sec- (2-Phenylbutane)	µg/L	5 ^B	2.00 U	2.1	0.90 J	1.1	2.00 U	1.0 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U F1	2.00 U	1.0 U	1.0 U	1.0 U
Butylbenzene, tert-	µg/L	5 ^B	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U F1	2.00 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	µg/L	5 ^B	2.00 U	1.0 U	1.0 U	1.0 U	9.62 ^B	1.0 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U
sopropylbenzene	µg/L	5 ^B	1.24 J	0.46 J	1.0 U	1.0 U	2.31	1.0 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U
sopropyltoluene, p- (Cymene)	µg/L	5 ^B	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U F1	2.00 U	1.0 U	1.0 U	1.0 U
Methyl tert-butyl ether (MTBE)	µg/L	10 ^A	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U
Naphthalene	µg/L	10 ^B	5.00 U	1.0 U	1.0 U	1.0 U	5.00 U	1.0 U	1.0 U	1.0 U	1.0 U	5.00 U	1.0 U	1.0 U	1.0 U	5.00 U	1.0 U	1.0 U	1.0 U
Propylbenzene, n-	µg/L	5 ^B	1.54 J	0.51 J	1.0 U	1.0 U	3.32	1.0 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U
Foluene	µg/L	5 ^B	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U
rimethylbenzene, 1,2,4-	µg/L	5 ^B	2.00 U	1.0 U	1.0 U	1.0 U	19.3 ^B	1.0 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U
Trimethylbenzene, 1,3,5-	µg/L	5 ^B	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U
(ylene, m & p-	µg/L	5 ^B	2.00 U	1.0 U	2.0 U	2.0 U	2.00 U	1.0 U	2.0 U	2.0 U	2.0 U	2.00 U	1.0 U	2.0 U	2.0 U F1	2.00 U	1.0 U	2.0 U	2.0 U
(ylene, o-	µg/L	5 ^B	2.00 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U	1.0 U	2.00 U	1.0 U	1.0 U	1.0 U F1	2.00 U	1.0 U	1.0 U	1.0 U
Xylenes, Total	µg/L	5 ⁸	-	2.0 U	2.0 U	2.0 U	-	2.0 U	2.0 U	2.0 U	2.0 U	-	2.0 U	2.0 U	2.0 U F1	-	2.0 U	2.0 U	2.0 U

Notes:

TOGS

NYSDEC TOGS 1.1.1 (Reissued June 1998 with errata in January 1999 and addenda in April 2000 and June 2004) TOGS 1.1.1 - Table 1 - Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Guidance TOGS 1.1.1 - Table 1 - Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Standards А в

Concentration exceeds the indicated standard.

6.5^A

15.2

0.03 U

Concentration exceeds the indicated standard. Measured concentration did not exceed the indicated standard. Analyte was not detected at a concentration greater than the laboratory reporting limit. The principal organic contaminant standard for groundwater of 5 ug/L (described elsewhere in the TOGS table) applies to this substance. Applies to the sum of cis- and trans-1,3-dichloropropene. MS and/or MSD recovery exceeds control limits. The reported result is an estimated value. --

Р F1 J

APPENDIX A

Historical Soil and Groundwater Analytical Results from Day Environmental Phase II ESA (January 11, 2016)

Sample ID	Collection Date	Depth (ft)	Composite or Grab	PID Reading (PPM)	Matrix	Analytical Test Parameters
001-TB-1(5-8)	9/24/2015	5-8	Grab	0.0	Soil	STARS/CP-51 VOC
002-TB-2(5-8.2)	9/24/2015	5-8.2	Grab	1.4	Soil	STARS/CP-51 VOC, STARS/CP-51 SVOC
003-TB-3(5-8.5)	9/24/2015	5-8.5	Grab	0.0	Soil	STARS/CP-51 VOC
004-TB-4(5-9)	9/24/2015	5-9	Grab	0	Soil	STARS/CP-51 VOC
005-TB-5(4-8)	9/24/2015	4-8	Grab	1435	Soil	STARS/CP-51 VOC, STARS/CP-51 SVOC, RCRA Metal
006-TB-6(8-8.8)	9/24/2015	8-8.8	Grab	0.0	Soil	STARS/CP-51 VOC
007-TB-7(0-4)	9/24/2015	0-4	Grab	0.0	Soil	RCRA Metal, TCLP Metal
008-TB-7(8-9.7)	9/24/2015	8-9.7	Grab	249	Soil	STARS/CP-51 VOC, STARS/CP-51 SVOC
009-TB-8(0-4)	9/24/2015	0-4	Grab	0.0	Soil	STARS/CP-51 SVOC, RCRA Metal, TCLP Metal
010-TB-8(8-9.7)	9/24/2015	8-9.7	Grab	0.0	Soil	STARS/CP-51 VOC
011-TB-9(8-9.7)	9/24/2015	8-9.7	Grab	0.0	Soil	STARS/CP-51 VOC
012-TB-10(8-9.5)	9/24/2015	8-9.5	Grab	0.0	Soil	STARS/CP-51 VOC
013-TB-11(0-4)	9/24/2015	0-4	Grab	0.0	Soil	STARS/CP-51 SVOC, RCRA Metal
014-TB-11(8-9.2)	9/24/2015	8-9.2	Grab	0.0	Soil	STARS/CP-51 VOC
015-TB-12(8-8.8)	9/24/2015	8-8.8	Grab	696	Soil	STARS/CP-51 VOC
016-TB-13(4-8)	9/24/2015	4-8	Grab	201	Soil	STARS/CP-51 SVOC, RCRA Metal
017-TB-13(8-9.2)	9/24/2015	8-9.2	Grab	241	Soil	STARS/CP-51 VOC
018-TB-14(8-9.4)	9/24/2015	8-9.4	Grab	0.0	Soil	STARS/CP-51 VOC
019-TB-15(0-4)	9/24/2015	0-4	Grab	0.0	Soil	RCRA Metal
020-TB-15(4-8)	9/24/2015	4-8	Grab	2.9	Soil	STARS/CP-51 VOC
021-TB-16(8-9.8)	9/24/2015	8-9.8	Grab	0.0	Soil	STARS/CP-51 VOC
022-MW-2(8-9.4)	10/7/2015	8-9.4	Grab	152	Soil	STARS/CP-51 VOC
023-MW-3 (8-8.8)	10/7/2015	8-8.8	Grab	1659	Soil	STARS/CP-51 VOC
024-MW-4(9)	10/6/2015	9	Grab	0.0	Soil	STARS/CP-51 VOC
025-IDW1(Soil)	10/7/2015	NA	Composite	NA	Soil	TCLP Metal, Flash
026-MW-1	10/23/2015	NA	Grab	NA	Groundwater	TCL + STARS/CP-51 VOC
027-MW-2	10/23/2015	NA	Grab	NA	Groundwater	TCL + STARS/CP-51 VOC
028-MW-3	10/23/2015	NA	Grab	NA	Groundwater	TCL + STARS/CP-51 VOC
029-MW-4	10/23/2015	NA	Grab	NA	Groundwater	TCL + STARS/CP-51 VOC
030-IDW2(water)	10/23/2015	NA	Grab	NA	Water	Purgeable Organic VOC/SVOC

VOC = Volatile Organic Compounds via USEPA Method 8260

SVOC = Semi-Volatile Organic Compounds via USEPA Method 8270

RCRA Metal = Resource Conservation and Recovery Act total metals via USEPA Methods 6010 and 7471

TCLP Metal = Toxicity Characteristic Leaching Procedure metals via USEPA Methods 1311, 6010 and 7470

Flash = Flashpoint via USEPA Method 1030

USEPA = United States Environmental Protection Agency

NYSDEC - New York State Department of Environmental Conservation

STARS= NYSDEC Spill Technology and Remediation Series list

CP-51 = NYSDEC Commissioner's Policy 51 list

TCL = USEPA Target Compound List

NA = Not Applicable

Purgeable Organic VOC/SVOC = Purgeable Organic VOCs via USEPA Method 624/SVOCs via USEPA Method 625

Well ID	Elevation of PVC Well Casing (FT)	Static Water Level (SWL) Measurement (FT)	Groundwater Elevation (FT)
MW-1	529.20	7.89	521.31
MW-2	529.20	9.52	519.68
MW-3	528.70	9.04	519.66
MW-4	529.10	9.38	519.72

Detected Compound	A Protection of Groundwater SCO ⁽¹⁾	B Residential SCO ⁽¹⁾	C Restricted Residential SCO ⁽¹⁾	D SCL ⁽²⁾	001 TB-1 5-8 09/24/2015	002 TB-2 5-8.2 09/24/2015	003 TB-3 5-8.5 09/24/201	004 TB-4 5-9 5 09/24/2015	005 TB-5 4-8 09/24/2015	006 TB-6 8-8.8 09/24/2015	008 TB-7 8-9.7 09/24/2015
Benzene	0.06	2.9	4.8	0.06	U	U	U	U	U	U	U
Toluene	0.7	100	100	0.7	U	U	U	U	U	U	U
Ethylbenzene	1	30	41	1	U	U	U	U	3.8 D AD	U	0.0242
Xylene (mixed)	1.6	100	100	0.26	U	U	U	U	16.1382 D AD	U	0.0035 J
Isopropylbenzene	2.3	100	NA	2.3	U	U	U	U	1.6 D	U	0.0238
n-Propylbenzene	3.9	100	100	3.9	U	0.0019 J	U	U	6.1 D AD	U	0.0552
1,3,5- Trimethylbenzene	8.4	47	52	8.4	U	U	U	U	13.5 D AD	U	0.0157
tert-Butylbenzene	5.9	100	100	5.9	U	U	U	U	0.0108	U	0.003 J
1,2,4-Trimethylbenzene	3.6	47	52	3.6	U	U	U	U	49.2 D ABD	U	0.023
sec-Butylbenzene	11	100	100	11	U	U	U	U	0.11	U	0.0216
p-Isopropyltoluene	10	NA	NA	10	U	U	U	U	1.7 D	U	0.049
n-Butylbenzene	12	100	100	12	U	U	U	U	6.2 D	U	U
TOTAL VOCs	NA	NA	NA	NA	0.0	0.0019	0.0	0.0	98.359	0.0	0.219
Naphthalene	12	100	100	12	U	U	U	U	3.5 D	U	U

VOC = Volatile Organic Compound

J = Estimated Value

NA = Not available

(1) = Soil Cleanup Objectives (SCO) referenced in 6 NYCRR Part 375 dated 12/14/06

(2) = Soil Cleanup Level (SCL) as referenced in NYSDEC CP-51 / Soil Cleanup Guidance Table 1 dated 10/21/10

A = Exceeds Protection of Groundwater SCO

B = Exceeds Residential Use SCO

C = Exceeds Restricted Residential Use SCO

Detected Compound	A Protection of Groundwater SCO ⁽¹⁾	B Residential SCO ⁽¹⁾	C Restricted Residential SCO ⁽¹⁾	D SCL ⁽²⁾	010 TB-8 8-9.7 09/24/2015	011 TB-9 8-9.7 09/24/2015	012 TB-10 8-9.5 09/24/2015	TB-10 TB-11 8-9.5 8-9.2		017 TB-13 8-9.2 09/24/2015
Benzene	0.06	2.9	4.8	0.06	U	U	U	U	U	U
Toluene	0.7	100	100	0.7	U	U	U	U	U	0.13 J
Ethylbenzene	1	30	41	1	U	U	U	U	U	U
Xylene (mixed)	1.6	100	100	0.26	U	U	U	U	0.89 J D	7.7 AD
Isopropylbenzene	2.3	100	NA	2.3	U	U	U	U	U	U
n-Propylbenzene	3.9	100	100	3.9	U	U	U	U	U	U
1,3,5- Trimethylbenzene	8.4	47	52	8.4	U	U	U	U	9.7 AD	8.2
tert-Butylbenzene	5.9	100	100	5.9	U	U	U	U	U	U
1,2,4-Trimethylbenzene	3.6	47	52	3.6	U	U	U	U	10.4 AD	25.1 D AD
sec-Butylbenzene	11	100	100	11	U	U	U	U	U	U
p-Isopropyltoluene	10	NA	NA	10	U	U	U	U	4	3.9
n-Butylbenzene	12	100	100	12	U	U	U	U	U	U
TOTAL VOCs	NA	NA	NA	NA	0.0	0.0	0.0	0.0	24.99	45.03
Naphthalene	12	100	100	12	U	U	U	U	U	21.6 D AD

VOC = Volatile Organic Compound

J = Estimated Value

(1) = Soil Cleanup Objectives (SCO) referenced in 6 NYCRR Part 375 dated 12/14/06

(2) = Soil Cleanup Level (SCL) as referenced in NYSDEC CP-51 / Soil Cleanup Guidance Table 1 dated 10/21/10

NA = Not available

A = Exceeds Protection of Groundwater SCO

B = Exceeds Residential Use SCO

C = Exceeds Restricted Residential Use SCO

Detected Compound	A Protection of Groundwater SCO ⁽¹⁾	B Residential SCO ⁽¹⁾	C Restricted Residential SCO ⁽¹⁾	D SCL ⁽²⁾	018 TB-14 8-9.4 09/24/2015	020 TB-15 4-8 09/24/2015	021 TB-16 8-9.8 09/24/2015	022 MW-2 8-9.4 10/7/2015	023 MW-3 8-8.8 10/7/2015	024 MW-4 9 10/6/2015
Benzene	0.06	2.9	4.8	0.06	U	U	U	0.049	U	U
Toluene	0.7	100	100	0.7	U	U	U	0.0807	U	U
Ethylbenzene	1	30	41	1	U	U	U	2 D AD	U	U
Xylene (mixed)	1.6	100	100	0.26	U	U	U	10.1 D AD	0.21	U
Isopropylbenzene	2.3	100	NA	2.3	U	U	U	1.1 D	0.0567	U
n-Propylbenzene	3.9	100	100	3.9	U	U	U	2.9 D	0.083	U
1,3,5- Trimethylbenzene	8.4	47	52	8.4	U	U	U	5.2 D	1.9 D	U
tert-Butylbenzene	5.9	100	100	5.9	U	U	U	U	0.0268	U
1,2,4-Trimethylbenzene	3.6	47	52	3.6	U	U	U	17.8 D AD	2.2 D	U
sec-Butylbenzene	11	100	100	11	U	U	U	4.1 D	0.11	U
p-Isopropyltoluene	10	NA	NA	10	U	U	U	2.9 D	1.5 D	U
n-Butylbenzene	12	100	100	12	U	U	U	9.1 D	U	U
TOTAL VOCs	NA	NA	NA	NA	0.0	0.0	0.0	55.3297	6.0865	0.0
Naphthalene	12	100	100	12	0.0098	U	U	85.4 D AD	0.0214	U

VOC = Volatile Organic Compound

J = Estimated Value

(1) = Soil Cleanup Objectives (SCO) referenced in 6 NYCRR Part 375 dated 12/14/06

(2) = Soil Cleanup Level (SCL) as referenced in NYSDEC CP-51 / Soil Cleanup Guidance Table 1 dated 10/21/10

NA = Not available

A = Exceeds Protection of Groundwater SCO

B = Exceeds Residential Use SCO

C = Exceeds Restricted Residential Use SCO

Detected Compound	A Protection of Groundwater SCO ⁽¹⁾	B Residential SCO ⁽¹⁾	C Restricted Residential SCO ⁽¹⁾	D SCL ⁽²⁾	002 TB-2 5-8.2 09/24/2015	005 TB-5 4-8 09/24/2015	008 TB-7 8-9.7 09/24/2015	009 TB-8 0-4 09/24/2015	013 TB-11 0-4 09/24/2015	016 TB-13 4-8 09/24/2015
Acenaphthene	98	100	100	20	U	U	U	0.19 J	U	U
Phenanthrene	1,000	100	100	100	U	U	U	3.1	0.31 J	32.2 D
Anthracene	1,000	100	100	100	U	U	U	0.89	0.0817 J	U
Fluoranthene	1,000	100	100	100	U	U	U	5.2	0.65	0.76
Pyrene	1,000	100	100	100	U	U	U	4.5	0.51	1.6
Benzo(a)anthracene	1	1	1	1	U	U	U	3.6 ABCD	0.32 J	0.17 J
Chrysene	1	1	3.9	1	U	U	U	2.7 ABD	0.29 J	0.13 J
Benzo(b)fluoranthene	1.7	1	1	1	U	U	U	4 ABCD	0.38	U
Benzo(k)fluoranthene	1.7	1	3.9	0.8	U	U	U	2.1 ABD	0.19 J	U
Benzo(a)pyrene	22	1	1	1	U	U	U	3.2 BCD	0.27 J	U
Indeno(1,2,3-cd)pyrene	8.2	0.5	0.5	0.5	U	U	U	2 BCD	0.2 J	U
Dibenzo(a,h) anthracene	1000	0.33	0.33	0.33	U	U	U	0.5 J BCD	U	U
Benzo(g,h,i)perylene	1,000	100	100	100	U	U	U	1.9	0.16 J	U
TOTAL SVOCS	NA	NA	NA	NA	0.0	0.0	0.0	33.88	3.3617	34.86

U = Not detected SVOC = Semi-Volatile Organic Compound

J = Estimated Value NA = Not available

(1) = Soil Cleanup Objectives (SCO) referenced in 6 NYCRR Part 375 dated 12/14/06.

(2) = Soil Cleanup Level (SCL) as referenced in NYSDEC CP-51 / Soil Cleanup Guidance Table 1 dated 10/21/10

A = Exceeds Protection of Groundwater SCO

B = Exceeds Residential Use SCO

C = Exceeds Restricted Residential Use SCO

Detected Analyte	A Protection of Groundwater SCO ⁽¹⁾	B Residential SCO ⁽¹⁾	C Restricted Residential SCO ⁽¹⁾	005 TB-5 4-8 09/24/2015	007 TB-7 0-4 09/24/2015	009 TB-8 0-4 09/24/2015	013 TB-11 0-4 09/24/2015	016 TB-13 4-8 09/24/2015	019 TB-15 0-4 09/24/2015
Arsenic	16	16	16	2.29	3.68	4.02	1.57	2.2	1.76
Barium	820	350	400	42.8 N	86.9 N	140 N	24.5 N	45.1 N	32.9 N
Cadmium	7.5	2.5	4.3	0.079 J	0.335	1.19	U	0.104 J	U
Chromium	NA	36	180	5.71	9.5	6.79	4.83	7.28	6.5
Lead	450	400	400	9.51	441 BC	486 ABC	5.5	90.8	12.6
Mercury	0.73	0.81	0.81	0.133	0.659	0.714	0.166	0.013 J	0.042
Selenium	4	36	180	UN	UN	UN	UN	UN	UN
Silver	8.3	36	180	0.621	0.989	0.796	0.536	0.769	0.68

N = Spiked sample recovery not within control limits

J = Estimated Value

NA = Not available

(1) = Soil Cleanup Objectives (SCO) Referenced in 6 NYCRR Part 375 dated 12/14/06.

A = Exceeds Protection of Groundwater SCO

B = Exceeds Residential Use SCO

C = Exceeds Restricted Residential Use SCO

Detected Analyte	Regulatory Level ¹	007 TB-7 0-4 09/24/201	5	009 TB-8 0-4 09/24/2015		
Arsenic	5	U		U		
Barium	100	1.61		1.26		
Cadmium	1	0.0052 J		0.0205 J		
Chromium	5	0.027 J		0.0217 J		
Lead	5	0.269		0.239		
Mercury	0.2	U		U		
Selenium	1	0.125		0.142		
Silver	5	U		U		

J = Estimated Value

(1) = Regulatory Level (MCL) for characteristic hazardous waste based on toxicity referenced in NYSDEC 6NYCRR Part 371.3(e).

Detected Compound	Groundwater Standard or Guidance Value ⁽¹⁾	026 MW-1 10/23/15		027 MW-2 10/23/15		028 MW-3 10/23/15		029 MW-4 10/23/15	
Benzene	1	3.5)	(7.7	X	2.9	X	2.5	X
Toluene	5	11.5)	<	2.2		2.1		0.6	J
Xylene (mixed)	5	2,317.4 D 🕽	(46.0	X	63.0	X	9.8	X
Isopropylbenzene	5	81.3	(9.2	X	9.8	X	6.8	X
n-Propylbenzene	5	150	κ 💦	15.3	X	14.5	X	11.2	X
1,3,5- Trimethylbenzene	5	300 D 🕽	(15.0	X	28.1	X	2.9	
tert-Butylbenzene	5	1.4		0.54 J		0.82 J		0.56	J
1,2,4-Trimethylbenzene	5	1,100 D 🕽	Κ	83.2	X	130	X	28.3	X
sec-Butylbenzene	5	9.4)	<	6.5	X	5.9	X	6.9	X
p-Isopropyltoluene	5	17)	<	4.5		6.0	X	2.7	
Ethylbenzene	5	500 D 🕽	<	9.1	X	5.9	X	2.2	
Cyclohexane	NA	260 D		10.5		32.3		5.1	
Methylcyclohexane	NA	270 D		6.2		56.4		3.7	
n-Butylbenzene	5	12.2	(3.4		3.1		2.9	
TOTAL VOCs ⁽²⁾	NA	5,033.7		219.3		360.8		86.2	
Naphthalene	10	350 D 🕽	(74.8	X	37.30	X	23.9	X

U = Not Detected above detection limit utilized by the analytical laboratory

NA = Not available

J = Estimated Value

VOC = Volatile Organic Compound

X = Exceeds applicable groundwater standard or guidance value

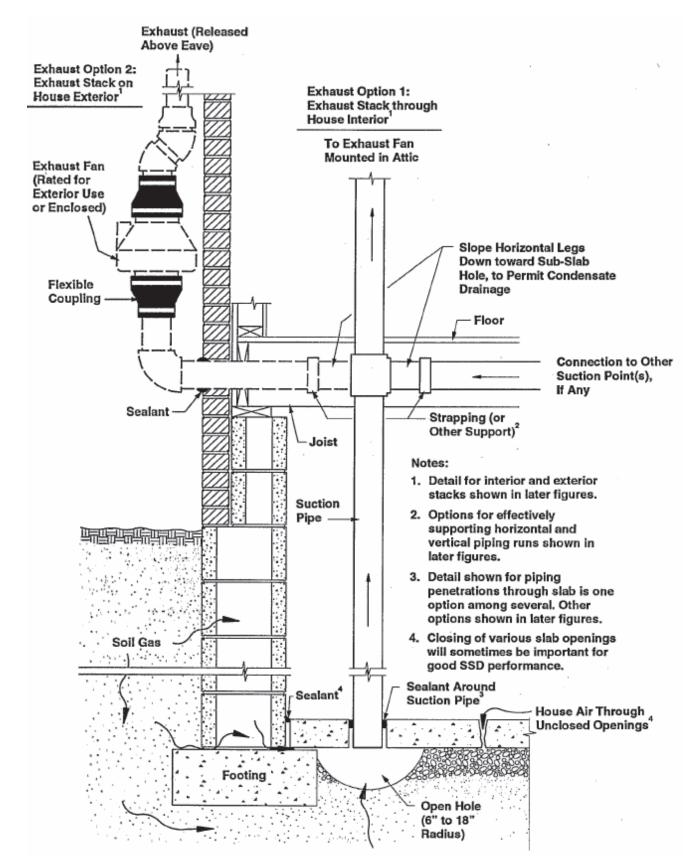
Values are in microgram per liter (ug/L) or parts per billion (ppb)

⁽¹⁾ Groundwater standard or guidance values are as referenced in NYSDEC TOGS 1.1.1 dated June 1998 as amended by NYSDEC's supplemental table dated April 2000.

⁽²⁾ Total VOCs does not include naphthalene.

APPENDIX B

Soil Vapor Intrusion Mitigation Guidance



Sub-Slab Depressurization System

(commonly called a radon mitigation system) The vent pipe is routed uo the side of the structure to a location above the roof line. 0 A fan is used to draw soil vapor from beneath the slab. 0 000000000000000 0.00000 A liquid gauge, or manometer is Sub-Slab Soil Vapor used to verify that the system is operating properly A sub-slab depressurization system vents contaminated soil vapor before it enters a structure. The fan draws vapor from beneath the building outside to the roof line where it is released to the outside air.

Figure 5.2 Example of an illustration showing how a SSD system works.

- 78 -

Sub-slab depressurization (SSD) using pipes inserted down through the slab from indoors.

Excerpt from *Technical Guidance (Third Edition) for Active Soil Depressurization Systems*, USEPA, 1993.